Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

for

Effective Catalysis of Imine Metathesis by means of Fast Transiminations between Aromatic-Aromatic or Aromatic-Aliphatic Amines

Maria Ciaccia, Silvia Pilati, Roberta Cacciapaglia, Luigi Mandolini and Stefano Di Stefano*

Table of contents

Kinetic equation for reversible reactions, second order in both directions	SI 2
Aromatic-aromatic and aromatic-aliphatic imine metathesis (typical experiments)	SI 3
Kinetic measurements (data reported in the main text, Table 1)	SI 5
Kinetic measurements (data reported in the main text, Table 2)	SI 12

Dipartimento di Chimica, Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5 I-00185 Roma, Italy

Kinetic equation for reversible reactions, second order in both directions

$$A + B \stackrel{k_f}{\longleftarrow} C + D$$

From ref S1, the standard kinetic equation is given in eqn (S1).

$$[Pdt] = \frac{\{-b \cdot [1 - g \cdot exp(p \cdot t)] + r \cdot [1 + g \cdot exp(p \cdot t)]\}}{\{2a \cdot [1 - g \cdot exp(p \cdot t)]\}}$$
(S1)

where

$$p = \frac{k_f \cdot r}{\left[\mathbf{C} \right]_{\mathbf{e}} \cdot \left[\mathbf{D} \right]_{\mathbf{e}}}$$

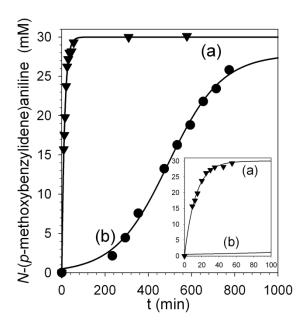
$$g = \frac{b-r}{b+r}$$

$$r = \sqrt{b^2 - 4a \cdot c}$$

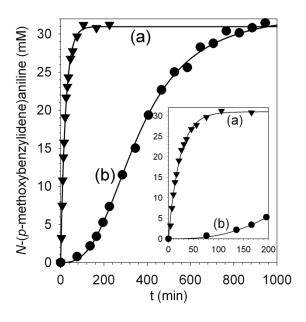
$$a = [C]_e \cdot [D]_e - [A]_e \cdot [B]_e$$

$$b = -\left\{ \left[\left[\mathbf{A} \right]_0 + \left[\mathbf{B} \right]_0 \right] \cdot \left[\mathbf{C} \right]_e \cdot \left[\mathbf{D} \right]_e + \left[\left[\mathbf{C} \right]_0 + \left[\mathbf{D} \right]_0 \right] \cdot \left[\mathbf{A} \right]_e \cdot \left[\mathbf{B} \right]_e \right\}$$

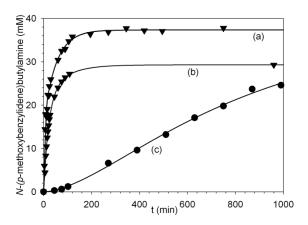
$$c = [A]_0 \cdot [B]_0 \cdot [C]_e \cdot [D]_e - [A]_e \cdot [B]_e \cdot [C]_0 \cdot [D]_0$$


In our experiments $[A]_0 = [B]_0$ and $[C]_0 = [D]_0 = 0$ in all cases.

The equilibrium constant $K = k_f / k_b$ is defined in terms of equilibrium concentration of reactants and products.


$$K = \frac{[C]_{e} \cdot [D]_{e}}{[A]_{e} \cdot [B]_{e}}.$$

^{S1} N. E., Meagher, D. B. Rorabacher *J. Phys. Chem.* **1994**, *98*, 12590-12593.


Aromatic-aromatic and aromatic-aliphatic imine metathesis (typical experiments)

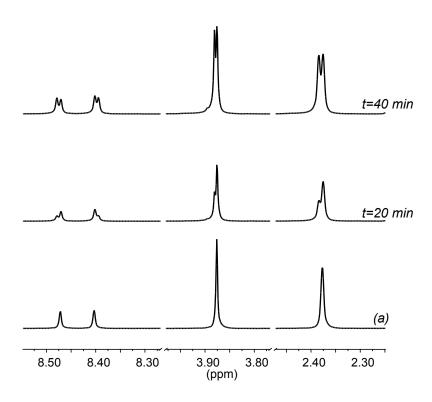
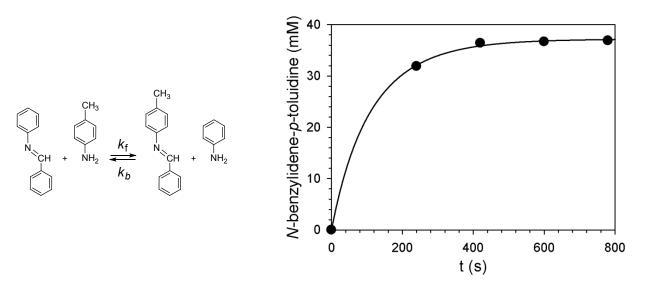
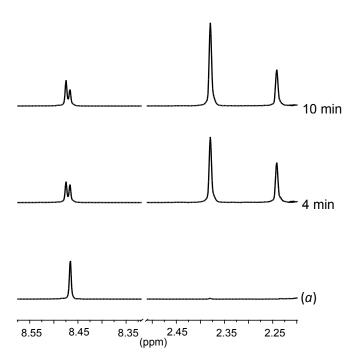

Figure S1. Reaction progress as a function of time for 18 mM amine-catalyzed (a) and background (b) metathesis between 60 mM N-(p-methoxybenzylidene)p-toluidine and 60 mM N-benzylideneaniline in CDCl₃ at 25 °C. Curve (a) is a plot of a first-order equation, curve (b) is a guide to the eye.

Figure S2. Reaction progress as a function of time for 18 mM amine-catalyzed (a) and background (b) metathesis between 60 mM N-(p-methoxybenzylidene)p-toluidine and 60 mM N-benzylideneaniline in CD₃OD at 25 °C. Curve (a) is a plot of a first-order equation, curve (b) is a guide to the eye.

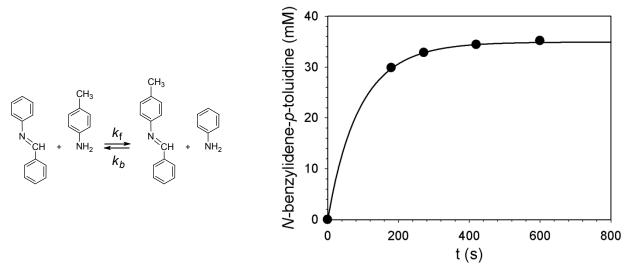
Figure S3. Reaction progress as a function of time for 18 mM butylamine catalyzed (a), 18 mM toludine catalyzed (b), and background (c) metathesis between 60 mM N-(p-methoxybenzylidene)p-toluidine and N-benzylidenebutylamine in CDCl₃ at 25 °C. The curves are guides to the eye.

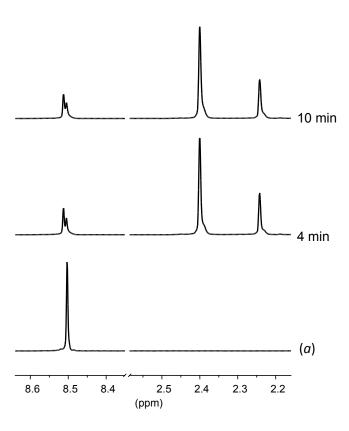

Figure S4. Metathesis between 60 mM *N*-(*p*-methoxybenzylidene)*p*-toluidine and 60 mM *N*-benzylideneaniline in CDCl₃ at 25 °C. Monitoring of imine ($\delta = 8.35 - 8.40$ ppm), -OCH₃ ($\delta = 3.85$ -3.90 ppm), or -CH₃ ($\delta = 2.35 - 2.40$ ppm) signals gave coincident results, within experimental errors.

Kinetic measurements (data reported in the main text, Table 1)


- Transimination between N -benzylideneaniline and p -toluidine in CDCl ₃	SI 6
- Transimination between N -benzylideneaniline and p -toluidine in CD_2Cl_2	SI 7
- Transimination between N -benzylideneaniline and p -toluidine in CD_3CN	SI 8
- Transimination between N-(p-methoxybenzylidene)-p-toluidine and aniline in CDCl ₃	SI 9
- Transimination between N-(p-cyanobenzylidene)-p-toluidine and aniline in CDCl ₃	SI 10
- Transimination between N -(p -nitrobenzylidene)- p -toluidine and aniline in CDCl ₃	SI 11

Notes


- *i*) One typical kinetic run has been here reported for each entry of Table 1 (main text). Average data of two to three independent runs have been given, on the other hand, in Table 1 (see footnote c to the same table in the main text).
- *ii*) Data of the transimination between N-(p-X-benzylidene)anilines and p-toluidine (eqn (1), $X = OCH_3$, CN, NO_2 , and Table 1 of the main text, entries 4-6) have been obtained by monitoring of the equilibration process starting from products of eqn (1), i. e. from N-(p-X-benzylidene)toluidines and aniline.
- *iii*) Monitoring of imine or methyl signals gave coincident results, within experimental errors. A deconvolution procedure was adopted for integration of imine signals.


Figure S5. ¹H NMR monitoring of the transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CDCl₃, 25 °C.

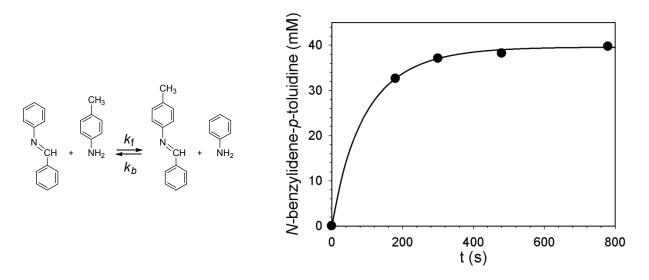
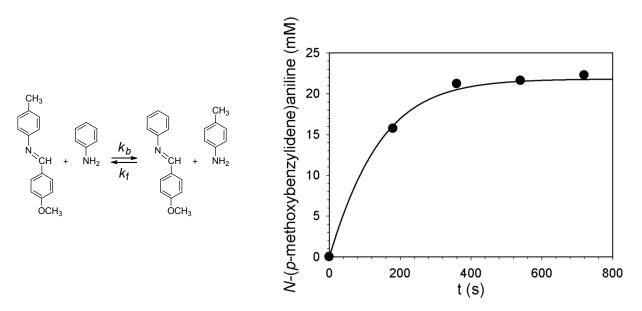
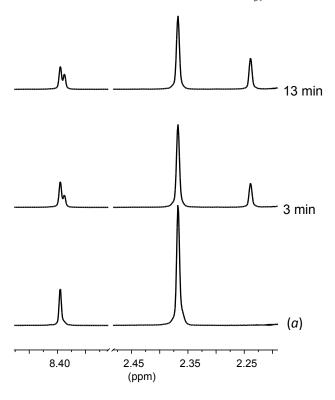
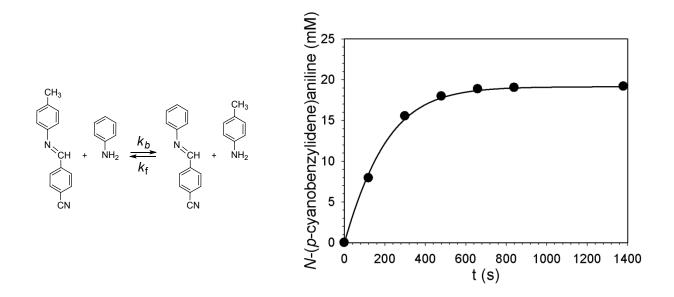

Figure S6. Transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CDCl₃, 25 $^{\circ}$ C. Imine (left) and methyl region (right) of the 1 H-NMR spectra before addition of *p*-toluidine (*a*), and at the given reaction times.

Figure S7. ¹H NMR monitoring of the transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CD_2Cl_2 , 25 °C.


Figure S8. Transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CD_2Cl_2 , 25 °C. Imine (left) and methyl region (right) of the ¹H-NMR spectra before addition of *p*-toluidine (*a*), and at the given reaction times.


Figure S9. ¹H NMR monitoring of the transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CD₃CN, 25 $^{\circ}$ C.


Figure S10. Transimination between 60 mM *N*-benzylideneaniline and 60 mM *p*-toluidine in CD₃CN, 25 °C. Imine (left) and methyl region (right) of the 1 H-NMR spectra before addition of *p*-toluidine (*a*), and at the given reaction times.

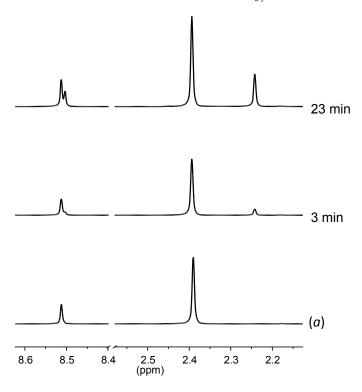

Figure S11. ¹H NMR monitoring of the transimination between 60 mM *N*-(*p*-methoxybenzylidene)-*p*-toluidine and 60 mM aniline in CDCl₃, 25 °C.

Figure S12. Transimination between 60 mM N-(p-methoxybenzylidene)-p-toluidine and 60 mM aniline in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the ¹H-NMR spectra before addition of aniline (a), and at the given reaction times.

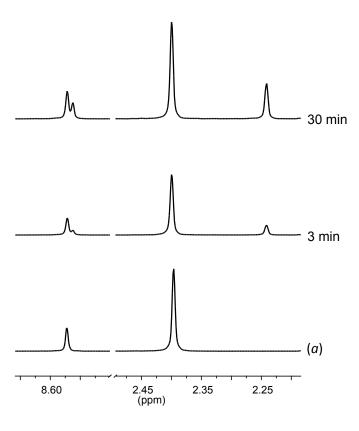
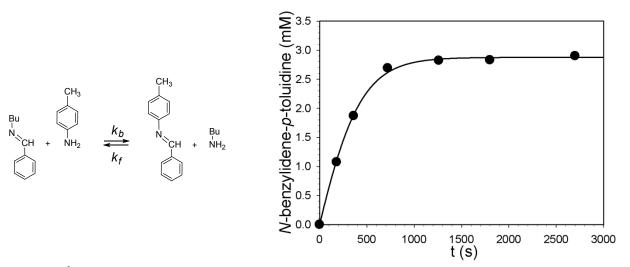
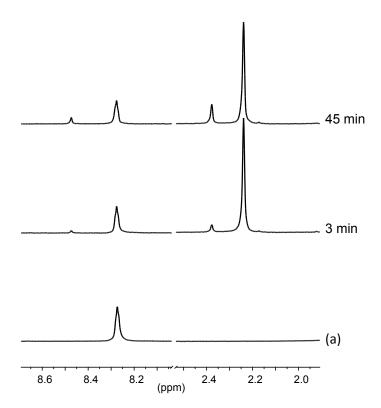

Figure S13. ¹H NMR monitoring of the transimination between 60 mM *N*-(*p*-cyanobenzylidene)-*p*-toluidine and 60 mM aniline in CDCl₃, 25 °C.

Figure S14. Transimination between 60 mM N-(p-cyanobenzylidene)-p-toluidine and 60 mM aniline in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the ¹H-NMR spectra before addition of aniline (a), and at the given reaction times.

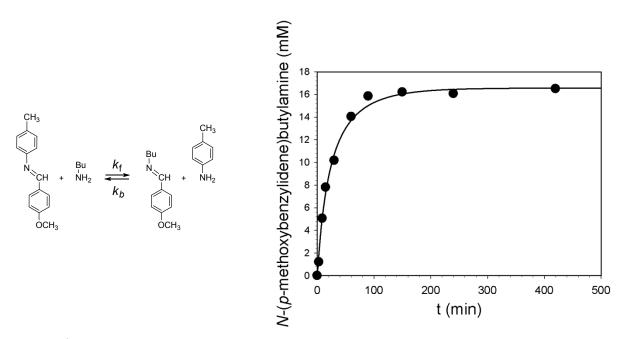
Figure S15. 1 H NMR monitoring of the transimination between 60 mM N-(p-nitrobenzylidene)-p-toluidine and 60 mM aniline in CDCl₃, 25 $^{\circ}$ C.

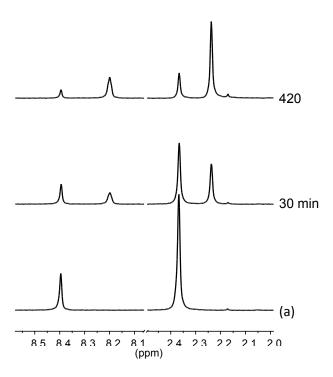

Figure S16. Transimination between 60 mM N-(p-nitrobenzylidene)-p-toluidine and 60 mM aniline in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the ¹H-NMR spectra before addition of aniline (a), and at the given reaction times.

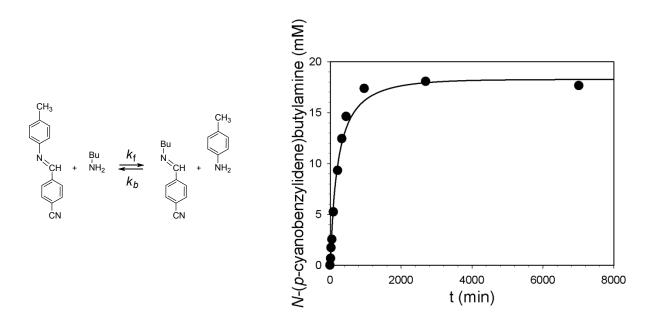
Kinetic measurements (data reported in the main text, Table 2)

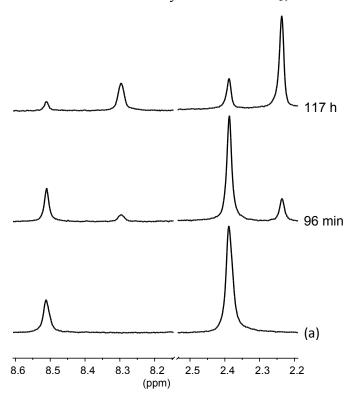

- Transimination between N -benzylidenebutylamine and p -toluidine in CDCl ₃	SI 13
- Transimination between N-(p-methoxybenzylidene)-p-toluidine and butylamine in CDCl ₃	SI 14
- Transimination between N-(p-cyanobenzylidene)-p-toluidine and butylamine in CDCl ₃	SI 15
- Transimination between N -(p -nitrobenzylidene)- p -toluidine and butylamine in CDCl ₃	SI 16

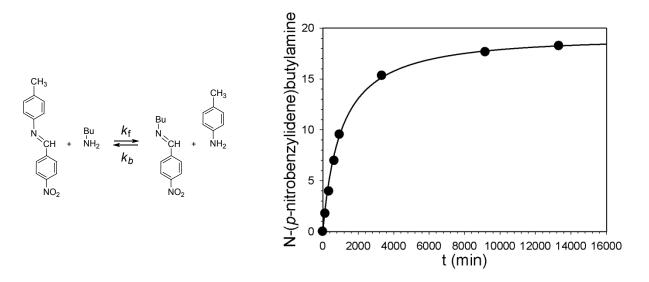
Notes


- *i*) One typical kinetic run has been here reported for each entry of Table 2 (main text). Average data of two to three independent runs have been given, on the other hand, in Table 2 (see footnote c to the same table in the main text).
- *ii*) Data of the transimination between N-benzylidene-p-toluidine and butylamine (eqn (4), X = H and Table 2 of the main text, entry 1) have been obtained by monitoring of the equilibration process starting from products of eqn (4), i. e. from N-benzylidenebutylamine and p-toluidine.


Figure S17. ¹H NMR monitoring of the transimination between 20 mM *N*-benzylidenebutylamine and 20 mM *p*-toluidine in CDCl₃, 25 °C.


Figure S18. Transimination between 20 mM *N*-benzylidenebutylamine and 20 mM *p*-toluidine in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the 1 H-NMR spectra before addition of *p*-toluidine (*a*), and at the given reaction times.


Figure S19. ¹H NMR monitoring of the transimination between 20 mM N-(p-methoxybenzylidene)-p-toluidine and 20 mM butylamine in CDCl₃, 25 °C.


Figure S20. Transimination between 20 mM N-(p-methoxybenzylidene)-p-toluidine and 20 mM butylamine in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the ¹H-NMR spectra before addition of butylamine (a), and at the given reaction times.

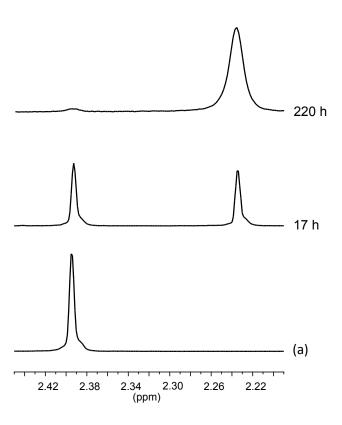

Figure S21. ¹H NMR monitoring of the transimination between 20 mM *N*-(*p*-cyanobenzylidene)-*p*-toluidine and 20 mM butylamine in CDCl₃, 25 °C.

Figure S22. Transimination between 20 mM N-(p-cyanobenzylidene)-p-toluidine and 20 mM butylamine in CDCl₃, 25 °C. Imine (left) and methyl region (right) of the 1 H-NMR spectra before addition of aniline (a), and at the given reaction times.

Figure S23. ¹H NMR monitoring of the transimination between 20 mM *N*-(*p*-nitrobenzylidene)-*p*-toluidine and 20 mM butylamine in CDCl₃, 25 °C.

Figure S24. Transimination between 20 mM N-(p-nitrobenzylidene)-p-toluidine and 20 mM butylamine in CDCl₃, 25 °C. Methyl region of the 1 H-NMR spectra before addition of butylamine (a), and at the given reaction times.