Characterisation data of compounds for

Total Synthesis of Lycorine-type Alkaloids by Cycloproply

Ring-Opening Rearrangement

Dandan Liu^{a, b}, Long Ai^a, Fan Li^b, Annan Zhao^a, Jingbo Chen^a, Hongbin Zhang^a and Jianping Liu^{*a}

^a Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University),

Ministry of Education, School of Chemical Science and Technology, Yunnan

University, Kunming, Yunnan 650091, P. R. China

^b School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, Yunnan 650500, P. R. China

Fax: 86-871-65035538 E-mail: jpliu@ynu.edu.cn

Compound 12

Compound 13

Compound 14

Compound 15

Compound 16

Compound 1

Compound 1

Compound 1

Compound 1

Compound 2

Compound 21

End and a

Compound 3

in all

X-ray crystallographic data for compound 12

All data were collected on Bruker apes II.

Table 1.	Crvstal	data and	structure	refinement	for com	pound 12.
----------	---------	----------	-----------	------------	---------	-----------

Empirical formula	C16 H15 N O3
Formula weight	269.29
Temperature	273(2) K
Wavelength	0.71073
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	
Volume	1292.3(2) A^3
Z, Calculated density	4, 1.384 Mg/m^3
Absorption coefficient	0.096 mm^-1
Absorption coefficient F(000)	0.096 mm^-1 568
Absorption coefficient F(000) Crystal size	0.096 mm^-1 568 0.35 x 0.28 x 0.18 mm
Absorption coefficient F(000) Crystal size Theta range for data collection	0.096 mm ⁻¹ 568 0.35 x 0.28 x 0.18 mm 2.14 to 28.43 deg.
Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices	0.096 mm^-1 568 0.35 x 0.28 x 0.18 mm 2.14 to 28.43 deg. -13<=h<=13, -17<=k<=16, -13<=l<=14
Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique	0.096 mm^-1 568 0.35 x 0.28 x 0.18 mm 2.14 to 28.43 deg. -13<=h<=13, -17<=k<=16, -13<=l<=14 10853 / 3037 [R(int) = 0.0201]
Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 28.32	0.096 mm^-1 568 0.35 x 0.28 x 0.18 mm 2.14 to 28.43 deg. -13<=h<=13, -17<=k<=16, -13<=l<=14 10853 / 3037 [R(int) = 0.0201] 93.5 %
Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 28.32 Absorption correction	0.096 mm^-1 568 0.35 x 0.28 x 0.18 mm 2.14 to 28.43 deg. -13<=h<=13, -17<=k<=16, -13<=l<=14 10853 / 3037 [R(int) = 0.0201] 93.5 % Mult-scan

Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3037 / 0 / 182
Goodness-of-fit on F^2	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.1024
R indices (all data)	R1 = 0.0553, wR2 = 0.1111
Extinction coefficient	0.0170(19)
Largest diff. peak and hole	0.206 and -0.163 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)for compound 12. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	7		5	
	Х	у	Z	U _{eq}
C(1)	3776(2)	1515(1)	4115(2)	66(1)
C(2)	6090(1)	1273(1)	5027(1)	47(1)
C(3)	5678(1)	1608(1)	6053(2)	48(1)
C(4)	6629(2)	1754(1)	7361(2)	50(1)
C(5)	8053(1)	1544(1)	7642(1)	41(1)
C(6)	8465(1)	1216(1)	6594(1)	38(1)
C(7)	7463(1)	1081(1)	5258(1)	45(1)
C(8)	9989(1)	1016(1)	6867(1)	38(1)
C(9)	10974(1)	1391(1)	8262(1)	40(1)
C(10)	9128(1)	1682(1)	9086(1)	48(1)
C(11)	10403(1)	-139(1)	6885(1)	43(1)
C(12)	11868(1)	-272(1)	7867(2)	50(1)
C(13)	12269(1)	706(1)	8757(1)	47(1)
C(14)	12982(2)	495(1)	7814(2)	60(1)
C(15)	11568(2)	1162(1)	10588(1)	56(1)
C(16)	12820(2)	719(1)	10309(2)	57(1)
N(1)	10389(1)	1103(1)	9261(1)	42(1)
O(1)	4241(1)	1727(1)	5544(1)	69(1)
O(2)	4928(1)	1159(1)	3824(1)	71(1)
O(3)	9619(1)	-827(1)	6236(1)	61(1)

C(1)-O(2)	1.4139(19)	C(1)-O(1)	1.428(2)
C(1)-H(1A)	0.9700	C(1)-H(1B)	0.9700
C(2)-C(7)	1.3638(19)	C(2)-C(3)	1.379(2)
C(2)-O(2)	1.3802(16)	C(3)-C(4)	1.3686(19)
C(3)-O(1)	1.3766(16)	C(4)-C(5)	1.4077(18)
C(4)-H(4)	0.9300	C(5)-C(6)	1.3984(17)
C(5)-C(10)	1.5150(18)	C(6)-C(7)	1.4057(17)
C(6)-C(8)	1.5064(17)	C(7)-H(7)	0.9300
C(8)-C(9)	1.5135(17)	C(8)-C(11)	1.5370(18)
C(8)-H(8)	0.9800	C(9)-N(1)	1.4546(16)
C(9)-C(13)	1.5129(18)	C(9)-H(9)	0.9800
C(10)-N(1)	1.4447(17)	C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700	C(11)-O(3)	1.2138(16)
C(11)-C(12)	1.4776(19)	C(12)-C(13)	1.526(2)
C(12)-C(14)	1.529(2)	C(12)-H(12)	0.9800
C(13)-C(14)	1.477(2)	C(13)-C(16)	1.519(2)
C(14)-H(14A)	0.9700	C(14)-H(14B)	0.9700
C(15)-N(1)	1.4644(16)	C(15)-C(16)	1.541(2)
C(15)-H(15A)	0.9700	C(15)-H(15B)	0.9700
C(16)-H(16A)	0.9700	C(16)-H(16B)	0.9700
O(2)-C(1)-O(1)	109.05(12)	O(2)-C(1)-H(1A)	109.9
O(1)-C(1)-H(1A)	109.9	O(2)-C(1)-H(1B)	109.9
O(1)-C(1)-H(1B)	109.9	H(1A)-C(1)-H(1B)	108.3
C(7)-C(2)-C(3)	121.95(13)	C(7)-C(2)-O(2)	128.17(13)
C(3)-C(2)-O(2)	109.88(12)	C(4)-C(3)-O(1)	128.63(13)
C(4)-C(3)-C(2)	121.56(13)	O(1)-C(3)-C(2)	109.78(13)
C(3)-C(4)-C(5)	117.99(12)	C(3)-C(4)-H(4)	121.0
C(5)-C(4)-H(4)	121.0	C(6)-C(5)-C(4)	120.15(12)
C(6)-C(5)-C(10)	120.59(12)	C(4)-C(5)-C(10)	119.25(12)
C(5)-C(6)-C(7)	120.42(12)	C(5)-C(6)-C(8)	120.89(11)
C(7)-C(6)-C(8)	118.69(11)	C(2)-C(7)-C(6)	117.91(12)
	I		

 Table 3.
 Bond lengths [A] and angles [deg] for 12

C(2)-C(7)-H(7)	121.0	C(6)-C(7)-H(7)	121.0
C(6)-C(8)-C(9)	113.01(10)	C(6)-C(8)-C(11)	115.52(10)
C(9)-C(8)-C(11)	102.41(10)	C(6)-C(8)-H(8)	108.5
C(9)-C(8)-H(8)	108.5	C(11)-C(8)-H(8)	108.5
N(1)-C(9)-C(13)	99.17(10)	N(1)-C(9)-C(8)	108.68(10)
C(13)-C(9)-C(8)	108.95(11)	N(1)-C(9)-H(9)	113.0
C(13)-C(9)-H(9)	113.0	C(8)-C(9)-H(9)	113.0
N(1)-C(10)-C(5)	110.00(10)	N(1)-C(10)-H(10A)	109.7
C(5)-C(10)-H(10A)	109.7	N(1)-C(10)-H(10B)	109.7
C(5)-C(10)-H(10B)	109.7	H(10A)-C(10)-H(10B)	108.2
O(3)-C(11)-C(12)	126.36(13)	O(3)-C(11)-C(8)	124.71(12)
C(12)-C(11)-C(8)	108.86(11)	C(11)-C(12)-C(13)	107.50(11)
C(11)-C(12)-C(14)	118.66(12)	C(13)-C(12)-C(14)	57.84(9)
C(11)-C(12)-H(12)	118.9	C(13)-C(12)-H(12)	118.9
C(14)-C(12)-H(12)	118.9	C(14)-C(13)-C(9)	118.35(12)
C(14)-C(13)-C(16)	131.21(13)	C(9)-C(13)-C(16)	106.30(12)
C(14)-C(13)-C(12)	61.20(10)	C(9)-C(13)-C(12)	105.61(11)
C(16)-C(13)-C(12)	125.31(12)	C(13)-C(14)-C(12)	60.96(9)
C(13)-C(14)-H(14A)	117.7	C(12)-C(14)-H(14A)	117.7
C(13)-C(14)-H(14B)	117.7	C(12)-C(14)-H(14B)	117.7
H(14A)-C(14)-H(14B)	114.8	N(1)-C(15)-C(16)	104.05(11)
N(1)-C(15)-H(15A)	110.9	C(16)-C(15)-H(15A)	110.9
N(1)-C(15)-H(15B)	110.9	C(16)-C(15)-H(15B)	110.9
H(15A)-C(15)-H(15B)	109.0	C(13)-C(16)-C(15)	102.79(11)
C(13)-C(16)-H(16A)	111.2	C(15)-C(16)-H(16A)	111.2
C(13)-C(16)-H(16B)	111.2	C(15)-C(16)-H(16B)	111.2
H(16A)-C(16)-H(16B)	109.1	C(10)-N(1)-C(9)	112.49(10)
C(10)-N(1)-C(15)	118.01(11)	C(9)-N(1)-C(15)	105.23(10)
C(3)-O(1)-C(1)	105.33(11)	C(2)-O(2)-C(1)	105.51(12)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 12. The anisotropic displacementfactor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^{*b}U12]$

	U11	U22	U33	U23	U13	U12
--	-----	-----	-----	-----	-----	-----

C(1)	44(1)	77(1)	68(1)	11(1)	14(1)	9(1)
C(2)	44(1)	50(1)	45(1)	3(1)	13(1)	3(1)
C(3)	41(1)	47(1)	60(1)	4(1)	22(1)	5(1)
C(4)	53(1)	49(1)	56(1)	-6(1)	31(1)	3(1)
C(5)	46(1)	36(1)	43(1)	-3(1)	21(1)	-3(1)
C(6)	41(1)	36(1)	38(1)	1(1)	18(1)	-1(1)
C(7)	46(1)	53(1)	39(1)	1(1)	18(1)	4(1)
C(8)	40(1)	42(1)	36(1)	3(1)	19(1)	-1(1)
C(9)	41(1)	39(1)	42(1)	0(1)	17(1)	-6(1)
C(10)	53(1)	53(1)	43(1)	-13(1)	24(1)	-9(1)
C(11)	47(1)	46(1)	42(1)	-3(1)	24(1)	1(1)
C(12)	50(1)	49(1)	53(1)	2(1)	20(1)	7(1)
C(13)	41(1)	49(1)	48(1)	2(1)	14(1)	-2(1)
C(14)	42(1)	76(1)	64(1)	4(1)	23(1)	4(1)
C(15)	59(1)	63(1)	39(1)	-5(1)	13(1)	-10(1)
C(16)	52(1)	61(1)	47(1)	2(1)	7(1)	-6(1)
N(1)	45(1)	48(1)	34(1)	-4(1)	16(1)	-7(1)
O(1)	43(1)	88(1)	76(1)	2(1)	22(1)	13(1)
O(2)	44(1)	103(1)	54(1)	-4(1)	5(1)	11(1)
O(3)	60(1)	51(1)	70(1)	-18(1)	24(1)	-5(1)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (A² x 10³) for 12.

	х	У	Z	U_{eq}
H(1A)	3046	987	3854	79
H(1B)	3391	2145	3597	79
H(4)	6344	1986	8045	60
H(7)	7727	866	4554	55
H(8)	10224	1379	6170	46
H(9)	11194	2137	8279	48
H(10A)	9353	2416	9264	57
H(10B)	8743	1434	9733	57
H(12)	12168	-956	8296	61

H(14A)	13956	274	8210	72
H(14B)	12743	935	7011	72
H(15A)	11385	746	11267	67
H(15B)	11744	1879	10907	67
H(16A)	13639	1165	10692	68
H(16B)	13059	21	10682	68

X-ray crystallographic data for compound 16

All data were collected on Bruker apes II.

 Table 1. Crystal data and structure refinement for compound 16.

Empirical formula	C16 H16 Br N O2
Formula weight	334.21
Temperature	298(2) K
Wavelength	0.71073
Crystal system, space group	Triclinic, P1
Unit cell dimensions	$ \begin{aligned} &a = 7.7674 \ (11) \ A & \alpha = 103.452(2) \ deg. \\ &b = 9.4798 \ (13) \ A & \beta = 95.382(2) \ deg. \\ &c = 9.7608 \ (14) \ A & \gamma = 93.343(2) \ deg. \end{aligned} $
Volume	693.53(17) A^3
Volume Z, Calculated density	693.53(17) A^3 2, 1.600 Mg/m^3
Volume Z, Calculated density Absorption coefficient	693.53(17) A^3 2, 1.600 Mg/m^3 2.964 mm^-1
Volume Z, Calculated density Absorption coefficient F(000)	693.53(17) A^3 2, 1.600 Mg/m^3 2.964 mm^-1 340
Volume Z, Calculated density Absorption coefficient F(000) Crystal size	693.53(17) A^3 2, 1.600 Mg/m^3 2.964 mm^-1 340 0.21 x 0.14 x 0.10 mm
Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection	693.53(17) A^3 2, 1.600 Mg/m^3 2.964 mm^-1 340 0.21 x 0.14 x 0.10 mm 2.16 to 28.23 deg.

Reflections collected / unique	6027 / 5439 [R(int) = 0.0147]
Completeness to theta $= 28.32$	91.8 %
Absorption correction	Mulit-scan
Max. and min. transmission	0.7559 and 0.5749
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5439 / 3 / 362
Goodness-of-fit on F^2	1.007
Final R indices [I>2sigma(I)]	R1 = 0.0432, wR2 = 0.0776
R indices (all data)	R1 = 0.0756, wR2 = 0.0903
Absolute structure parameter	0.00
Extinction coefficien	0.0003(10)
Largest diff. peak and hole	0.381 and -0.367 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)for compound 16. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	х	У	Z	U_{eq}
N(1)	4393(13)	2027(10)	708(10)	39(2)
N(2)	6064(13)	7267(11)	4511(12)	48(3)
O(1)	7318(15)	7393(12)	-1112(12)	73(4)
O(2)	4453(17)	7915(11)	-1419(12)	75(3)
O(3)	6086(14)	1378(12)	6695(13)	71(3)
O(4)	3215(17)	1943(13)	6360(13)	81(4)
Br(1)	3(1)	2061(1)	2597(1)	67(1)
Br(2)	10560(1)	7193(1)	2627(1)	66(1)
C(1)	3670(20)	4585(14)	-29(15)	44(3)
C(2)	3184(17)	5763(14)	-583(14)	53(3)
C(3)	4530(20)	6691(15)	-923(16)	58(4)
C(4)	6270(20)	8222(17)	-1702(16)	81(5)
C(5)	6291(19)	6331(16)	-738(16)	52(4)
C(6)	6630(20)	5087(16)	-269(17)	53(3)
C(7)	5420(16)	4228(13)	100(15)	39(3)
C(8)	5933(18)	2982(15)	717(16)	47(3)
C(9)	2901(16)	2748(13)	1301(13)	41(3)

C(10)	2246(17)	3724(13)	382(14)	50(3)
C(11)	986(18)	2938(18)	-806(16)	59(4)
C(12)	339(18)	1584(17)	-1010(13)	61(4)
C(13)	940(18)	557(14)	-124(15)	62(4)
C(14)	1736(18)	1367(12)	1339(14)	43(3)
C(15)	3084(18)	464(15)	2091(16)	56(3)
C(16)	4820(15)	973(14)	1551(16)	58(4)
C(17)	7514(15)	6525(10)	3965(12)	37(3)
C(18)	5240(20)	4894(14)	5123(14)	46(3)
C(19)	8667(17)	7788(14)	3824(15)	48(3)
C(20)	6896(19)	4597(14)	5282(14)	41(3)
C(21)	4350(20)	2931(16)	6004(16)	55(4)
C(22)	8363(15)	5556(13)	4840(12)	38(3)
C(23)	4672(19)	6161(15)	4512(15)	49(3)
C(24)	5970(20)	2632(13)	6169(15)	48(4)
C(25)	9607(17)	6410(16)	6101(14)	49(3)
C(26)	7263(17)	3352(13)	5797(13)	48(3)
C(27)	5699(18)	8280(13)	3588(14)	57(4)
C(28)	3790(20)	4019(16)	5475(16)	50(3)
C(29)	10158(19)	7798(15)	6252(16)	64(4)
C(30)	7490(20)	8671(15)	3232(18)	62(4)
C(31)	4430(20)	1026(14)	6969(12)	67(5)
C(32)	9567(18)	8664(13)	5246(15)	60(4)

Table 3. Bond lengths [A]	and angles [deg] for 16.
----------------------------------	--------------------------

14	Table 5. Bond lengths [A] and angles [deg] for 10.						
	N(1)-C(8)	1.456(16)	N(1)-C(9)	1.476(15)			
	N(1)-C(16)	1.468(16)	N(2)-C(17)	1.442(15)			
	N(2)-C(23)	1.462(17)	N(2)-C(27)	1.483(16)			
	O(1)-C(4)	1.344(17)	O(1)-C(5)	1.384(19)			
	O(2)-C(3)	1.360(16)	O(2)-C(4)	1.489(18)			
	O(3)-C(31)	1.378(19)	O(3)-C(24)	1.405(14)			
	O(4)-C(21)	1.37(2)	O(4)-C(31)	1.492(16)			

Br(1)-C(14)	1.946(14)	Br(2)-C(19)	1.990(13)
C(1)-C(2)	1.406(19)	C(1)-C(7)	1.419(19)
C(1)-C(10)	1.48(2)	C(2)-C(3)	1.44(2)
C(2)-H(2)	0.9300	C(3)-C(5)	1.43(2)
C(4)-H(4A)	0.9700	C(4)-H(4B)	0.9700
C(5)-C(6)	1.39(2)	C(6)-C(7)	1.34(2)
C(6)-H(6)	0.9300	C(7)-C(8)	1.503(18)
C(8)-H(8A)	0.9700	C(8)-H(8B)	0.9700
C(9)-C(10)	1.508(17)	C(9)-C(14)	1.558(17)
C(9)-H(9)	0.9800	C(10)-C(11)	1.47(2)
C(10)-H(10)	0.9800	C(11)-C(12)	1.31(2)
C(11)-H(11)	0.9300	C(12)-C(13)	1.51(2)
C(12)-H(12)	0.9300	C(13)-C(14)	1.510(18)
C(13)-H(13A)	0.9700	C(13)-H(13B)	0.9700
C(14)-C(15)	1.619(16)	C(15)-C(16)	1.582(19)
C(15)-H(15A)	0.9700	C(15)-H(15B)	0.9700
C(16)-H(16A)	0.9700	C(16)-H(16B)	0.9700
C(17)-C(19)	1.493(17)	C(17)-C(22)	1.529(16)
C(17)-H(17)	0.9800	C(18)-C(20)	1.34(2)
C(18)-C(28)	1.47(2)	C(18)-C(23)	1.529(18)
C(19)-C(30)	1.444(18)	C(19)-C(32)	1.522(19)
C(20)-C(26)	1.419(17)	C(20)-C(22)	1.570(18)
C(21)-C(24)	1.31(2)	C(21)-C(28)	1.33(2)
C(22)-C(25)	1.526(18)	C(22)-H(22)	0.9800
C(23)-H(23A)	0.9700	C(23)-H(23B)	0.9700
C(24)-C(26)	1.31(2)	C(25)-C(29)	1.33(2)
C(25)-H(25)	0.9300	C(26)-H(26)	0.9300
C(27)-C(30)	1.51(2)	C(27)-H(27A)	0.9700
C(27)-H(27B)	0.9700	C(28)-H(28)	0.9300
C(29)-C(32)	1.48(2)	C(29)-H(29)	0.9300
C(30)-H(30A)	0.9700	C(30)-H(30B)	0.9700
C(31)-H(31A)	0.9700	C(31)-H(31B)	0.9700
	I		

C(32)-H(32A)	0.9700	C(32)-H(32B)	0.9700
C(8)-N(1)-C(9)	115.8(9)	C(8)-N(1)-C(16)	109.5(9)
C(9)-N(1)-C(16)	106.0(10)	C(17)-N(2)-C(23)	107.7(9)
C(17)-N(2)-C(27)	104.5(10)	C(23)-N(2)-C(27)	116.6(10)
C(4)-O(1)-C(5)	108.2(12)	C(3)-O(2)-C(4)	103.1(13)
C(31)-O(3)-C(24)	105.0(11)	C(21)-O(4)-C(31)	101.7(12)
C(2)-C(1)-C(7)	122.0(13)	C(2)-C(1)-C(10)	115.8(13)
C(7)-C(1)-C(10)	122.2(11)	C(1)-C(2)-C(3)	118.1(13)
C(1)-C(2)-H(2)	120.9	C(3)-C(2)-H(2)	121.0
O(2)-C(3)-C(5)	110.6(15)	O(2)-C(3)-C(2)	130.9(15)
C(5)-C(3)-C(2)	118.5(13)	O(1)-C(4)-O(2)	109.5(10)
O(1)-C(4)-H(4A)	109.8	O(2)-C(4)-H(4A)	109.8
O(1)-C(4)-H(4B)	109.8	O(2)-C(4)-H(4B)	109.8
H(4A)-C(4)-H(4B)	108.2	C(6)-C(5)-O(1)	133.9(15)
C(6)-C(5)-C(3)	119.1(15)	O(1)-C(5)-C(3)	107.0(12)
C(7)-C(6)-C(5)	124.0(15)	C(7)-C(6)-H(6)	118.0
C(5)-C(6)-H(6)	118.0	C(6)-C(7)-C(1)	118.1(12)
C(6)-C(7)-C(8)	120.2(13)	C(1)-C(7)-C(8)	121.6(12)
N(1)-C(8)-C(7)	109.2(11)	N(1)-C(8)-H(8A)	109.9
C(7)-C(8)-H(8A)	109.8	N(1)-C(8)-H(8B)	109.8
C(7)-C(8)-H(8B)	109.9	H(8A)-C(8)-H(8B)	108.3
N(1)-C(9)-C(10)	109.3(10)	N(1)-C(9)-C(14)	98.7(9)
C(10)-C(9)-C(14)	118.7(11)	N(1)-C(9)-H(9)	109.8
C(10)-C(9)-H(9)	109.9	C(14)-C(9)-H(9)	109.8
C(11)-C(10)-C(1)	114.5(12)	C(11)-C(10)-C(9)	112.2(12)
C(1)-C(10)-C(9)	112.3(11)	C(11)-C(10)-H(10)	105.6
C(1)-C(10)-H(10)	105.7	C(9)-C(10)-H(10)	105.7
C(12)-C(11)-C(10)	125.9(14)	C(12)-C(11)-H(11)	117.2
C(10)-C(11)-H(11)	117.0	C(11)-C(12)-C(13)	124.0(12)
C(11)-C(12)-H(12)	118.0	C(13)-C(12)-H(12)	118.0
C(14)-C(13)-C(12)	111.8(10)	C(14)-C(13)-H(13A)	109.2
C(12)-C(13)-H(13A)	109.2	C(14)-C(13)-H(13B)	109.3
		1	

C(12)-C(13)-H(13B)	109.4	H(13A)-C(13)-H(13B)	107.9
C(13)-C(14)-C(9)	111.9(11)	C(13)-C(14)-C(15)	114.0(10)
C(9)-C(14)-C(15)	102.0(10)	C(13)-C(14)-Br(1)	112.7(10)
C(9)-C(14)-Br(1)	105.5(7)	C(15)-C(14)-Br(1)	110.0(9)
C(16)-C(15)-C(14)	99.5(10)	C(16)-C(15)-H(15A)	111.8
C(14)-C(15)-H(15A)	111.7	C(16)-C(15)-H(15B)	112.1
C(14)-C(15)-H(15B)	111.9	H(15A)-C(15)-H(15B)	109.6
N(1)-C(16)-C(15)	107.6(9)	N(1)-C(16)-H(16A)	110.2
C(15)-C(16)-H(16A)	110.3	N(1)-C(16)-H(16B)	110.2
C(15)-C(16)-H(16B)	110.0	H(16A)-C(16)-H(16B)	108.5
N(2)-C(17)-C(19)	100.3(8)	N(2)-C(17)-C(22)	116.7(10)
C(19)-C(17)-C(22)	114.7(10)	N(2)-C(17)-H(17)	108.2
C(19)-C(17)-H(17)	108.2	C(22)-C(17)-H(17)	108.2
C(20)-C(18)-C(28)	123.6(12)	C(20)-C(18)-C(23)	122.6(14)
C(28)-C(18)-C(23)	113.8(13)	C(30)-C(19)-C(17)	103.6(11)
C(30)-C(19)-C(32)	109.6(11)	C(17)-C(19)-C(32)	112.5(11)
C(30)-C(19)-Br(2)	112.8(10)	C(17)-C(19)-Br(2)	112.8(8)
C(32)-C(19)-Br(2)	105.7(9)	C(18)-C(20)-C(26)	117.7(14)
C(18)-C(20)-C(22)	120.6(11)	C(26)-C(20)-C(22)	121.6(12)
C(24)-C(21)-C(28)	125.4(14)	C(24)-C(21)-O(4)	113.0(12)
C(28)-C(21)-O(4)	121.5(16)	C(25)-C(22)-C(17)	113.1(10)
C(25)-C(22)-C(20)	112.8(10)	C(17)-C(22)-C(20)	108.6(10)
C(25)-C(22)-H(22)	107.4	C(17)-C(22)-H(22)	107.3
C(20)-C(22)-H(22)	107.3	N(2)-C(23)-C(18)	114.9(11)
N(2)-C(23)-H(23A)	108.5	C(18)-C(23)-H(23A)	108.4
N(2)-C(23)-H(23B)	108.6	C(18)-C(23)-H(23B)	108.6
H(23A)-C(23)-H(23B)	107.5	C(21)-C(24)-C(26)	124.0(11)
C(21)-C(24)-O(3)	110.5(12)	C(26)-C(24)-O(3)	125.3(14)
C(29)-C(25)-C(22)	122.8(12)	C(29)-C(25)-H(25)	118.5
C(22)-C(25)-H(25)	118.7	C(24)-C(26)-C(20)	117.5(12)
C(24)-C(26)-H(26)	121.2	C(20)-C(26)-H(26)	121.2
N(2)-C(27)-C(30)	102.0(10)	N(2)-C(27)-H(27A)	111.4
	I		

C(30)-C(27)-H(27A)	111.6	N(2)-C(27)-H(27B)	111.3
C(30)-C(27)-H(27B)	111.2	H(27A)-C(27)-H(27B)	109.2
C(21)-C(28)-C(18)	111.5(14)	C(21)-C(28)-H(28)	124.3
C(18)-C(28)-H(28)	124.2	C(25)-C(29)-C(32)	123.0(12)
C(25)-C(29)-H(29)	118.5	C(32)-C(29)-H(29)	118.5
C(19)-C(30)-C(27)	107.2(11)	C(19)-C(30)-H(30A)	110.5
C(27)-C(30)-H(30A)	110.3	C(19)-C(30)-H(30B)	110.3
C(27)-C(30)-H(30B)	110.0	H(30A)-C(30)-H(30B)	108.5
O(3)-C(31)-O(4)	108.8(11)	O(3)-C(31)-H(31A)	110.0
O(4)-C(31)-H(31A)	109.9	O(3)-C(31)-H(31B)	109.9
O(4)-C(31)-H(31B)	109.9	H(31A)-C(31)-H(31B)	108.3
C(29)-C(32)-C(19)	115.4(10)	C(29)-C(32)-H(32A)	108.5
C(19)-C(32)-H(32A)	108.5	C(29)-C(32)-H(32B)	108.3
C(19)-C(32)-H(32B)	108.4	H(32A)-C(32)-H(32B)	107.5

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 16. The anisotropic displacementfactor exponent takes the form: -2 pi^2 [$h^2 a^* 2 U11 + ... + 2 h k a^* b^* U12$]

ración exponen	t takes the form	<i>2</i> pi <i>2</i> [ii 2	2 a 2 0 11 +	$\pm 2 \Pi K a U$	012]	
	U11	U22	U33	U23	U13	U12
N(1)	48(5)	28(5)	39(5)	7(4)	-10(4)	9(4)
N(2)	24(4)	56(6)	66(7)	13(5)	17(4)	10(4)
O(1)	68(8)	69(6)	83(8)	32(6)	6(6)	-29(6)
O(2)	111(10)	52(5)	71(7)	27(5)	15(6)	11(6)
O(3)	58(7)	72(6)	95(8)	49(6)	2(6)	-4(5)
O(4)	73(9)	103(8)	81(8)	50(7)	8(7)	4(7)
Br(1)	52(1)	72(1)	82(1)	26(1)	22(1)	7(1)
Br(2)	55(1)	69(1)	79(1)	23(1)	20(1)	8(1)
C(1)	46(8)	33(6)	51(7)	7(5)	13(6)	1(5)
C(2)	44(6)	63(7)	50(7)	13(5)	8(5)	-14(5)
C(3)	59(9)	64(8)	43(8)	1(6)	-4(7)	11(7)
C(4)	68(9)	83(9)	104(10)	44(8)	31(7)	-18(7)
C(5)	37(7)	64(8)	50(7)	3(6)	6(6)	1(6)
C(6)	43(7)	57(7)	61(7)	20(6)	3(5)	2(5)
C(7)	25(5)	41(6)	50(7)	7(5)	6(4)	9(4)

C(8)	38(6)	45(6)	62(8)	17(6)	10(6)	4(5)
C(9)	23(4)	67(7)	37(6)	14(5)	11(4)	14(4)
C(10)	46(7)	41(6)	53(7)	-2(6)	-10(6)	17(6)
C(11)	41(7)	75(9)	68(9)	25(7)	15(6)	14(6)
C(12)	42(7)	104(10)	39(6)	24(6)	-6(5)	0(7)
C(13)	47(7)	58(7)	59(8)	-15(6)	-16(6)	-20(6)
C(14)	52(7)	20(4)	53(7)	4(4)	-3(5)	-8(4)
C(15)	50(7)	60(7)	68(7)	30(6)	1(6)	23(6)
C(16)	29(5)	61(7)	94(9)	33(7)	14(5)	21(5)
C(17)	44(6)	17(4)	43(6)	0(4)	-7(4)	-1(4)
C(18)	63(8)	40(6)	32(6)	7(4)	2(5)	3(5)
C(19)	26(5)	61(7)	59(7)	18(6)	10(5)	11(5)
C(20)	40(7)	49(7)	34(6)	12(5)	-4(5)	11(6)
C(21)	74(10)	54(8)	41(7)	22(6)	8(7)	-15 (7)
C(22)	29(6)	48(7)	40(6)	17(5)	10(5)	-2(5)
C(23)	41(7)	50(7)	50(8)	6(6)	-7(6)	12(5)
C(24)	70(10)	31(6)	48(7)	19(5)	11(7)	-4(6)
C(25)	38(7)	65(8)	40(7)	16(6)	-17(5)	0(6)
C(26)	53(7)	40(6)	53(7)	13(5)	-6(6)	25(5)
C(27)	85(9)	37(6)	49(6)	16(5)	-14(6)	9(6)
C(28)	40(6)	60(7)	47(7)	5(5)	6(5)	-2(5)
C(29)	54(8)	47(6)	71(8)	-16(5)	-13(6)	-3(5)
C(30)	63(9)	41(6)	90(9)	34(6)	15(7)	-5(5)
C(31)	114(12)	52(7)	30(5)	5(5)	-5(6)	10(7)
C(32)	58(8)	40(6)	89(10)	22(6)	18(7)	12(5)

Table 5. Hydrogen coordinates	(x 10^4) and isotropic dis	placement parameters	(A^2 x 10^3) for 16.
-------------------------------	---------	---------------------	----------------------	-------------	-----------

	Х	У	Z	U_{eq}
H(2)	2024	5939	-726	64
H(4A)	6336	8011	-2717	97
H(4B)	6641	9243	-1308	97
H(6)	7773	4837	-208	64

H(8A)	6760	2444	162	57
H(8B)	6479	3349	1680	57
H(9)	3256	3325	2269	49
H(10)	1598	4433	983	60
H(11)	612	3445	-1473	71
H(12)	-543	1236	-1746	73
H(13A)	-40	-89	-41	75
H(13B)	1789	-35	-595	75
H(15A)	3135	747	3116	68
H(15B)	2806	-578	1764	68
H(16A)	5670	1420	2350	69
H(16B)	5301	144	974	69
H(17)	7126	5925	3012	44
H(22)	9043	4896	4218	46
H(23A)	4147	5773	3545	58
H(23B)	3787	6624	5053	58
H(25)	9997	5940	6794	59
H(26)	8383	3059	5868	58
H(27A)	5187	9133	4089	69
H(27B)	4933	7806	2743	69
H(28)	2631	4203	5345	60
H(29)	10953	8245	7027	77
H(30A)	7503	8477	2213	74
H(30B)	7830	9696	3635	74
H(31A)	4380	1199	7983	80
H(31B)	4092	4	6546	80
H(32A)	10563	9237	5073	72
H(32B)	8774	9338	5689	72

Table 6. Torsion angles [deg] for 16.

C(7)-C(1)-C(2)-C(3)	-5(2)	C(10)-C(1)-C(2)-C(3)	176.4(12)
C(4)-O(2)-C(3)-C(5)	6.4(16)	C(4)-O(2)-C(3)-C(2)	-173.4(15)

C(1)-C(2)-C(3)-O(2)	-177.5(14)	C(1)-C(2)-C(3)-C(5)	3(2)
C(5)-O(1)-C(4)-O(2)	13.3(16)	C(3)-O(2)-C(4)-O(1)	-12.2(16)
C(4)-O(1)-C(5)-C(6)	170.3(16)	C(4)-O(1)-C(5)-C(3)	-9.1(16)
O(2)-C(3)-C(5)-C(6)	-178.4(13)	C(2)-C(3)-C(5)-C(6)	1(2)
O(2)-C(3)-C(5)-O(1)	1.1(17)	C(2)-C(3)-C(5)-O(1)	-179.1(12)
O(1)-C(5)-C(6)-C(7)	176.9(16)	C(3)-C(5)-C(6)-C(7)	-4(2)
C(5)-C(6)-C(7)-C(1)	2(2)	C(5)-C(6)-C(7)-C(8)	-174.5(14)
C(2)-C(1)-C(7)-C(6)	3(2)	C(10)-C(1)-C(7)-C(6)	-178.6(13)
C(2)-C(1)-C(7)-C(8)	178.9(13)	C(10)-C(1)-C(7)-C(8)	-2(2)
C(9)-N(1)-C(8)-C(7)	-49.4(15)	C(16)-N(1)-C(8)-C(7)	-169.2(10)
C(6)-C(7)-C(8)-N(1)	-166.5(13)	C(1)-C(7)-C(8)-N(1)	17.4(18)
C(8)-N(1)-C(9)-C(10)	65.1(13)	C(16)-N(1)-C(9)-C(10)	-173.3(10)
C(8)-N(1)-C(9)-C(14)	-170.3(10)	C(16)-N(1)-C(9)-C(14)	-48.7(11)
C(2)-C(1)-C(10)-C(11)	65.5(16)	C(7)-C(1)-C(10)-C(11)	-113.2(15)
C(2)-C(1)-C(10)-C(9)	-165.1(11)	C(7)-C(1)-C(10)-C(9)	16.2(18)
N(1)-C(9)-C(10)-C(11)	86.5(13)	C(14)-C(9)-C(10)-C(11)	-25.4(17)
N(1)-C(9)-C(10)-C(1)	-44.1(14)	C(14)-C(9)-C(10)-C(1)	-156.0(11)
C(1)-C(10)-C(11)-C(12)	135.7(15)	C(9)-C(10)-C(11)-C(12)	6(2)
C(10)-C(11)-C(12)-C(13)	-7(2)	C(11)-C(12)-C(13)-C(14)	25(2)
C(12)-C(13)-C(14)-C(9)	-40.7(16)	C(12)-C(13)-C(14)-C(15)	-155.7(12)
C(12)-C(13)-C(14)-Br(1)	78.0(13)	N(1)-C(9)-C(14)-C(13)	-73.6(12)
C(10)-C(9)-C(14)-C(13)	44.1(16)	N(1)-C(9)-C(14)-C(15)	48.6(11)
C(10)-C(9)-C(14)-C(15)	166.3(11)	N(1)-C(9)-C(14)-Br(1)	163.5(7)
C(10)-C(9)-C(14)-Br(1)	-78.8(12)	C(13)-C(14)-C(15)-C(16)	89.9(14)
C(9)-C(14)-C(15)-C(16)	-30.9(13)	Br(1)-C(14)-C(15)-C(16)	-142.5(9)
C(8)-N(1)-C(16)-C(15)	155.0(11)	C(9)-N(1)-C(16)-C(15)	29.4(14)
C(14)-C(15)-C(16)-N(1)	2.3(14)	C(23)-N(2)-C(17)-C(19)	171.5(10)
C(27)-N(2)-C(17)-C(19)	46.9(11)	C(23)-N(2)-C(17)-C(22)	-64.0(13)
C(27)-N(2)-C(17)-C(22)	171.4(10)	N(2)-C(17)-C(19)-C(30)	-42.6(13)
C(22)-C(17)-C(19)-C(30)	-168.5(11)	N(2)-C(17)-C(19)-C(32)	75.7(12)
C(22)-C(17)-C(19)-C(32)	-50.2(14)	N(2)-C(17)-C(19)-Br(2)	-164.9(8)
C(22)-C(17)-C(19)-Br(2)	69.3(12)	C(28)-C(18)-C(20)-C(26)	1(2)
	I		

C(23)-C(18)-C(20)-C(26)	-177.0(12)	C(28)-C(18)-C(20)-C(22)	178.2(12)
C(23)-C(18)-C(20)-C(22)	0(2)	C(31)-O(4)-C(21)-C(24)	6.8(17)
C(31)-O(4)-C(21)-C(28)	-176.7(13)	N(2)-C(17)-C(22)-C(25)	-79.9(13)
C(19)-C(17)-C(22)-C(25)	36.9(15)	N(2)-C(17)-C(22)-C(20)	46.1(13)
C(19)-C(17)-C(22)-C(20)	162.9(10)	C(18)-C(20)-C(22)-C(25)	113.6(14)
C(26)-C(20)-C(22)-C(25)	-69.4(15)	C(18)-C(20)-C(22)-C(17)	-12.5(16)
C(26)-C(20)-C(22)-C(17)	164.5(11)	C(17)-N(2)-C(23)-C(18)	46.6(15)
C(27)-N(2)-C(23)-C(18)	163.6(11)	C(20)-C(18)-C(23)-N(2)	-17.6(19)
C(28)-C(18)-C(23)-N(2)	164.2(12)	C(28)-C(21)-C(24)-C(26)	-2(3)
O(4)-C(21)-C(24)-C(26)	174.6(14)	C(28)-C(21)-C(24)-O(3)	-177.4(14)
O(4)-C(21)-C(24)-O(3)	-1.0(19)	C(31)-O(3)-C(24)-C(21)	-5.8(16)
C(31)-O(3)-C(24)-C(26)	178.7(14)	C(17)-C(22)-C(25)-C(29)	-12.9(19)
C(20)-C(22)-C(25)-C(29)	-136.5(15)	C(21)-C(24)-C(26)-C(20)	5(2)
O(3)-C(24)-C(26)-C(20)	179.8(12)	C(18)-C(20)-C(26)-C(24)	-4.3(19)
C(22)-C(20)-C(26)-C(24)	178.6(12)	C(17)-N(2)-C(27)-C(30)	-32.8(13)
C(23)-N(2)-C(27)-C(30)	-151.5(11)	C(24)-C(21)-C(28)-C(18)	-2(2)
O(4)-C(21)-C(28)-C(18)	-177.7(13)	C(20)-C(18)-C(28)-C(21)	2(2)
C(23)-C(18)-C(28)-C(21)	-180.0(12)	C(22)-C(25)-C(29)-C(32)	3(2)
C(17)-C(19)-C(30)-C(27)	22.6(15)	C(32)-C(19)-C(30)-C(27)	-97.7(14)
Br(2)-C(19)-C(30)-C(27)	144.9(11)	N(2)-C(27)-C(30)-C(19)	5.5(15)
C(24)-O(3)-C(31)-O(4)	9.9(14)	C(21)-O(4)-C(31)-O(3)	-10.3(14)
C(25)-C(29)-C(32)-C(19)	-16(2)	C(30)-C(19)-C(32)-C(29)	153.6(12)
C(17)-C(19)-C(32)-C(29)	38.9(16)	Br(2)-C(19)-C(32)-C(29)	-84.7(13)

X-ray crystallographic data for amarbellisine (3)

All data were collected on Bruker apes $\, \mathrm{II} \, .$

Table 1. Crystal data and structure refinement for amarbellisine (3).

Empirical formula	C17 H19 N O4
Formula weight	301.33
Temperature	293(2) K
Wavelength	0.71073
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	
Volume	1465.9(4) A^3
Z, Calculated density	4, 1.365 Mg/m^3
Absorption coefficient	0.097 mm^-1
F(000)	640
Crystal size	0.27 x 0.21 x 0.14 mm
Theta range for data collection	2.27 to 28.28 deg.

Limiting indices	-12<=h<=11, -16<=k<=16, -16<=l<=11
Reflections collected / unique	10110 / 3441 [R(int) = 0.0485]
Completeness to theta $= 28.28$	96.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.7651
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3441 / 0 / 202
Goodness-of-fit on F ²	0.975
Final R indices [I>2sigma(I)]	R1 = 0.0462, wR2 = 0.0796
R indices (all data)	R1 = 0.0948, wR2 = 0.0969
Absolute structure parameter	1.3(14)
Extinction coefficien	0.0144(14)
Largest diff. peak and hole	0.135 and -0.152 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)for **amarbellisine (3)**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U_{eq}
N(1)	2608(2)	8627(1)	8222(1)	46(1)
O(1)	2053(2)	8918(1)	10396(1)	53(1)
O(2)	3218(2)	7014(1)	11599(1)	57(1)
O(3)	5692(2)	12584(1)	10474(2)	75(1)
O(4)	4325(2)	13294(1)	9119(1)	71(1)
C(1)	3497(2)	8482(2)	10468(2)	42(1)
C(2)	3443(2)	7288(2)	10576(2)	43(1)
C(3)	3565(2)	6625(2)	9779(2)	47(1)
C(4)	2469(3)	6774(2)	7958(2)	68(1)
C(5)	2093(3)	7840(2)	7457(2)	59(1)
C(7)	2790(3)	9710(2)	7808(2)	57(1)
C(8)	3512(2)	11551(2)	8415(2)	51(1)
C(9)	4249(3)	12184(2)	9106(2)	51(1)
C(10)	5061(2)	11766(2)	9900(2)	51(1)
C(11)	5181(2)	10688(2)	10058(2)	49(1)

C(12)	5114(4)	13541(2)	10041(2)	83(1)
C(13)	3160(3)	5902(2)	11853(2)	64(1)
C(3A)	3790(3)	6996(2)	8676(2)	51(1)
C(7A)	3609(2)	10430(2)	8562(2)	42(1)
C(11A)	4429(2)	10004(2)	9364(2)	42(1)
C(11B)	4476(2)	8805(2)	9552(2)	40(1)
C(11C)	4036(2)	8206(2)	8571(2)	44(1)

 Table 3.
 Bond lengths [A] and angles [deg] for amarbellisine (3)

N(1)-C(7)	1.461(3)	N(1)-C(5)	1.468(3)
N(1)-C(11C)	1.475(3)	O(1)-C(1)	1.430(2)
O(1)-H(1)	0.8200	O(2)-C(2)	1.376(2)
O(2)-C(13)	1.425(2)	O(3)-C(10)	1.385(3)
O(3)-C(12)	1.419(3)	O(4)-C(9)	1.387(2)
O(4)-C(12)	1.422(3)	C(1)-C(2)	1.498(3)
C(1)-C(11B)	1.533(3)	C(1)-H(1A)	0.9800
C(2)-C(3)	1.322(3)	C(3)-C(3A)	1.508(3)
C(3)-H(3)	0.9300	C(4)-C(5)	1.518(3)
C(4)-C(3A)	1.544(3)	C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700	C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700	C(7)-C(7A)	1.519(3)
C(7)-H(7A)	0.9700	C(7)-H(7B)	0.9700
C(8)-C(9)	1.366(3)	C(8)-C(7A)	1.414(3)
C(8)-H(8)	0.9300	C(9)-C(10)	1.365(3)
C(10)-C(11)	1.364(3)	C(11)-C(11A)	1.413(3)
C(11)-H(11)	0.9300	C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700	C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600	C(13)-H(13C)	0.9600
C(3A)-C(11C)	1.532(3)	C(3A)-H(3A)	0.9800
C(7A)-C(11A)	1.381(3)	C(11A)-C(11B)	1.516(3)
C(11B)-C(11C)	1.521(3)	C(11B)-H(11B)	0.9800
C(11C)-H(11C)	0.9800	C(7)-N(1)-C(5)	114.22(18)
	I		

C(7)-N(1)-C(11C)	109.88(16)	C(5)-N(1)-C(11C)	104.45(17)
C(1)-O(1)-H(1)	109.5	C(2)-O(2)-C(13)	117.81(17)
C(10)-O(3)-C(12)	104.8(2)	C(9)-O(4)-C(12)	104.58(19)
O(1)-C(1)-C(2)	110.73(17)	O(1)-C(1)-C(11B)	112.82(17)
C(2)-C(1)-C(11B)	110.58(17)	O(1)-C(1)-H(1A)	107.5
C(2)-C(1)-H(1A)	107.5	C(11B)-C(1)-H(1A)	107.5
C(3)-C(2)-O(2)	126.86(19)	C(3)-C(2)-C(1)	123.2(2)
O(2)-C(2)-C(1)	109.91(17)	C(2)-C(3)-C(3A)	123.4(2)
C(2)-C(3)-H(3)	118.3	C(3A)-C(3)-H(3)	118.3
C(5)-C(4)-C(3A)	105.86(18)	C(5)-C(4)-H(4A)	110.6
C(3A)-C(4)-H(4A)	110.6	C(5)-C(4)-H(4B)	110.6
C(3A)-C(4)-H(4B)	110.6	H(4A)-C(4)-H(4B)	108.7
N(1)-C(5)-C(4)	103.22(18)	N(1)-C(5)-H(5A)	111.1
C(4)-C(5)-H(5A)	111.1	N(1)-C(5)-H(5B)	111.1
C(4)-C(5)-H(5B)	111.1	H(5A)-C(5)-H(5B)	109.1
N(1)-C(7)-C(7A)	111.7(2)	N(1)-C(7)-H(7A)	109.3
C(7A)-C(7)-H(7A)	109.3	N(1)-C(7)-H(7B)	109.3
C(7A)-C(7)-H(7B)	109.3	H(7A)-C(7)-H(7B)	107.9
C(9)-C(8)-C(7A)	116.9(2)	C(9)-C(8)-H(8)	121.5
C(7A)-C(8)-H(8)	121.5	C(8)-C(9)-C(10)	122.3(2)
C(8)-C(9)-O(4)	127.5(2)	C(10)-C(9)-O(4)	110.2(2)
C(11)-C(10)-C(9)	122.1(2)	C(11)-C(10)-O(3)	127.8(2)
C(9)-C(10)-O(3)	110.1(2)	C(10)-C(11)-C(11A)	117.4(2)
С(10)-С(11)-Н(11)	121.3	C(11A)-C(11)-H(11)	121.3
O(3)-C(12)-O(4)	109.5(2)	O(3)-C(12)-H(12A)	109.8
O(4)-C(12)-H(12A)	109.8	O(3)-C(12)-H(12B)	109.8
O(4)-C(12)-H(12B)	109.8	H(12A)-C(12)-H(12B)	108.2
O(2)-C(13)-H(13A)	109.5	O(2)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5	O(2)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5	H(13B)-C(13)-H(13C)	109.5
C(3)-C(3A)-C(11C)	113.89(19)	C(3)-C(3A)-C(4)	113.67(19)
C(11C)-C(3A)-C(4)	103.82(19)	C(3)-C(3A)-H(3A)	108.4
	I		

C(11C)-C(3A)-H(3A)	108.4	C(4)-C(3A)-H(3A)	108.4	
C(11A)-C(7A)-C(8)	121.0(2)	C(11A)-C(7A)-C(7)	121.12(19)	
C(8)-C(7A)-C(7)	117.9(2)	C(7A)-C(11A)-C(11)	120.3(2)	
C(7A)-C(11A)-C(11B)	120.93(19)	C(11)-C(11A)-C(11B)	118.7(2)	
C(11A)-C(11B)-C(11C)	110.17(18)	C(11A)-C(11B)-C(1)	111.44(16)	
C(11C)-C(11B)-C(1)	110.82(16)	C(11A)-C(11B)-H(11B)	108.1	
C(11C)-C(11B)-H(11B)	108.1	C(1)-C(11B)-H(11B)	108.1	
N(1)-C(11C)-C(11B)	108.16(17)	N(1)-C(11C)-C(3A)	104.38(18)	
C(11B)-C(11C)-C(3A)	116.73(19)	N(1)-C(11C)-H(11C)	109.1	
C(11B)-C(11C)-H(11C)	109.1	C(3A)-C(11C)-H(11C)	109.1	

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for **amarbellisine (3)**. The anisotropicdisplacement factor exponent takes the form: $-2 \text{ pi}^2 [h^2 a^{**2} U11 + ... + 2 h k a^{*b*U12}]$

anspineennennen	actor emponen		///// _ P1 _	[==		
	U11	U22	U33	U23	U13	U12
N(1)	49(1)	46(1)	43(1)	-4(1)	-6(1)	-3(1)
O(1)	47(1)	53(1)	59(1)	-2(1)	10(1)	9(1)
O(2)	81(1)	43(1)	47(1)	8(1)	9(1)	4(1)
O(3)	96(1)	50(1)	81(1)	-8(1)	-17(1)	-19(1)
O(4)	95(1)	43(1)	75(1)	4(1)	1(1)	-5(1)
C(1)	43(1)	44(1)	39(1)	-2(1)	-1(1)	1(1)
C(2)	47(1)	41(1)	41(1)	3(1)	5(1)	-1(1)
C(3)	51(1)	38(1)	52(2)	0(1)	7(1)	1(1)
C(4)	86(2)	58(2)	59(2)	-10(1)	-9(2)	-14(1)
C(5)	63(2)	62(2)	50(2)	-12(1)	-7(1)	-10(1)
C(7)	62(2)	58(2)	49(2)	3(1)	-9(1)	-2(1)
C(8)	56(1)	50(1)	47(2)	9(1)	2(1)	3(1)
C(9)	61(2)	36(1)	55(2)	3(1)	12(1)	-3(1)
C(10)	58(1)	47(2)	48(2)	-4(1)	-1(1)	-12(1)
C(11)	52(1)	48(1)	47(2)	1(1)	-10(1)	-4(1)
C(12)	125(3)	52(2)	73(2)	-3(2)	8(2)	-9(2)
C(13)	86(2)	44(1)	63(2)	16(1)	-3(2)	4(1)
C(3A)	59(2)	42(1)	52(2)	-11(1)	7(1)	5(1)

C(7A)	43(1)	46(1)	37(1)	2(1)	1(1)	0(1)
C(11A)	42(1)	42(1)	41(1)	1(1)	5(1)	-3(1)
C(11B)	35(1)	43(1)	41(1)	-1(1)	-1(1)	0(1)
C(11C)	44(1)	50(1)	38(1)	-3(1)	6(1)	0(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for **amrbellisine (3)**.

	Х	У	Z	U_{eq}
H(1)	1719	8799	9816	79
H(1A)	3945	8770	11102	51
H(3)	3508	5892	9906	57
H(4A)	2722	6247	7434	81
H(4B)	1645	6506	8357	81
H(5A)	2597	7926	6799	70
H(5B)	1047	7906	7343	70
H(7A)	1834	10017	7667	68
H(7B)	3324	9676	7158	68
H(8)	2971	11845	7873	61
H(11)	5737	10414	10603	59
H(12A)	5905	14033	9883	100
H(12B)	4468	13884	10539	100
H(13A)	2379	5568	11474	97
H(13B)	2991	5821	12585	97
H(13C)	4073	5569	11672	97
H(3A)	4647	6625	8391	61
H(11B)	5486	8607	9722	48
H(11C)	4769	8338	8030	53

Table 6. Torsion	angles [deg	g] for amarbellisine	(3).
------------------	-------------	-----------------------------	------

Tuble 0. Torsion angles [deg] for and bensine (5).						
	C(13)-O(2)-C(2)-C(3)	2.6(3)	C(13)-O(2)-C(2)-C(1)	-178.98(19)		
	O(1)-C(1)-C(2)-C(3)	95.1(2)	C(11B)-C(1)-C(2)-C(3)	-30.7(3)		
	O(1)-C(1)-C(2)-O(2)	-83.4(2)	C(11B)-C(1)-C(2)-O(2)	150.83(17)		
	O(2)-C(2)-C(3)-C(3A)	179.1(2)	C(1)-C(2)-C(3)-C(3A)	0.8(3)		
		1				

C(7)-N(1)-C(5)-C(4)	162.3(2)	C(11C)-N(1)-C(5)-C(4)	42.2(2)
C(3A)-C(4)-C(5)-N(1)	-27.1(2)	C(5)-N(1)-C(7)-C(7A)	-168.39(19)
C(11C)-N(1)-C(7)-C(7A)	-51.4(2)	C(7A)-C(8)-C(9)-C(10)	0.7(3)
C(7A)-C(8)-C(9)-O(4)	179.6(2)	C(12)-O(4)-C(9)-C(8)	175.0(2)
C(12)-O(4)-C(9)-C(10)	-6.0(3)	C(8)-C(9)-C(10)-C(11)	-0.4(4)
O(4)-C(9)-C(10)-C(11)	-179.5(2)	C(8)-C(9)-C(10)-O(3)	179.7(2)
O(4)-C(9)-C(10)-O(3)	0.6(3)	C(12)-O(3)-C(10)-C(11)	-174.9(2)
C(12)-O(3)-C(10)-C(9)	5.0(2)	C(9)-C(10)-C(11)-C(11A)	0.0(3)
O(3)-C(10)-C(11)-C(11A)	180.0(2)	C(10)-O(3)-C(12)-O(4)	-8.8(3)
C(9)-O(4)-C(12)-O(3)	9.1(3)	C(2)-C(3)-C(3A)-C(11C)	6.4(3)
C(2)-C(3)-C(3A)-C(4)	-112.3(2)	C(5)-C(4)-C(3A)-C(3)	126.9(2)
C(5)-C(4)-C(3A)-C(11C)	2.6(3)	C(9)-C(8)-C(7A)-C(11A)	-0.7(3)
C(9)-C(8)-C(7A)-C(7)	179.6(2)	N(1)-C(7)-C(7A)-C(11A)	17.8(3)
N(1)-C(7)-C(7A)-C(8)	-162.44(19)	C(8)-C(7A)-C(11A)-C(11)	0.4(3)
C(7)-C(7A)-C(11A)-C(11)	-179.9(2)	C(8)-C(7A)-C(11A)-C(11B)	177.10(19)
C(7)-C(7A)-C(11A)-C(11B)	-3.2(3)	C(10)-C(11)-C(11A)-C(7A)	-0.1(3)
C(10)-C(11)-C(11A)-C(11B)	-176.83(19)	C(7A)-C(11A)-C(11B)-C(11C)	21.0(3)
C(11)-C(11A)-C(11B)-C(11C)	-162.24(19)	C(7A)-C(11A)-C(11B)-C(1)	-102.4(2)
C(11)-C(11A)-C(11B)-C(1)	74.3(2)	O(1)-C(1)-C(11B)-C(11A)	49.9(2)
C(2)-C(1)-C(11B)-C(11A)	174.50(17)	O(1)-C(1)-C(11B)-C(11C)	-73.2(2)
C(2)-C(1)-C(11B)-C(11C)	51.4(2)	C(7)-N(1)-C(11C)-C(11B)	71.2(2)
C(5)-N(1)-C(11C)-C(11B)	-165.84(17)	C(7)-N(1)-C(11C)-C(3A)	-163.83(17)
C(5)-N(1)-C(11C)-C(3A)	-40.9(2)	C(11A)-C(11B)-C(11C)-N(1)	-53.4(2)
C(1)-C(11B)-C(11C)-N(1)	70.4(2)	C(11A)-C(11B)-C(11C)-C(3A)	-170.61(18)
C(1)-C(11B)-C(11C)-C(3A)	-46.8(3)	C(3)-C(3A)-C(11C)-N(1)	-101.4(2)
C(4)-C(3A)-C(11C)-N(1)	22.7(2)	C(3)-C(3A)-C(11C)-C(11B)	17.9(3)
C(4)-C(3A)-C(11C)-C(11B)	142.0(2)		

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1)N(1)	0.82	2.22	2.867(3)	136.4	