Supplementary Information (ESI)

Microwave-assisted synthesis of potent PDE7 inhibitors containing a thienopyrimidin-4-amine scaffold

Ana I. Sánchez,^{*a} Ricardo Meneses,^a José M. Mínguez,^a Araceli Núñez,^a Rafael R. Castillo,^a Fabiana Filace,^a Carolina Burgos,^a Juan J. Vaquero,^a Julio Álvarez-Builla,^{*a} Alvaro Cortés-Cabrera,^b Federico Gago,^b Emma Terricabras^c and Víctor Segarra^c

^a Departamento de Química Orgánica, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain. Tel: 34 91 8854680; E-mail: carolina.burgos@uah.es ^b Departamento de Ciencias Biomédicas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain. Tel: 34 91 8854514; E-mail: federico.gago@uah.es ^c Almirall-Prodesfarma, Laureà Miró, 408-410, 08980 Sant Felíu de Llobregat, Barcelona, Spain.

Contents

Preparation of starting thiophenes 7	SI-2
Preparation of substituted thienopyrimidinones 3a – d and 4a – q	
using a microwave-assisted parallel synthesis approach	SI-4
Preparation of 6-cyano-substituted thienopyrimidin-4-ones 5	
in the presence of HCl gas	SI-11
Preparation of libraries of thieno[3,2- <i>d</i>]pyrimidin-4-amines 1	SI-15
and thieno[2,3-d]pyrimidin-4-amines 2	
Experimental details and characterization data for final	
compounds 2az, 2ba, 2bc, 2be and 2bg–2bk	SI-40
Phosphodiesterase inhibition assay	SI-44
Some selected ¹ H-NMR spectra for starting materials	SI-46
¹ H-NMR for compound 1a–d , 2a–x , 2aa–aw , 2bd and 2bf	SI-54
and selected ¹³ C-NMR spectra	
¹ H and ¹³ C-NMR spectra for final compounds 2az , 2ba , 2bc ,	SI-88
2be and 2bg–bk	

Experimental details and characterization data for compounds 1–5 and 7

General information

Reagents of the highest commercial quality were purchased and used without further purification, unless stated otherwise. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60FS-254) using UV light to visualize the components. Column chromatography was performed using silica gel (60 F254, 70-200 mm) as the stationary phase. All NMR spectra were recorded on Varian Unity 200 and 300 spectrometers. Chemical shifts are quoted with reference to external SiMe₄. All melting points (mp) are uncorrected. The microwave synthesis was performed in a domestic microwave oven (Panasonic Inverter NN-F359W) using the Teflon disk described in ref. 23a and using 4 mL open glass vials (22 mm diameter). The energy supplied to the sample was calibrated as described in this reference. 25-mL Duran[®] bottles with polypropylene caps (purchased from Aldrich) inside a Heraeus T5060 oven were used to perform nucleophilic substitutions in parallel after testing that they withstood, without undergoing explosion or any liquid loss, 90 °C for 24 h when filled with 12 mL of water. For the experiments described they were used at temperatures between 50-75 °C, without stirring for 12 h, and no problems were observed. The following compounds have been described previously: 2aa, 2ab, 2ae-ai, 2ak-ap, 2ar, 2as, 2au-2bd and 2bf-bk from reference 1,¹ 3a,² 3b,³ 3c,³ 3d,³ 4a,² 4b,⁴ 4c, 4g, 24h, 24j, 54k, 24n, 24o, 24p, 64q, 25a-5k, 7a, 7b, 87c, 97d, 107e, 117f, 128b, 138c,¹⁴ 8d,¹⁵ 8e,¹⁶ 8f,¹⁷ 8h¹⁵ and 8i.¹⁸

Preparation of starting thiophenes 7

Method B

A suspension of the corresponding ketone (0.1 mol), ethyl cyanoacetate (11.30 g, 10.6 mL, 0.1 mol), sulfur (3.52 g, 0.11 mol) and diethylamine (7.31 g, 10.3 mL, 0.1 mol) in pyridine (30 mL) was stirred at room temperature for 2 days. The black solution was concentrated under reduced pressure and the residue was dissolved in Et_2O and filtered through silica. The solvent was removed under reduced pressure and the residue was

purified by flash chromatography [silica gel, hexane/EtOAc (8:2)] to give the pure product.

Ethyl 2-amino-4-methylthiophene-3-carboxylate 7a (12.02 g, 65%). Yellow solid; mp 76–78 °C (lit.,⁷ 76–78 °C); δ_H (300 MHz; CDCl₃; Me₄Si) 1.33 (3 H, t, *J* = 7.2 Hz *CH*₃CH₂), 2.26 (3 H, s, CH₃), 4.24 (2 H, q, *J* = 7.2 Hz, CH₃*CH*₂), 5.90 (1 H, s), 6.00 (2 H, br s, NH₂).

Ethyl 2-amino-4-(2-methylpropyl)thiophene-3-carboxylate 7c (7.95 g, 35%). Yellow solid; mp 62–63 °C (lit., ⁹ 63–64 °C).

Ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate 7d (16.50 g, 83%). Yellow solid; mp 90–91 °C (lit.,¹⁰ 91–92 °C); δ_H (300 MHz; CDCl₃; Me₄Si) 1.37 (3 H, t, *J* = 7.2 Hz *CH*₃CH₂), 2.25 (6 H, br s, 2CH₃), 4.38 (2 H, q, *J* = 7.2 Hz, CH₃*CH*₂), 8.00 (2 H, br s, NH₂).

Ethyl 2-amino-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate 7e (18.05 g, 80%). Yellow solid; mp 111–113 °C (lit.,¹¹ 111–115 °C); δH (300 MHz; CDCl₃; Me₄Si) 1.31 (3 H, t, *J* = 7.1 Hz *CH*₃CH₂), 1.68–1.77 (4 H, m), 2.45–2.49 (2 H, m), 2.66–2.70 (2 H, m), 4.22 (2 H, q, *J* = 7.1 Hz, CH₃CH₂), 5.90 (2 H, br s, NH₂).

Method C: Preparation of ethyl 2-amino-5-cyano-4-methylthiophene-3-carboxylate 7f. To a solution of 3-aminocrotonitrile (8.20 g, 0.1 mol) in ethanol (300 mL) were added sulfur (3.52 g, 0.11 mol), ethyl cyanoacetate (11.30 g, 10.6 mL, 0.1 mol) and a catalytic amount of piperidine. The mixture was carefully heated to 50–60 °C and, when the exothermic process had finished, under reflux for 24 h. The mixture was cooled to room temperature and water was added. The resulting yellow solid was filtered off, dried under vacuum and recrystallized from ethanol. 7f (14.70 g, 70%). Yellow solid; mp 192–193 °C (from EtOH) (lit.,¹² 194 °C); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.38 (3 H, t, J = 7.0 Hz CH_3 CH₂), 2.49 (3 H, s, CH₃), 4.35 (2 H, q, J = 7.0 Hz, CH₃CH₂), 6.63 (2 H, br s, NH₂).

Preparation of substituted thienopyrimidinones 3a–d and 4a–q using a microwaveassisted parallel synthesis approach

General procedure: Twenty 4 mL vials, each containing a homogenized mixture of the appropriate thioamide **8** (3 mmol) and amino-thiophene-carboxylates **6** and **7** as hydrochlorides (1 mmol) without solvent, were inserted into a Teflon disc as described. The samples were irradiated at 550 Watts power for 3.5 minutes (time related to the number of samples) and melting was observed along with the evolution of gas. The samples were allowed to cool to room temperature and each reaction mixture was dissolved in a mixture of hexane/AcOEt (8:2) (2 mL). Reaction mixtures were treated in a parallel manner in a Vac Master Station SPE, using for each vial an additional 1 mL

of a mixture of hexane/AcOEt (8:2) as eluent. The resulting solid thienopyrimidones were dried under vacuum and used in the next step without further purification.

2-Methyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 3a^2 (0.161 g, 97%). Yellow solid; mp > 240 °C (lit.,¹⁹ 242 °C); \deltaH (300 MHz; CDCl₃; Me₄Si) 2.57 (3 H, s, CH₃), 7.31 (1 H, d,** *J* **= 6.4 Hz), 7.81 (1 H, d,** *J* **= 6.4 Hz), 11.62 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 167.1 [M + H]⁺.**

2-Ethyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 3b³ (0.137 g, 76%). Yellow solid; mp 230– 235 °C (lit.,³ 233–237 °C); δ_H (300 MHz; CDCl₃; Me₄Si) 1.23 (3 H, t,** *J* **= 7.5 Hz, CH₂CH₃), 2.84 (2 H, q,** *J* **= 7.5 Hz, CH₂CH₃), 7.31 (1 H, d,** *J* **= 6.4 Hz), 7.81 (1 H, d,** *J* **= 6.4 Hz), 11.82 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 181.1 [M + H]⁺.**

2-Butyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 3c³ (0.133 g, 64%). Yellow solid; \deltaH (300 MHz; CDCl₃; Me₄Si) 0.98 (3 H, t, J = 8.0 Hz, CH₂CH₃), 1.65–1.82 (4 H, m), 2.85 (2 H, t, J = 8.0 Hz), 7.31 (1 H, d, J = 6.4 Hz), 7.81 (1 H, d, J = 6.4 Hz), 11.75 (1 H, br s, NH); MS (ES, pos. mode) m/z = 209.1 [M + H]⁺.**

2-Benzyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 3d**³ (0.186 g, 77%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 4.08 (2 H, s, CH₂Ph), 7.24–7.80 (6 H, m), 7.81 (1 H, d, J = 6.3 Hz), 11.30 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 243.0 \, [{\rm M} + {\rm H}]^+$.

2,5-Dimethyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4a² (0.087 g, 48%). Yellow solid; mp >250 °C (lit.,² 263 °C); \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 2.28 (3 H, s, CH₃), 2.46 (3 H, s, CH₃), 6.77 (1 H, s), 11.30 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 181.1 [M + H]⁺.**

2-Ethyl-5-methyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 4b⁴ (0.109 g, 56%). Yellow solid; \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 1.37 (3 H, t, J = 7.6 Hz, CH₂CH₃), 2.55 (3 H, s, CH₃), 2.76 (2 H, q, J = 7.6 Hz, CH₂CH₃), 6.67 (1 H, s), 11.34 (1 H, br s, NH); MS (ES, pos. mode) m/z = 195.5 [M + H]⁺.**

2-Butyl-5-methyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4c⁴ (0.149 g, 67%). Brown solid; mp 233–235 °C (lit.,³ 233–237 °C); δ_H (300 MHz; CDCl₃; Me₄Si) 0.93 (3 H, t,** *J* **= 7.2 Hz, CH₂CH₃), 1.23–1.43 (2 H, m), 1.75–1.77 (2 H, m), 2.55 (3 H, s), 2.65–2.71 (2 H, m), 6.74 (1 H, s), 11.55 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 223.09 [M + H]⁺.**

5-Methyl-2-phenyl-3*H***-thieno[3,2-***d***]pyrimidin-4-one 4d** (0.153 g, 63%). Brown solid; mp 223–227 °C; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.63 (3 H, s, CH₃), 6.83 (1 H, s), 7.49–7.51 (3 H, m), 8.22 (2 H, d, J = 7.6 Hz), 11.87 (1 H, br s, NH); MS (ES, pos. mode) m/z = 243.04 [M + H]⁺.

2-Benzyl-5-methyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4e** (0.240 g, 94%). Yellow solid; mp > 250 °C; δ H (300 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 4.04 (2 H, s, CH₂Ph), 6.77 (1 H, s), 7.12–7.42 (5 H, m), 10.40 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 257.1 [M + H]^+$.

2-Cyclohexyl-5-(2-methylpropyl)-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4f (0.234 g, 81%). Brown solid; mp > 250; \deltaH (300 MHz; CDCl₃; Me₄Si) 0.90 (6 H, d, J = 6.2 Hz, 2CH₃), 0.93–0.98 (1 H, m), 1.21–1.99 (9 H, m), 2.09–2.14 (1 H, m), 2.50–2.53 (1 H, m), 3.01 (2 H, d, J = 5.8 Hz, CH₂CH), 6.70 (1H, br s), 12.66 (1 H, br s, NH); MS (ES, pos. mode) m/z = 291.1 [M + H]⁺.**

5-(2-Methylpropyl)-2-phenyl-3*H***-thieno**[**2,3-***d*]**pyrimidin-4-one 4g**² (0.278 g, 98%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.95 (6 H, d, J = 6.1 Hz, 2CH₃), 2.01–2.15 (1 H, m), 2.95 (2 H, d, J = 5.8 Hz, CH₂CH), 6.89 (1 H, s), 7.15–8.10 (5 H, m), 11.85 (1 H, br s, NH); MS (ES, pos. mode) m/z = 285.1 [M + H]⁺.

2-Benzyl-5-(2-methylpropyl)-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4h² (0.182 g, 61%). Yellow solid; \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 0.97 (6 H, d, J = 6.1 Hz, 2CH₃), 1.99–2.18 (1 H, m), 2.79 (2 H, d, J = 5.8 Hz, CH₂CH), 4.01 (2 H, s, CH₂Ph), 6.78 (1 H, s), 7.20–7.43 (5 H, m), 10.60 (1 H, br s, NH); MS (ES, pos. mode) m/z = 299.0 [M + H]⁺.**

5-(2-Methylpropyl)-2-phenethyl-3*H***-thieno**[**2,3-***d*]**pyrimidin-4-one 4i** (0.210 g, 67%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.98 (6 H, d, J = 6.1 Hz, 2CH₃), 1.83–2.20 (1 H, m), 2.65 (2 H, d, J = 5.8 Hz, CH₂CH), 3.30–3.40 (4 H, m), 6.88 (1 H, s), 7.12–7.18 (5 H, m), 12.10 (1 H, br s, NH); MS (ES, pos. mode) m/z = 313.0 [M + H]⁺.

2-Ethyl-5,6-dimethyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4j⁵ (0.131 g, 63%). Yellow solid; mp > 250 °C (lit.,⁵ 258–261 °C); \deltaH (300 MHz; CDCl₃; Me₄Si) 1.35 (3 H, t,** *J* **= 7.5 Hz, CH₂CH₃), 2.34 (3 H, s, CH₃), 2.51 (3 H, s, CH₃), 2.74 (2 H, q,** *J* **= 7.5 Hz, CH₂CH₃), 12.02 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 209.1 [M + H]⁺.**

5,6-Dimethyl-2-(1-methylethyl)-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4k^2 (0.082 g, 37%). Yellow solid; \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 1.34 (6 H, d, J = 6.1 Hz, 2CH₃), 2.34 (3 H, s, CH₃), 2.44 (3 H, s, CH₃), 2.92 (1 H, hp, J = 6.1 Hz, CH), 10.85 (1 H, br s, NH); MS (ES, pos. mode) m/z = 223.1 [M + H]⁺.**

5,6-Dimethyl-2-(1,1-dimethylethyl)-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4l** (0.031 g, 13%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.23 (9 H, s, 3CH₃), 2.38 (3 H, s, CH₃), 2.47 (3 H, s, CH₃), 9.95 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 237.1 [M + H]^+$.

2-Cyclohexyl-5,6-dimethyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4m (0.212 mg, 81%). Yellow solid; \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 1.31–1.88 (10 H, m), 2.38 (3 H, s, CH₃), 2.48 (3 H, s, CH₃), 2.81–2.93 (1 H, m), 10.22 (1 H, br s, NH); MS (ES, pos. mode) m/z = 263.1 [M + H]⁺.**

5,6-Dimethyl-2-phenyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4n^2 (0.059 g, 23%). Yellow solid; mp > 250 °C (lit.,² 298 °C); \deltaH (300 MHz; CDCl₃; Me₄Si) 2.37 (3 H, s, CH₃), 2.42 (3 H, s, CH₃), 7.45–7.55 (3 H, m), 8.80–9.00 (2 H, m), 12.50 (1 H, br s, NH); MS (ES, pos. mode) m/z = 257.1 \text{ [M + H]}^+.**

2-Benzyl-5,6-dimethyl-3*H***-thieno[2,3-***d***]pyrimidin-4-one 4o**² (0.075 g, 28%). Yellow solid; mp > 250 °C (lit.,² 268–270 °C); δ H (300 MHz; CDCl₃; Me₄Si) 2.39 (3 H, s, CH₃), 2.46 (3 H, s, CH₃), 4.04 (2 H, s, CH₂), 7.29–7.35 (5 H, m), 10.50 (1 H, br s, NH); MS (ES, pos. mode) *m*/*z* = 271.1 [M + H]⁺.

2-Butyl-5,6,7,8-tetrahydro-3*H***-benzo[4,5]thieno[2,3-***d***]pyrimidin-4-one 4p⁶ (0.131 g, 50%). Yellow solid; mp 205–208 °C (lit.,⁶ 210 °C); δ_H (300 MHz; CDCl₃; Me₄Si) 0.94 (3 H, t,** *J* **= 7.2 Hz, CH₃), 1.36–1.47 (2 H, m), 1.64–1.85 (6 H, m), 2.66–2.74 (4 H, m), 2.98–3.06 (2 H, m), 11.39 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 263.1 [M + H]⁺.**

2-Benzyl-5,6,7,8-tetrahydro-3*H***-benzo[4,5]thieno[2,3-***d*]**pyrimidin-4-one** 4**q**² (0.163 g, 55%). Yellow solid; mp > 250 °C (lit.,² 265–268 °C); δ H (300 MHz; CDCl₃; Me₄Si) 1.75–1.84 (4 H, m), 2.73–2.80 (2 H, m), 2.96–3.10 (2 H, m), 4.01 (2 H, s, CH₂), 7.31–7.50 (5 H, m), 11.20 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 297.0 [M + H]^+$.

Preparation of 6-cyano-substituted thienopyrimidin-4-ones 5 in the presence of HCl gas

*General procedure*²⁰: A solution of the thiophene derivative **7f** (0.210 g, 1 mmol) and the corresponding benzonitrile **9** (1.5 mmol) in dry dioxane (7 mL) was cooled to 0 °C and dry HCl(g) was bubbled through for 2 h (until saturation) and the reaction was stirred at room temperature for 12 h. The solvent was removed under reduced pressure and the residue was triturated with diethyl ether. The resulting solid thienopyrimidones were triturated with diethyl ether, dried under vacuum and used in the next step without further purification.

5-Methyl-4-oxo-2-phenyl-3,4-dihydrothieno[2,3-*d*]pyrimidine-6-carbonitrile 5a¹ (0.246 g, 92%). Yellow solid; v_{max} (KBr) /cm⁻¹ 3415, 2219 (conj. CN), 1663, 1539, 700; δH (300 MHz; DMSO-*d*₆; Me₄Si) 2.73 (3 H, s, CH₃), 7.61–7.66 (3 H, m), 8.21 (2 H, d, *J* = 6.6 Hz), 13.02 (1 H, br s, NH); MS (ES, pos. mode) *m*/*z* = 268.1 [M + H]⁺.

5-Methyl-2-(4-methylphenyl)-4-oxo-3,4-dihydrothieno[2,3-*d***]pyrimidine-6carbonitrile 5b**¹ (0.202 g, 72%). Yellow solid; δ_H (300 MHz; CDCl₃; Me₄Si) 2.45 (3 H, s, CH₃), 2.78 (3 H, s, CH₃), 7.29 (2 H, d, J = 7.7 Hz), 7.97 (2 H, d, J = 7.7 Hz), 10.30 (1 H, br s, NH); MS (ES, pos. mode) m/z = 282.1 [M + H]⁺.

2-(4-Methoxyphenyl)-5-methyl-4-oxo-3,4-dihydrothieno[**2,3-***d*]**pyrimidine-6carbonitrile 5c**¹ (0.288 g, 97%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 3.88 (3 H, s, OCH₃), 6.91 (2 H, d, J = 8.4 Hz), 7.84 (2 H, d, J = 8.4 Hz), 10.21 (1 H, br s, NH); MS (ES, pos. mode) m/z = 298.1 [M + H]⁺.

2-(4-Chlorophenyl)-5-methyl-4-oxo-3,4-dihydrothieno[2,3-*d***]pyrimidine-6-carbonitrile 5d**¹ (0.253 g, 84%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.78 (3 H, s, CH₃), 7.41 (2 H, d, J = 8.7 Hz), 7.73 (2 H, d, J = 8.7 Hz), 13.16 (1 H, br s, NH); MS (ES, pos. mode) m/z = 302.1 [M + H]⁺.

5-Methyl-2-(4-nitrophenyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-

carbonitrile 5e¹ (0.147 g, 47%). Yellow solid; $\delta_{\rm H}$ (300 MHz; DMSO- d_6 ; Me₄Si) 2.69 (3 H, s, CH₃), 8.08 (2 H, d, J = 8.6 Hz), 8.29 (2 H, d, J = 8.6 Hz), 13.26 (1 H, br s, NH); MS (ES, pos. mode) m/z = 313.1 [M + H]⁺.

5-Methyl-4-oxo-2-[4-(trifluoromethyl)phenyl)]-3,4-dihydrothieno[2,3-

d]pyrimidine-6-carbonitrile 5f¹ (0.271 g, 81%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 7.65 (2 H, d, J = 8.0 Hz), 8.12 (2 H, d, J = 8.0 Hz), 13.00 (1 H, br s, NH); MS (ES, pos. mode) m/z = 313.1 [M + H]⁺.

2-(3,4-Dimethoxyphenyl)-5-methyl-4-oxo-3,4-dihydrothieno[**2,3-***d*]**pyrimidine-6-carbonitrile 5g**¹ (0.320 g, 98%). Yellow solid; $\delta_{\rm H}$ (300 MHz; DMSO-*d*₆; Me₄Si) 2.56 (3 H, s, CH₃), 3.84 (3 H, s, OCH₃), 3.89 (3 H, s, OCH₃), 6.94 (1 H, d, *J* = 8.4 Hz), 8.04 (1 H, s), 8.09 (1 H, d, *J* = 8.4 Hz), 12.62 (1 H, br s, NH); MS (ES, pos. mode) *m*/*z* = 328.1 [M + H]⁺.

2-(1,3-Benzodioxol-5-yl)-5-methyl-4-oxo-3,4-dihydrothieno[**2,3-***d*]**pyrimidine-6-carbonitrile 5h**¹ (0.068 g, 22%). Yellow solid; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.65 (3 H, s, CH₃), 6.15 (2 H, s, OCH₂O), 7.08 (1 H, d, J = 7.5 Hz), 7.70 (1 H, s), 7.79 (1 H, d, J = 7.5 Hz), 13.00 (1 H, br s, NH); MS (ES, pos. mode) m/z = 312.1 [M + H]⁺.

5-Methyl-4-oxo-2-(3,4,5-trimethoxyphenyl)-3,4-dihydrothieno[2,3-*d***]pyrimidine-6-carbonitrile 5i**¹ (0.225 g, 63%). Yellow solid; mp > 250 °C; δH (300 MHz; CDCl₃; Me₄Si) 2.76 (3 H, s, CH₃), 3.95 (3 H, s, OCH₃), 3.98 (6 H, s, 2OCH₃), 7.28 (2 H, s), 12.48 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 358.1 [M + H]^+$.

2-(3,4-Dimethoxybenzyl)-5-methyl-4-oxo-3,4-dihydrothieno[2,3-*d***]pyrimidine-6carbonitrile 5j¹ (0.160 g, 47%). Yellow solid; mp > 250 °C; δH (300 MHz; CDCl₃; Me₄Si) 2.83 (3 H, s, CH₃), 3.79 (3 H, s, OCH₃), 3.83 (3 H, s, OCH₃), 4.50 (2 H, s, CH₂), 6.73–6.77 (1 H, m), 6.89–6.99 (2 H, m), 12.40 (1 H, br s, NH); MS (ES, pos. mode)** *m***/***z* **= 342.1 [M + H]⁺.**

5-Methyl-4-oxo-2-(3,4,5-trimethoxybenzyl)-3,4-dihydrothieno[2,3-*d***]pyrimidine-6-carbonitrile 5k**¹ (0.256 g, 69%). Yellow solid; mp > 250 °C; δ H (300 MHz; CDCl₃; Me₄Si) 2.85 (3 H, s, CH₃), 3.82 (3 H, s, OCH₃), 3.83 (6 H, s, 2OCH₃), 4.23 (2 H, s, CH₂), 6.27 (2 H, s), 9.80 (1 H, br s, NH); MS (ES, pos. mode) $m/z = 372.1 [M + H]^+$.

Preparation of libraries of thieno[3,2-d]pyrimidin-4-amines 1 and thieno[2,3d]pyrimidin-4-amines 2

General procedure: A solution of the corresponding thienopyrimid-4-one **3–5** (0.1 mmol) in phosphorus oxychloride (4 mL) was heated under reflux for 2–12 h. As soon as the starting material had been consumed (TLC analysis), the mixture was allowed to cool down to room temperature and phosphorus oxychloride was removed under reduced pressure. The residue was dissolved in CH_2Cl_2 (20 mL) and the organic phase was washed successively with saturated aqueous NaHCO₃, water and saturated aqueous sodium chloride. The organic phase was dried over anhydrous MgSO₄, filtered, and the solvent was removed under vacuum. The corresponding 4-chloro-derivative **10** or **11** was obtained and was used in the next step without further purification. The chloro-derivative **10** or **11** was dissolved in ethanol (12 mL) in a Duran[®] bottle and the corresponding amine (0.13 mmol) was added. The bottle was closed with a polypropylene cap and heated in an Heraeus T5060 oven (T = 50–75 °C) for 2–12 h. The mixture was allowed to cool down to room temperature, the solvent was removed under reduced pressure and the residue was purified by column chromatography [hexane/EtOAc (4:6)] to give the corresponding thienopyrimidin-4-yl-amines **1** and **2**.

2-Methyl-4-morpholin-4-yl-thieno[3,2-d]pyrimidine 1a (20.0 mg, 85%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 55.95; H, 5.4; N, 17.94. Calc. for $C_{11}H_{13}N_3OS$: C, 56.15; H, 5.6; N, 17.87%; $\upsilon_{max}(KBr)$ /cm⁻¹ 2959, 1665, 1603, 1538,

1493, 1364, 1305, 1262, 930, 846, 751, 699; δ_H (300 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 3.43–3.47 (4 H, m), 3.85–3.90 (4 H, m), 7.35 (1 H, d, J = 5.4 Hz), 7.65 (1 H, d, J = 5.4 Hz); MS (ES, pos. mode) m/z = 236.1 [M + H]⁺.

2-Ethyl-4-morpholin-4-yl-thieno[3,2-*d***]pyrimidine 1b** (21.0 mg, 84%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 58.00; H, 6.4; N, 17.01. Calc. for C₁₂H₁₅N₃OS: C, 57.81; H, 6.1; N, 16.85%; υ_{max} (KBr) /cm⁻¹ 2957, 2926, 1683, 1538, 1490, 1241, 1276, 1264, 1119, 1017, 798; δ H (200 MHz; CDCl₃; Me₄Si) 1.32 (3 H, t, *J* = 7.6 Hz, CH₂CH₃), 2.83 (2 H, q, *J* = 7.6 Hz, *CH*₂CH₃), 3.79–3.85 (4 H, m), 3.92–3.99 (4 H, m), 7.35 (1 H, d, *J* = 5.5 Hz), 7.66 (1 H, d, *J* = 5.5 Hz); MS (ES, pos. mode) *m*/*z* = 250.1 [M + H]⁺.

2-Butyl-4-morpholin-4-yl-thieno[3,2-*d***]pyrimidine 1c** (23.8 mg, 86%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 60.75; H, 7.1; N, 15.01. Calc. for $C_{14}H_{19}N_3OS$: C, 60.62; H, 6.9; N, 15.15%; $v_{max}(KBr) / cm^{-1} 3066$, 2971, 2915, 2851, 1682, 1537, 1493, 1448, 1431, 1257, 1217, 1117, 1019, 807, 790, 729, 662; δ_{H} (200 MHz; CDCl₃; Me₄Si) 0.92 (3 H, t, *J* = 7.6 Hz, CH₃), 1.30–1.49 (2 H, m), 1.70–1.86 (2 H, m), 2.82 (2 H, t, *J* = 7.7 Hz, ArCH₂), 3.80–3.86 (4 H, m), 3.94–3.99 (4 H, m), 7.36 (1 H, d, *J* = 5.6 Hz), 7.67 (1 H, d, *J* = 5.6 Hz); MS (ES, pos. mode) *m*/*z* = 278.1 [M + H]⁺.

2-Benzyl-4-morpholin-4-yl-thieno[3,2-*d***]pyrimidine 1d** (2.8 mg, 9%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 65.76; H, 5.2; N, 13.20. Calc. for $C_{17}H_{17}N_3OS$: C, 65.57; H, 5.5; N, 13.49%; δ H (300 MHz; CDCl₃; Me₄Si) 3.78–3.82 (4 H, m), 3.91–3.95 (4 H, m), 4.14 (2 H, s, CH₂), 7.17–7.28 (3 H, m), 7.34–7.44 (3 H, m), 7.67 (1 H, d, *J* = 5.6 Hz); MS (ES, pos. mode) *m*/*z* = 312.1 [M + H]⁺.

2,5-Dimethyl-4-morpholin-4-yl-thieno[**2,3-***d*]**pyrimidine 2a** (10.7 mg, 43%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 58.05; H, 6.0; N, 17.01. Calc. for $C_{12}H_{15}N_3OS$: C, 57.81; H, 6.1; N, 16.85%; δ_{H} (300 MHz; CDCl₃; Me₄Si) 2.50 (3 H, s, CH₃), 2.61 (3 H, s, CH₃), 3.30–3.40 (4 H, m), 3.80–3.90 (4 H, m), 6.86 (1 H, s); MS (ES, pos. mode) $m/z = 250.1 [M + H]^+$.

2-Ethyl-5-methyl-4-morpholin-4-yl-thieno[**2**,**3**-*d*]**pyrimidine 2b** (3.7 mg, 14%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 59.08; H, 6.2; N, 16.11. Calc. for C₁₃H₁₇N₃OS: C, 59.29; H, 6.5; N, 15.96%; δ H (300 MHz; CDCl₃; Me₄Si) 1.34 (3 H, t, *J* = 7.5 Hz, CH₂CH₃), 2.52 (3 H, s, CH₃), 2.89 (2 H, q, *J* = 7.5 Hz, CH₂CH₃), 3.40–3.43 (4 H, m), 3.83–3.86 (4 H, m), 6.88 (1 H, s); MS (ES, pos. mode) *m*/*z* = 264.1 [M + H]⁺.

2-Butyl-5-methyl-4-morpholin-4-yl-thieno[**2**,**3**-*d*]**pyrimidine 2c** (13.1 mg, 45%). Yellow solid; mp = 245–247 °C; elemental analysis: Found: C, 62.09; H, 7.2; N, 14.11. Calc. for C₁₅H₂₁N₃OS: C, 61.82; H, 7.3; N, 14.42%; δ H (300 MHz; CDCl₃; Me₄Si) 0.93 (3 H, t, *J* = 7.4 Hz, CH₂CH₃), 1.24–1.42 (2 H, m), 1.75–1.79 (2 H, m), 2.52 (3 H, s, CH₃), 2.86 (2 H, t, *J* = 7.6 Hz, ArCH₂), 3.39–3.44 (4 H, m), 3.83–3.87 (4 H, m), 6.87 (1 H, s); δ c (75 MHz; CDCl₃; Me₄Si) 14.1, 16.9, 22.6, 30.7, 38.7, 51.0 (2C), 66.6 (2C), 118.1, 118.8, 129.0, 129.1, 165.1, 165.9; MS (ES, pos. mode) *m*/*z* = 292.1 [M + H]⁺.

5-Methyl-4-morpholin-4-yl-2-phenylthieno[2,3-*d***]pyrimidine 2d** (19.6 mg, 63%). Yellow solid; mp = 213–215 °C; elemental analysis: Found: C, 65.78; H, 5.2; N, 13.12. Calc. for C₁₇H₁₇N₃OS: C, 65.57; H, 5.5; N, 13.49%; δH (200 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 3.51–3.54 (4 H, m), 3.89–3.93 (4 H, m), 6.97 (1 H, s), 7.44–7.46 (3 H, m), 8.47–8.49 (2 H, m); MS (CI) m/z = 312 (100) [M + H]⁺.

2-Benzyl-5-methyl-4-morpholin-4-yl-thieno[**2**,**3**-*d*]**pyrimidine 2e** (26.6 mg, 82%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 66.70; H, 5.8; N, 13.11. Calc. for C₁₈H₁₉N₃OS: C, 66.43; H, 5.9; N, 12.91%; υ_{max} (KBr) /cm⁻¹ 3401, 3060, 3028, 2930, 1724, 1679, 1606, 1515, 1464, 1262, 1115, 1029, 992, 729, 698; δ H (300 MHz; CDCl₃; Me₄Si) 2.53 (3 H, s, CH₃), 3.44–3.47 (4 H, m), 3.83–3.87 (4 H, m), 4.22 (2 H, s, CH₂), 6.93 (1 H, s), 7.19–7.46 (5 H, m); MS (CI) *m*/*z* = 326 (100) [M + H]⁺.

2-Benzyl-5-methyl-4-piperazin-1-yl-thieno[2,3-*d***]pyrimidine 2f** (10.4 mg, 32%). Yellow solid; mp = 198–200 °C; elemental analysis: Found: C, 66.70; H, 5.9; N, 17.11. Calc. for C₁₈H₂₀N₄S: C, 66.64; H, 6.2; N, 17.27%; υ_{max} (KBr) /cm⁻¹ 3417, 2922, 2847, 1538, 1448, 1363, 1261, 992, 764, 695; δ H (300 MHz; CDCl₃; Me₄Si) 2.50 (3 H, s, CH₃), 2.98–3.15 (4 H, m), 3.36–3.48 (4 H, m), 4.17 (2 H, s, CH₂), 6.86 (1 H, s), 7.17 (1 H, t, *J* = 7.5 Hz), 7.24–7.29 (2 H, m), 7.40 (2 H, t, *J* = 7.3 Hz); MS (CI) *m*/*z* = 325 (100) [M + H]⁺.

2-Benzyl-5-methyl-4-(4-methylpiperazin-1-yl)-thieno[2,3-*d***]pyrimidine 2g** (6.1 mg, 18%). Yellow solid; mp = 187–189 °C; elemental analysis: Found: C, 67.70; H, 6.2; N, 16.11. Calc. for C₁₉H₂₂N₄S: C, 67.42; H, 6.5; N, 16.55%; υ_{max} (KBr) /cm⁻¹ 3446, 3028, 2930, 2847, 2796, 1662, 1538, 1493, 1366, 1264, 1140, 1100, 1003, 909, 728; δ H (300 MHz; CDCl₃; Me₄Si) 2.34 (3 H, s, CH₃), 2.49 (3 H, s, CH₃), 2.45–2.55 (4 H, m), 3.36–3.48 (4 H, m), 4.18 (2 H, s, CH₂), 6.87 (1 H, s), 7.15–7.43 (5 H, m); MS (CI) *m*/*z* = 339 (100) [M + H]⁺.

2-Cyclohexyl-5-(2-methylpropyl)-4-morpholin-4-yl-thieno[**2**,**3**-*d*]**pyrimidine 2h** (16.1 mg, 45%). White solid; mp = 176–178 °C; elemental analysis: Found: C, 66.70; H, 7.9; N, 11.71. Calc. for C₂₀H₂₉N₃OS: C, 66.81; H, 8.1; N, 11.69%; δ H (200 MHz; CDCl₃; Me₄Si) 0.86 (6 H, d, *J* = 6.6 Hz, 2CH₃), 1.23–2.03 (11 H, m), 2.70 (2 H, d, *J* = 7.2 Hz, ArCH₂), 2.72–2.78 (1 H, m), 3.35–3.39 (4 H, m), 3.83–3.87 (4 H, m), 6.88 (1 H, s); MS (ES, pos. mode) *m*/*z* = 360.2 [M + H]⁺.

5-(2-Methylpropyl)-4-morpholin-4-yl-2-phenylthieno[2,3-*d***]pyrimidine 2i (4.2 mg, 12%). White solid; mp = 112–114 °C; elemental analysis: Found: C, 68.07; H, 6.9; N, 11.71. Calc. for C_{20}H_{23}N_3OS: C, 67.96; H, 6.6; N, 11.89%; \deltaH (200 MHz; CDCl₃; Me₄Si) 0.86 (6 H, d, J = 6.6 Hz, 2CH₃), 1.85–2.03 (1 H, m), 2.75 (2 H, d, J = 7.1 Hz,**

ArCH₂), 3.45–3.55 (4 H, m), 3.85–3.95 (4 H, m), 6.98 (1 H, s), 7.42–7.49 (3 H, m), 8.49 (2 H, dd, J = 7.9, 3.4 Hz); δc (50 MHz; CDCl₃; Me₄Si) 22.4 (2C), 29.7, 40.2, 51.1 (2C), 66.6 (2C), 119.8, 120.3, 128.0, 128.1 (2C), 128.3 (2C), 130.1, 134.0, 136.4, 159.3, 162.9; MS (CI) m/z = 354 (100) [M + H]⁺.

2-Benzyl-5-(2-methylpropyl)-4-morpholin-4-yl-thieno[2,3-*d***]pyrimidine 2j** (23.1 mg, 63%). White solid; mp = 129–131 °C; elemental analysis: Found: C, 68.43; H, 7.1; N, 11.70. Calc. for C₂₁H₂₅N₃OS: C, 68.63; H, 6.9; N, 11.43%; δ H (200 MHz; CDCl₃; Me₄Si) 0.77 (6 H, d, *J* = 6.6 Hz, 2CH₃), 1.80–1.96 (1 H, m), 2.62 (2 H, d, *J* = 7.4 Hz, ArCH₂), 3.28–3.30 (4 H, m), 3.72–3.76 (4 H, m), 4.12 (2 H, s, CH₂), 6.83 (1 H, s), 7.10–7.37 (5 H, m); δ c (50 MHz; CDCl₃; Me₄Si) 22.4 (2C), 29.3, 40.1, 45.4, 51.0 (2C), 66.5 (2C), 118.0, 119.5, 126.1, 127.3, 128.1 (2C), 129.2 (2C), 133.5, 138.6, 162.8, 170.5; MS (CI) *m*/*z* = 368 (100) [M + H]⁺.

5-(2-Methylpropyl)-4-morpholin-4-yl-2-phenethyl-thieno[**2**,**3**-*d*]**pyrimidine 2k** (16.8 mg, 44%). White solid; mp = 118–120 °C; elemental analysis: Found: C, 69.45; H, 6.9; N, 11.30. Calc. for C₂₂H₂₇N₃OS: C, 69.26; H, 7.1; N, 11.01%; δ H (200 MHz; CDCl₃; Me₄Si) 0.78 (6 H, d, *J* = 6.6 Hz, 2CH₃), 1.83–1.95 (1 H, m), 2.64 (2 H, d, *J* = 7.2 Hz, ArCH₂), 3.09–3.16 (4 H, m), 3.28–3.30 (4 H, m), 3.74–3.78 (4 H, m), 6.83 (1 H, s), 7.06–7.14 (5 H, m); δ c (50 MHz; CDCl₃; Me₄Si) 22.4 (2C), 29.3, 34.5, 40.1, 40.4, 51.0

(2C), 66.5 (2C), 117.7, 119.3, 125.7, 128.1 (2C), 128.3, 128.7 (2C), 133.6, 141.6, 163.1, 163.6; MS (CI) *m*/*z* = 382 (100) [M + H]⁺.

4-(4-Methylpiperazin-1-yl)-5-(2-methylpropyl)-2-phenylthieno[2,3-*d***]pyrimidine 21** (4.4 mg, 12%). White solid; mp = 237–239 °C; elemental analysis: Found: C, 69.02; H, 7.4; N, 15.62. Calc. for C₂₁H₂₆N₄S: C, 68.82; H, 7.1; N, 15.29%; δH (200 MHz; CDCl₃; Me₄Si) 0.87 (6 H, d, J = 6.6 Hz, 2CH₃), 1.97–2.01 (1 H, m), 2.39 (3 H, s, CH₃), 2.64 (4 H, t, J = 4.4 Hz), 2.78 (2 H, d, J = 7.1 Hz, ArCH₂), 3.55 (4 H, t, J = 4.4 Hz), 6.97 (1 H, s), 7.44–7.48 (3 H, m), 8.50 (2 H, dd, J = 7.4, 4.1 Hz); MS (ES, pos. mode) m/z = 367.1 [M + H]⁺.

2-Benzyl-5-(2-methylpropyl)-4-(4-phenylpiperazin-1-yl)thieno[2,3-d]pyrimidine

2m (26.0 mg, 57%). White solid; mp = 214–216 °C; elemental analysis: Found: C, 73.56; H, 6.8; N, 12.92. Calc. for $C_{27}H_{30}N_4S$: C, 73.27; H, 6.9; N, 12.66%; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 0.75 (6 H, d, *J* = 6.6 Hz, 2CH₃), 1.86–1.90 (1 H, m), 2.68 (2 H, d, *J* = 7.2 Hz, ArCH₂), 3.22–3.27 (4 H, m), 3.42–3.47 (4 H, m), 4.11 (2 H, s, CH₂), 6.79–6.92 (4 H, m), 7.12–7.27 (5 H, m), 7.36–7.40 (2 H, m); MS (CI) *m*/*z* = 443 (100) [M + H]⁺.

5-(2-Methylpropyl)-2-phenethyl-4-(4-phenylpiperazin-1-yl)thieno[2,3-*d***]pyrimidine 2n** (24.7 mg, 54%). White solid; mp = 151–153 °C; elemental analysis: Found: C, 73.44; H, 7.0; N, 11.95. Calc. for C₂₈H₃₂N₄S: C, 73.65; H, 7.1; N, 12.27%; δ H (200 MHz; CDCl₃; Me₄Si) 0.77 (6 H, d, *J* = 6.6 Hz, 2CH₃), 1.83–1.97 (1 H, m), 2.71 (2 H, d, *J* = 7.2 Hz, ArCH₂), 3.12–3.16 (4 H, m), 3.25–3.29 (4 H, m), 3.44–3.47 (4 H, m), 6.79– 6.93 (4 H, m), 7.05–7.27 (7 H, m); MS (ES, pos. mode) *m*/*z* = 457.1 [M + H]⁺.

2-Ethyl-5,6-dimethyl-4-morpholin-4-yl-thieno[**2,3-***d*]**pyrimidine 2o** (17.4 mg, 63%). Yellow oil; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 1.30 (3 H, t, *J* = 7.4 Hz, C*H*₃CH₂), 2.37 (6 H, s, 2CH₃), 2.84 (2 H, q, *J* = 7.4 Hz, CH₃CH₂), 3.35 (4 H, t, *J* = 4.6 Hz), 3.82 (4 H, t, *J* = 4.6 Hz); $\delta_{\rm C}$ (50 MHz; CDCl₃; Me₄Si) 12.8, 13.7, 13.8, 32.1, 50.8, 66.5, 119.1, 119.8, 123.7, 130.7, 161.8, 164.7; $\delta_{\rm C}$ (50 MHz; CDCl₃; Me₄Si) 12.8, 164.7; MS (CI) *m*/*z* = 278 (100) [M + H]⁺.

5,6-Dimethyl-2-(1-methylethyl)-4-morpholin-4-yl-thieno[2,3-*d***]pyrimidine 2p (7.0 mg, 24%). Yellow oil; \delta_{\rm H} (200 MHz; CDCl₃; Me₄Si) 1.30 (6 H, d, J = 6.6 Hz, 2CH₃), 2.37 (6 H, br s, 2CH₃), 3.09 (1 H, hp, J = 6.6 Hz, CH), 3.36–3.40 (4 H, m), 3.81–3.85 (4 H, m); \delta_{\rm C} (50 MHz; CDCl₃; Me₄Si) 13.7, 13.9, 21.8 (2C), 37.1, 50.8 (2C), 66.5 (2C), 119.1, 123.6, 128.7, 130.7, 161.8, 168.0; MS (CI) m/z = 292 (100) [M + H]⁺.**

5,6-Dimethyl-2-(1,1-dimethylethyl)-4-morpholin-4-yl-thieno[2,3-*d***]pyrimidine 2q (7.9 mg, 26%). White solid; mp = 70–71 °C; elemental analysis: Found: C, 70.13; H, 7.6; N, 13.76. Calc. for C₁₆H₂₃N₃OS: C, 62.92; H, 7.6; N, 13.76%; \deltaH (300 MHz; CDCl₃; Me₄Si) 1.40 (9 H, s, 3CH₃), 2.41 (3 H, s, CH₃), 2.42 (3 H, s, CH₃), 3.41 (4 H, t, J = 4.4 Hz); MS (ES, pos. mode) m/z = 306.3 [M + H]⁺.**

4-(4-Benzhydrylpiperazin-1-yl)-2-cyclohexyl-5,6-dimethylthieno[2,3-d]pyrimidine

2r (8.9 mg, 18%). White solid; mp = 243–245 °C; elemental analysis: Found: C, 75.11; H, 7.5; N, 11.43. Calc. for C₃₁H₃₆N₄S: C, 74.96; H, 7.3; N, 11.28%; δ H (200 MHz; CDCl₃; Me₄Si) 1.37–1.86 (8 H, m), 1.95–2.02 (2 H, m), 2.36 (3 H, s, CH₃), 2.39 (3 H, s, CH₃), 2.57 (4 H, t, *J* = 4.3 Hz), 2.70–2.83 (1 H, m), 3.43 (4 H, t, *J* = 4.3 Hz), 4.29 (1 H, s), 7.23–7.33 (6 H, m), 7.47 (4 H, dd, *J* = 7.7, 2.5 Hz); MS (ES, pos. mode) *m*/*z* = 497.1 [M + H]⁺.

5,6-Dimethyl-4-morpholin-4-yl-2-phenylthieno[**2,3-***d*]**pyrimidine 2s** (5.9 mg, 18%). White solid; mp = 183–185 °C; elemental analysis: Found: C, 66.72; H, 6.1; N, 13.12. Calc. for C₁₈H₁₉N₃OS: C, 66.43; H, 5.9; N, 12.91%; δ H (200 MHz; CDCl₃; Me₄Si) 2.46 (6 H, br s, 2CH₃), 3.50 (4 H, t, *J* = 4.6 Hz), 3.93 (4 H, t, *J* = 4.6 Hz), 7.44–7.48 (3 H, m), 8.46 (2 H, dd, *J* = 7.7, 4.2 Hz); MS (CI) *m*/*z* = 326 (100) [M + H]⁺.

2-Benzyl-5,6-dimethyl-4-(4-methylpiperazin-1-yl)thieno[2,3-*d***]pyrimidine 2t** (10.5 mg, 30%). White solid; mp = 164–166 °C; elemental analysis: Found: C, 68.00; H, 7.0; N, 16.12. Calc. for $C_{20}H_{24}N_4S$: C, 68.15; H, 6.9; N, 15.89%; δ H (200 MHz; CDCl₃; Me₄Si) 2.35 (3 H, s, CH₃), 2.39 (3 H, s, CH₃), 2.41 (3 H, s, CH₃), 2.55 (4 H, t, *J* = 4.4

Hz), 3.43 (4 H, t, J = 4.4 Hz), 4.18 (2 H, s, CH₂), 7.26–7.31 (3 H, m), 7.43 (2 H, dd, J = 7.0, 3.2 Hz); δc (50 MHz; CDCl₃; Me₄Si) 13.8, 13.9, 45.5, 46.2, 50.2 (2C), 54.7 (2C), 119.1, 120.0, 123.9, 126.0, 128.0 (2C), 129.1 (2C), 130.7, 138.9, 161.9, 167.6; MS (ES, pos. mode) m/z = 353.1 [M + H]⁺.

4-(4-Benzhydrylpiperazin-1-yl)-2-benzyl-5,6-dimethyl-4-thieno[2,3-d]pyrimidine

2u (5.1 mg, 10%). White solid; mp = 161–163 °C; elemental analysis: Found: C, 75.97; H, 6.7; N, 10.82. Calc. for C₃₂H₃₂N₄S: C, 76.16; H, 6.4; N, 11.10%; δ H (300 MHz; CDCl₃; Me₄Si) 2.34 (3 H, s, CH₃), 2.38 (3 H, s, CH₃), 2.54 (4 H, t, *J* = 4.4 Hz), 3.41 (4 H, t, *J* = 4.4 Hz), 4.17 (2 H, s, CH₂), 4.26 (1 H, s), 7.20–7.49 (15 H, m); MS (ES, pos. mode) *m*/*z* = 505.1 [M + H]⁺.

2-Butyl-4-morpholin-4-yl-5,6,7,8-tetrahydrobenzo[4,5]-thieno[2,3-*d*]pyrimidine 2v (22.9 mg, 69%). White solid; mp = 59–61 °C; elemental analysis: Found: C, 65.51; H, 7.8; N, 12.89. Calc. for C₁₈H₂₅N₃OS: C, 65.22; H, 7.6; N, 12.68%; δ H (300 MHz; CDCl₃; Me₄Si) 0.93 (3 H, t, *J* = 7.3 Hz, CH₃), 1.35–1.45 (2 H, m), 1.70–1.98 (6 H, m), 2.81–2.90 (6 H, m), 3.39 (4 H, t, *J* = 4.6 Hz), 3.85 (4 H, t, *J* = 4.6 Hz); MS (ES, pos. mode) *m*/*z* = 332.2 [M + H]⁺.

2-Butyl-4-piperidin-1-yl-5,6,7,8-tetrahydrobenzo[4,5]-thieno[2,3-*d***]pyrimidine 2w** (23.4 mg, 71%). Yellow oil; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 0.93 (3 H, t, *J* = 7.2 Hz, CH₃), 1.37–1.44 (2 H, m), 1.67–1.96 (12 H, m), 2.80–2.94 (6 H, m), 3.27–3.34 (4 H, m); MS (EI) *m*/*z* = 329 [M]⁺, 300, 287, 204.

2-Benzyl-4-(4-methylpiperazin-1-yl)-5,6,7,8-tetrahydrobenzo[4,5]-thieno[2,3-

d]pyrimidine 2x (6.8 mg, 18%). White solid; mp = 119–121 °C; elemental analysis: Found: C, 70.00; H, 7.1; N, 14.98. Calc. for $C_{22}H_{26}N_4S$: C, 69.81; H, 6.9; N, 14.80%; δ H (300 MHz; CDCl₃; Me₄Si) 1.88–1.96 (4 H, m), 2.32 (3 H, s, CH₃), 2.51–2.59 (4 H, m), 2.81–2.88 (4 H, m), 3.40–3.46 (4 H, m), 4.18 (2 H, s, CH₂), 7.21–7.30 (3 H, m), 7.43 (2 H, d, *J* = 7.7 Hz); MS (ES, pos. mode) *m*/*z* = 379.1 [M + H]⁺.

5-Methyl-2-phenyl-4-piperazin-1-yl-thieno[2,3-*d*]pyrimidine-6-carbonitrile $2aa^1$ (19.4 mg, 58%). Yellow solid; mp = 189–191 °C; elemental analysis: Found: C, 64.09;

H, 5.1; N, 21.08. Calc. for C₁₈H₁₇N₅S: C, 64.45; H, 5.1; N, 20.88%; υ_{max} (KBr) /cm⁻¹ 3432, 2926, 1635, 1490, 1377, 1229; δ H (300 MHz; CDCl₃; Me₄Si) 2.73 (3 H, s, CH₃), 3.16–3.20 (4 H, m), 3.66–3.72 (4 H, m), 7.48–7.50 (3 H, m), 8.44–8.46 (2 H, m); MS (CI) m/z = 336 (100) [M + H]⁺.

4-(4-Ethyl-piperazin-1-yl)-5-methyl-2-phenylthieno[2,3-d]pyrimidine-6-

carbonitrile 2ab¹ (18.9 mg, 52%). Yellow solid; mp = 155–157 °C; elemental analysis: Found: C, 65.95; H, 5.8; N, 19.65. Calc. for C₂₀H₂₁N₅S: C, 66.09; H, 5.8; N, 19.27%; v_{max} (KBr) /cm⁻¹ 2969, 2212, 1533, 1491, 1261; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.14 (3 H, t, *J* = 7.1 Hz, CH₃CH₂), 2.49 (2 H, q, *J* = 7.1 Hz, CH₃CH₂), 2.65 (4 H, t, *J* = 4.4 Hz), 2.73 (3 H, s, CH₃), 3.66 (4 H, t, *J* = 4.4 Hz), 7.47–7.50 (3 H, m), 8.45–8.49 (2 H, m); MS (ES, pos. mode) *m*/*z* = 364.1 [M + H]⁺.

5-Methyl-2-phenyl-4-(4-phenylpiperazin-1-yl)-thieno[2,3-d]pyrimidine-6-

carbonitrile 2ac (16.4 mg, 40%). White solid; mp = 180–182 °C; elemental analysis: Found: C, 69.89; H, 5.3; N, 17.28. Calc. for $C_{24}H_{21}N_5S$: C, 70.05; H, 5.1; N, 17.02%; δ H (300 MHz; CDCl₃; Me₄Si) 2.80 (3 H, s, CH₃), 3.41 (4 H, t, *J* = 4.6 Hz), 3.80 (4 H, t, *J* = 4.6 Hz), 6.97–7.02 (3 H, m), 7.28–7.35 (2 H, m), 7.49–7.52 (3 H, m), 8.47–8.51 (2 H, m); MS (ES, pos. mode) $m/z = 412.1 [M + H]^+$.

4-(4-Benzhydrylpiperazin-1-yl)-5-methyl-2-phenylthieno[2,3-d]pyrimidine-6-

carbonitrile 2ad (16.5 mg, 33%). Orange solid; mp = 212–214 °C; elemental analysis: Found: C, 74.08; H, 5.7; N, 14.20. Calc. for C₃₁H₂₇N₅S: C, 74.22; H, 5.4; N, 13.96%; v_{max} (KBr) /cm⁻¹ 3406, 2914, 2812, 2211, 1639, 1616, 1597, 1534, 983; δ H (200 MHz; CDCl₃; Me₄Si) 2.59 (4 H, br s), 2.67 (3 H, s, CH₃), 3.62 (4 H, br s), 4.56 (1 H, s), 7.18– 7.31 (9 H, m), 7.41–7.46 (4 H, m), 8.39–8.46 (2 H, m); MS (ES, pos. mode) *m*/*z* = 502.1 [M + H]⁺.

4-Diethylamino-5-methyl-2-phenylthieno[2,3-*d*]pyrimidine-6-carbonitrile 2ae¹ (16.7 mg, 52%). Yellow solid; mp = 225–227 °C; elemental analysis: Found: C, 65.24; H, 5.7; N, 17.21. Calc. for C₁₈H₁₈N₄S: C, 67.05; H, 5.6; N, 17.38%; δH (300 MHz; CDCl₃; Me₄Si) 1.23 (6 H, t, J = 7.1 Hz, 2CH₃CH₂), 2.70 (3 H, s, CH₃), 3.62 (4 H, q, J = 7.1 Hz, 2CH₃CH₂), 7.45–7.47 (3 H, m), 8.43–8.46 (2 H, m); MS (ES, pos. mode) m/z = 323.2 [M + H]⁺.

5-Methyl-2-(4-methylphenyl)-4-morpholin-4-yl-thieno[2,3-d]pyrimidine-6-

carbonitrile 2af¹ (32.2 mg, 92%). Yellow solid; mp = 186–188 °C; elemental analysis: Found: C, 65.45; H, 5.5; N, 15.79. Calc. for C₁₉H₁₈N₄OS: C, 65.12; H, 5.2; N, 15.99%; v_{max} (KBr) /cm⁻¹ 3447, 2982, 2928, 2210, 1605, 1616, 1524, 987, 868; δ H (300 MHz; CDCl₃; Me₄Si) 2.41 (3 H, s, CH₃), 2.72 (3 H, s, CH₃), 3.58–3.61 (4 H, m), 3.88–3.91 (4 H, m), 7.27 (2 H, d, *J* = 8.1 Hz), 8.34 (2 H, d, *J* = 8.1 Hz); MS (ES, pos. mode) *m*/*z* = 351.1 [M + H]⁺.

4-Diethylamino-5-methyl-2-(4-methylphenyl)thieno[2,3-d]pyrimidine-6-

carbonitrile 2ag¹ (10.8 mg, 32%). Yellow solid; mp = 158–159 °C; elemental analysis: Found: C, 67.74; H, 5.7; N, 16.79. Calc. for C₁₉H₂₀N₄S: C, 67.83; H, 6.0; N, 16.65%; v_{max} (KBr) /cm⁻¹ 3440, 2970, 2928, 2209, 1534, 734; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.22 (6 H, t, *J* = 6.9 Hz, 2CH₃CH₂), 2.41 (3 H, s, CH₃), 2.69 (3 H, s, CH₃), 3.58 (4 H, q, *J* = 6.9 Hz, 2 CH₃CH₂), 7.24 (2 H, d, *J* = 8.0 Hz), 8.33 (2 H, d, *J* = 8.0 Hz); MS (ES, pos. mode) *m*/*z* = 337.1 [M + H]⁺.

2-(4-Methoxyphenyl)-5-methyl-4-morpholin-4-yl-thieno[2,3-d]pyrimidine-6-

carbonitrile 2ah¹ (20.1 mg, 55%). Yellow solid; mp = 204–206 °C; elemental analysis: Found: C, 62.46; H, 5.2; N, 15.49. Calc. for C₁₉H₁₈N₄O₂S: C, 62.28; H, 4.9; N, 15.29%; v_{max} (KBr) /cm⁻¹ 2964, 2210, 1605, 1583, 1464, 1426, 1326, 1252, 1067, 926; δ H (300 MHz; CDCl₃; Me₄Si) 2.72 (3 H, s, CH₃), 3.56–3.60 (4 H, m), 3.87 (3 H, s, OCH₃), 3.88–3.92 (4 H, m), 6.97 (2 H, d, *J* = 6.9 Hz), 8.41 (2 H, d, *J* = 6.9 Hz); MS (ES, pos. mode) *m*/*z* = 367.1 [M + H]⁺.

2-(4-Methoxyphenyl)-5-methyl-4-(4-methylpiperazin-1-yl)thieno[2,3-*d***]pyrimidine-6-carbonitrile 2ai**¹ (17.1 mg, 46%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 62.96; H, 5.7; N, 18.42. Calc. for C₂₀H₂₁N₅OS: C, 63.30; H, 5.6; N, 18.45%; v_{max} (KBr) /cm⁻¹ 2963, 1582, 1522, 1495, 1285, 1047, 975; δH (200 MHz; CDCl₃; Me₄Si) 2.37 (3 H, s, CH₃), 2.63–2.70 (4 H, m), 2.71 (3 H, s, CH₃), 3.63–3.87 (4 H, m), 3.88 (3 H, s, OCH₃), 6,97 (2 H, d, *J* = 8.7 Hz), 8.40 (2 H, d, *J* = 8.7 Hz); MS (ES, pos. mode) *m*/*z* = 380.1 [M + H]⁺.

4-(4-Benzylpiperazin-1-yl)-2-(4-methoxyphenyl)-5-methyl-thieno[2,3-*d***]pyrimidine-6-carbonitrile 2aj** (18.2 mg, 40%). Yellow solid; mp = 193–195 °C; elemental analysis: Found: C, 68.49; H, 5.2; N, 15.48. Calc. for C₂₆H₂₅N₅OS: C, 68.55; H, 5.5; N, 15.37%; v_{max} (KBr) /cm⁻¹ 3448, 2208, 1606, 1532, 1493; δH (200 MHz; CDCl₃; Me₄Si) 2.63–2.69 (7 H, m), 3.56–3.60 (7 H, m), 3.87 (2 H, s, CH₂), 6.97 (2 H, d, J = 8.9 Hz), 7.27–7.32 (5 H, m), 8.40 (2 H, d, J = 8.9 Hz); MS (CI) m/z = 456 (100) [M + H]⁺.

4-Dimethylamino-2-(4-methoxyphenyl)-5-methylthieno[2,3-d]pyrimidine-6-

carbonitrile 2ak¹ (7.5 mg, 23%). Yellow solid; mp = 123–125 °C; elemental analysis: Found: C, 62.75; H, 5.3; N, 17.39. Calc. for C₁₇H₁₆N₄OS: C, 62.94; H, 5.0; N, 17.27%; v_{max} (KBr) /cm⁻¹ 3419, 2926, 2206, 2209, 1606, 1512, 839; δ H (300 MHz; CDCl₃; Me₄Si) 2.70 (3 H, s, CH₃), 3.36 (6 H, s, 2CH₃), 3.86 (3 H, s, OCH₃), 6.98 (2 H, d, *J* = 8.7 Hz), 8.42 (2 H, d, *J* = 8.7 Hz); MS (CI) *m*/*z* = 325 (100) [M + H]⁺.

4-Diethylamino-2-(4-methoxyphenyl)-5-methylthieno[2,3-d]pyrimidine-6-

carbonitrile 2al¹ (15.5 mg, 44%). Yellow solid; mp = 154–156 °C; elemental analysis: Found: C, 64.74; H, 5.4; N, 15.59. Calc. for C₁₉H₂₀N₄OS: C, 64.75; H, 5.7; N, 15.90%; v_{max} (KBr) /cm⁻¹ 3413, 2212, 2209, 1605, 1538, 1245, 848; δH (300 MHz; CDCl₃; Me₄Si) 1.23 (6 H, t, *J* = 6.8 Hz, 2CH₃CH₃), 2.69 (3 H, s, CH₃), 3.59 (4 H, q, *J* = 6.8 Hz, 2 CH₃CH₂), 3.87 (3 H, s, OCH₃), 6.97 (2 H, d, *J* = 8.9 Hz), 8.41 (2 H, d, *J* = 8.9 Hz); MS (ES, pos. mode) *m*/*z* = 353.1 [M + H]⁺.

4-(Allylmethylamino)-2-(4-methoxyphenyl)-5-methylthieno[2,3-*d*]pyrimidine-6carbonitrile 2am¹ (8.0 mg, 23%). Yellow solid; mp = 126–128 °C; elemental analysis: Found: C, 64.95; H, 5.3; N, 16.19. Calc. for C₁₉H₁₈N₄OS: C, 65.12; H, 5.2; N, 15.99%; v_{max} (KBr) /cm⁻¹ 3433, 2962, 2916, 2360, 2206, 1533, 1251, 1168, 847, 790; δH (300 MHz; CDCl₃; Me₄Si) 2.70 (3 H, s, CH₃), 3.09 (3 H, s, CH₃), 3.87 (3 H, s, OCH₃), 4.17 (2 H, d, *J* = 5.4 Hz, CH₂), 5.27–5.37 (2 H, m), 5.92–6.00 (1 H, m), 6.96 (2 H, d, *J* = 8.4 Hz), 8.40 (2 H, d, *J* = 8.4 Hz); MS (CI) *m*/*z* = 351 (100) [M + H]⁺.

2-(4-Methoxyphenyl)-5-methyl-4-pyrrolidin-1-yl-thieno[2,3-d]pyrimidine-6-

carbonitrile 2an¹ (15.0 mg, 43%). White solid; mp = 176–178 °C; elemental analysis: Found: C, 65.26; H, 5.0; N, 15.77. Calc. for C₁₉H₁₈N₄OS: C, 65.12; H, 5.2; N, 15.99%; v_{max} (KBr) /cm⁻¹ 2972, 2206, 1607, 1500, 1395, 1248, 1025; δ H (300 MHz; CDCl₃; Me₄Si) 1.96–1.99 (4 H, m), 2.69 (3 H, s, CH₃), 3.80–3.86 (4 H, m), 3.87 (3 H, s, OCH₃), 6.97 (2 H, d, *J* = 8.7 Hz), 8.40 (2 H, d, *J* = 8.7 Hz); MS (ES, pos. mode) *m*/*z* = 351.2 [M + H]⁺.

2-(4-Chlorophenyl)-5-methyl-4-morpholin-4-yl-thieno[2,3-d]pyrimidine-6-

carbonitrile 2ao¹ (25.6 mg, 69%). Yellow solid; mp = 183–185 °C; elemental analysis: Found: C, 58.26; H, 4.0; N, 15.47. Calc. for C₁₈H₁₅ClN₄OS: C, 58.30; H, 4.1; N, 15.11%; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.72 (3 H, s, CH₃), 3.60–3.62 (4 H, m), 3.88–3.91 (4 H, m), 7.43 (2 H, d, *J* = 8.5 Hz), 8.40 (2 H, d, *J* = 8.5 Hz); MS (ES, pos. mode) $m/z = 371.1 [\rm M + \rm H]^+$.

2-(4-Chlorophenyl)-4-diethylamino-5-methylthieno[2,3-d]pyrimidine-6-

carbonitrile 2ap¹ (16.1 mg, 45%). Yellow solid; mp = 186–188 °C; elemental analysis: Found: C, 60.28; H, 5.0; N, 15.97. Calc. for $C_{18}H_{17}CIN_4S$: C, 60.58; H, 4.8; N, 15.70%; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 1.23 (6 H, t, *J* = 6.9 Hz, 2C*H*₃CH₂), 2.69 (3 H, s, CH₃), 3.58 (4 H, q, *J* = 6.9 Hz, 2 CH₃C*H*₂), 7.42 (2 H, d, *J* = 8.7 Hz), 8.38 (2 H, d, *J* = 8.7 Hz); MS (ES, pos. mode) *m*/*z* = 357.1 [M + H]⁺.

5-Methyl-4-morpholin-4-yl-2-(4-nitrophenyl)-thieno[2,3-d]pyrimidine-6-

carbonitrile 2aq (9.1 mg, 24%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 56.46; H, 4.3; N, 18.47. Calc. for $C_{18}H_{15}N_5O_3S$: C, 56.68; H, 4.0; N, 18.36%; v_{max} (KBr) /cm⁻¹ 2211, 1528, 1438, 1348, 1116; δ_H (200 MHz; CDCl₃; Me₄Si) 2.77 (3 H, s, CH₃), 3.66 (4 H, t, *J* = 4.4 Hz), 3.93 (4 H, t, *J* = 4.4 Hz), 8.32 (2 H, d, *J* = 8.7 Hz), 8.64 (2 H, d, *J* = 8.7 Hz); MS (ES, pos. mode) *m*/*z* = 382.1 [M + H]⁺.

5-Methyl-2-(4-nitrophenyl)-4-(4-methylpiperazin-1-yl)thieno[2,3-*d***]pyrimidine-6carbonitrile 2ar¹ (22.4 mg, 57%). Yellow solid; mp = 241–243 °C; elemental analysis: Found: C, 58.00; H, 4.5; N, 21.27. Calc. for C₁₉H₁₈N₆O₂S: C, 57.85; H, 4.6; N, 21.31%; v_{max} (KBr) /cm⁻¹ 3392, 2969, 2215, 1532, 1292, 994; δH (300 MHz; CDCl₃; Me₄Si) 2.36 (3 H, s, CH₃), 2.60–2.63 (4 H, m), 2.73 (3 H, s, CH₃), 3.65–3.68 (4 H, m), 8.30 (2 H, d, J = 8.8 Hz), 8.60 (2 H, d, J = 8.8 Hz); MS (ES, pos. mode) m/z = 395.1 [M + H]⁺.**

4-Diethylamino-5-methyl-2-(4-nitrophenyl)thieno[2,3-*d***]pyrimidine-6-carbonitrile 2as**¹ (16.1 mg, 44%). Yellow solid; mp = 188–190 °C; elemental analysis: Found: C, 58.56; H, 4.5; N, 18.88. Calc. for C₁₈H₁₇N₅O₂S: C, 58.84; H, 4.7; N, 19.06%; v_{max} (KBr) /cm⁻¹ 3429, 2208, 1730, 1596, 1535, 714; δ_{H} (200 MHz; CDCl₃; Me₄Si) 1.26 (6 H, t, *J* = 6.9 Hz, 2CH₃CH₂), 2.71 (3 H, s, CH₃), 3.64 (4 H, q, *J* = 6.9 Hz, 2 CH₃CH₂), 8.30 (2 H, d, *J* = 9.0 Hz), 8.61 (2 H, d, *J* = 9.0 Hz); MS (ES, pos. mode) *m*/*z* = 368.1 [M + H]⁺.

5-Methyl-4-morpholin-4-yl-2-(4-trifluoromethylphenyl)thieno[2,3-*d***]pyrimidine-6carbonitrile 2at (14.1 mg, 35%). Yellow solid; mp > 250 °C; elemental analysis: Found: C, 56.56; H, 3.5; N, 13.88. Calc. for C₁₉H₁₅F₃N₄OS: C, 56.43; H, 3.7; N, 13.85%; δ_H (300 MHz; CDCl₃; Me₄Si) 2.69 (3 H, s, CH₃), 3.64–3.68 (4 H, m), 3.76– 3.80 (4 H, m), 7.90 (2 H, d, J = 8.5 Hz), 8.60 (2 H, d, J = 8.5 Hz); MS (CI) m/z = 405 (100) [M + H]⁺.**

4-Diethylamino-5-methyl-2-(4-trifluoromethylphenyl)thieno[2,3-*d***]pyrimidine-6carbonitrile 2au¹ (12.9 mg, 33%). Yellow solid; mp = 142–144 °C; elemental analysis: Found: C, 58.56; H, 4.5; N, 13.98. Calc. for C₁₉H₁₇F₃N₄S: C, 58.45; H, 4.4; N, 14.35%; δ_H (200 MHz; CDCl₃; Me₄Si) 1.25 (6 H, t, J = 6.9 Hz, 2CH₃CH₂), 2.71 (3 H, s, CH₃), 3.63 (4 H, q, J = 6.9 Hz, 2CH₃CH₂), 7.71 (2 H, d, J = 8.2 Hz), 8.55 (2 H, d, J = 8.2 Hz); MS (ES, pos. mode) m/z = 391.1 [M + H]⁺.**

2-(3,4-Dimethoxyphenyl)-5-methyl-4-morpholin-4-yl-thieno[2,3-*d***]pyrimidine-6carbonitrile 2av**¹ (18.6 mg, 47%). Yellow solid; mp = 194–196 °C; elemental analysis: Found: C, 60.56; H, 5.4; N, 13.89. Calc. for C₂₀H₂₀N₄O₃S: C, 60.59; H, 5.1; N, 14.13%; v_{max} (KBr) /cm⁻¹ 3448, 2838, 1535, 1492, 1252, 1230, 1113, 790; δH (300 MHz; CDCl₃; Me₄Si) 2.72 (3 H, s, CH₃), 3.56–3.60 (4 H, m), 3.88–3.92 (4 H, m), 3.95 (3 H, s, OCH₃), 4.00 (3 H, s, OCH₃), 6.95 (1 H, d, *J* = 8.4 Hz), 8.02–8.11 (2 H, m); MS (ES, pos. mode) *m*/*z* = 397.1 [M + H]⁺.

4-Diethylamino-2-(3,4-dimethoxyphenyl)-5-methylthieno[2,3-*d*]pyrimidine-6carbonitrile 2aw¹ (8.4 mg, 22%). Yellow solid; mp = 159–161 °C; elemental analysis: Found: C, 63.01; H, 6.0; N, 14.43. Calc. for C₂₀H₂₂N₄O₂S: C, 62.81; H, 5.8; N, 14.65%; v_{max} (KBr) /cm⁻¹ 3448, 2987, 2213, 1516, 1018, 796; δH (200 MHz; CDCl₃; Me₄Si) 1.23 (6 H, t, *J* = 6.9 Hz, 2CH₃CH₂), 2.68 (3 H, s, CH₃), 3.58 (4 H, q, *J* = 6.9 Hz, 2CH₃CH₂), 3.94 (3 H, s, OCH₃), 3.99 (3 H, s, OCH₃), 6.94 (1 H, d, *J* = 8.4 Hz), 8.02–8.11 (2 H, m); MS (ES, pos. mode) *m*/*z* = 383.1 [M + H]⁺.

2-Benzo[1,3]dioxol-5-yl-5-methyl-4-morpholin-4-yl-thieno[2,3-*d***]pyrimidine-6carbonitrile 2ax¹ (21.6 mg, 57%). Yellow solid; mp = 197–198 °C; elemental analysis: Found: C, 60.18; H, 4.4; N, 14.89. Calc. for C₁₉H₁₆N₄O₃S: C, 59.99; H, 4.2; N, 14.73%; v_{max} (KBr) /cm⁻¹ 2960, 2901, 2858, 2207, 1257, 1066, 811, 799; δH (300 MHz; CDCl₃; Me₄Si) 2.71 (3 H, s, CH₃), 3.50–3.59 (4 H, m), 3.87–3.90 (4 H, m), 6.03 (2 H, s,**

OCH₂O), 6.89 (1 H, d, J = 8.2 Hz), 7.92 (1 H, d, J = 1.6 Hz), 8.07 (1 H, dd, J = 8.2, 1.6 Hz); MS (ES, pos. mode) m/z = 381.1 [M + H]⁺.

2-Benzo[1,3]dioxol-5-yl-4-[(2-hydroxyethyl)methylamino]-5-methylthieno[2,3*d*]**pyrimidine-6-carbonitrile 2ay**¹ (14.3 mg, 39%). Yellow solid; mp = 195–197 °C; elemental analysis: Found: C, 58.99.18; H, 4.7; N, 14.99. Calc. for C₁₈H₁₆N₄O₃S: C, 58.68; H, 4.4; N, 15.21%; v_{max} (KBr) /cm⁻¹ 3548, 3426, 2906, 1735, 1635, 1539, 1377, 1249, 1066, 914; δ_{H} (300 MHz; CDCl₃; Me₄Si) 2.71 (3 H, s, CH₃), 3.22 (3 H, s, CH₃), 3.87–3.91 (2 H, m), 3.97–4.01 (2 H, m), 6.02 (2 H, s, OCH₂O), 6.89 (1 H, d, *J* = 8.2 Hz), 7.86 (1 H, d, *J* = 1.6 Hz), 7.99 (1 H, dd, *J* = 8.2, 1.6 Hz); MS (ES, pos. mode) *m*/*z* = 369.1 [M + H]⁺.

4-(2-Dimethylamino)-5-methyl-2-(3,4,5-trimethoxyphenyl)thieno[2,3*d*]**pyrimidine-6-carbonitrile 2bb**¹ (15.4 mg, 36%). Yellow solid; mp = 134–136 °C; elemental analysis: Found: C, 58.91; H, 6.2; N, 16.43. Calc. for C₂₁H₂₅N₅O₃S: C, 59.00; H, 5.9; N, 16.38%; v_{max} (KBr) /cm⁻¹ 3429, 2943, 2825, 2773, 2209, 1570, 1508, 1448, 1223, 1127, 732; δH (200 MHz; CDCl₃; Me₄Si) 2.34 (6 H, s, 2CH₃), 2.65 (2 H, br s), 2.75 (3 H, s, CH₃), 3.72 (2 H, br s), 3.94 (3 H, s, OCH₃), 3.98 (6 H, s, 2OCH₃), 6.72 (1 H, br s, NH), 7.73 (2 H, s); MS (ES, pos. mode) *m*/*z* = 428.1 [M + H]⁺.

4-Imidazol-1-yl-5-methyl-2-(3,4,5-trimethoxyphenyl)thieno[2,3-*d*]pyrimidine-6carbonitrile 2bd¹ (13.4 mg, 33%). Yellow solid; mp = 238–240 °C; elemental analysis: Found: C, 59.31; H, 4.2; N, 17.43. Calc. for C₂₀H₁₇N₅O₃S: C, 58.96; H, 4.2; N, 17.19%; v_{max} (KBr) /cm⁻¹ 3425, 3123, 2933, 2218, 1556, 1408, 1128, 1004, 711; δH (200 MHz; CDCl₃; Me₄Si) 2.39 (3 H, s, CH₃), 3.94 (3 H, s, OCH₃), 3.98 (6 H, s, 2OCH₃), 7.34 (1 H, br s), 7.44 (1 H, br s), 7.80 (2 H, s), 8.04 (1 H, br s); MS (ES, pos. mode) *m*/*z* = 408.1 [M + H]⁺.

2-(3,4-Dimethoxybenzyl)-5-methyl-4-methylaminothieno[2,3-d]pyrimidine-6-

carbonitrile 2bf¹ (21.2 mg, 60%). Orange solid; mp = 161–163 °C; elemental analysis: Found: C, 60.67; H, 5.2; N, 15.66. Calc. for C₁₈H₁₈N₄O₂S: C, 61.00; H, 5.1; N, 15.81%; v_{max} (KBr) /cm⁻¹ 3416, 1926, 2212, 1676, 1578, 1512, 1230, 1026, 753; δ H (300 MHz; CDCl₃; Me₄Si) 2.70 (3 H, s, CH₃), 3.14 (3 H, d, *J* = 4.9 Hz, NHC*H*₃), 3.82 (3 H, s, OCH₃), 3.85 (3 H, s, OCH₃), 4.04 (2 H, s, CH₂), 5.45 (1 H, br s, NH), 6.77 (1 H, d, *J* = 8.2 Hz), 6.94 (1 H, d, *J* = 8.2 Hz), 7.00 (1 H, s); MS (ES, pos. mode) *m*/*z* = 355.1 [M + H]⁺.

Experimental details and characterization data for final compounds 2az, 2ba, 2bc, 2be and 2bg–2bk.

5-Methyl-4-(2-methylpropylamino)-2-(3,4,5-trimethoxyphenyl)thieno[2,3-

d]pyrimidine-6-carbonitrile 2az¹ (39.1 mg, 95%). Yellow solid; mp = 182–184 °C; elemental analysis: Found: C, 61.01; H, 6.2; N, 13.43. Calc. for C₂₁H₂₄N₄O₃S: C, 61.15; H, 5.9; N, 13.58%; v_{max} (KBr) /cm⁻¹ 3447, 2952, 2210, 1551, 1507, 1084, 789, 731; δ H (300 MHz; CDCl₃; Me₄Si) 1.03 (6 H, d, *J* = 6.9 Hz, 2CH₃), 2.10–2.14 (1 H, m), 2.76 (3 H, s, CH₃), 3.55 (2 H, t, *J* = 6.2 Hz, CH₂), 3.90 (3 H, s, OCH₃), 3.97 (6 H, s, 2OCH₃), 5.67 (1 H, t, *J* = 5.4 Hz, NH), 7.76 (2 H, s); δ c (75 MHz; CDCl₃; Me₄Si) 17.3, 20.3 (2C), 28.1, 48.1, 56.1 (2C), 61.0, 101.1, 105.8 (2C), 105.7 (2C), 114.3, 115.5, 129.4, 140.8, 153.0, 154.7, 158,4, 161.0; MS (ES, pos. mode) *m*/*z* = 413.1 [M + H]⁺.

4-Cyclopentylamino-5-methyl-2-(3,4,5-trimethoxyphenyl)thieno[2,3-*d***]pyrimidine-6-carbonitrile 2ba**¹ (26.7 mg, 63%). Yellow solid; mp = 218–220 °C; elemental analysis: Found: C, 62.21; H, 5.5; N, 13.03. Calc. for C₂₂H₂₄N₄O₃S: C, 62.24; H, 5.7; N, 13.20%; v_{max} (KBr) /cm⁻¹ 3477, 2962, 2210, 1533, 1372, 1125, 790; δ H (300 MHz; CDCl₃; Me₄Si) 1.49–1.77 (6 H, m), 2.22–2.40 (2 H, m), 2.74 (3 H, s, CH₃), 3.90 (3 H, s, OCH₃), 3.96 (6 H, s, 2OCH₃), 4.60–4.67 (1 H, m), 5.50 (1 H, d, *J* = 6.0 Hz, NH), 7.78 (2 H, s); δ c (75 MHz; CDCl₃; Me₄Si) 17.1, 23.9 (2C), 33.4 (2C), 53.2, 56.1 (2C), 60.9, 100.3, 105.7 (2C), 112.9, 114.4, 119.6, 132.6, 140.6, 141.3, 153,6, 157.8, 161.8; MS (ES, pos. mode) *m*/*z* = 425.1 [M + H]⁺.

5-Methyl-4-(3-methylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)thieno[2,3*d*]**pyrimidine-6-carbonitrile 2bc**¹ (19.3 mg, 44%). Yellow solid; mp = 213–215 °C; elemental analysis: Found: C, 59.91; H, 6.0; N, 16.13. Calc. for C₂₂H₂₅N₅O₃S: C, 60.12; H, 5.7; N, 15.93%; v_{max} (KBr) /cm⁻¹ 2209, 1533, 1498, 1394, 1223, 1126, 1005, 733; δ H (200 MHz; CDCl₃; Me₄Si) 1.11 (3 H, d, *J* = 6.2 Hz, CH₃), 2.70 (3 H, s, CH₃), 2.82 (1 H, dd, *J* = 12.6, 10.6 Hz), 3.08–3.40 (4 H, m), 3.75–3.99 (2 H, m), 3.90 (3 H, s, OCH₃), 3.96 (6 H, s, 2OCH₃), 7.75 (2 H, s); δ c (75 MHz; CDCl₃; Me₄Si) 16.9, 19.6, 30.0, 45.1, 49.7, 50.4, 55.7, 57.3, 60.9, 101.7, 105.2, 113.9, 116.0, 131.7, 140.0, 142.4, 152.6, 159.8, 162,6, 170.7; MS (ES, pos. mode) *m*/*z* = 440.2 [M + H]⁺.

5-Methyl-4-(pyridin-4-yl-amino)-2-(3,4,5-trimethoxyphenyl)thieno[2,3-

d]pyrimidine-6-carbonitrile 2be¹ (11.2 mg, 26%). Alternatively, to a solution of 4aminopyridine (0.1 mmol) in dry DMF (15 mL) was added NaH (0.13 mmol) and the reaction was stirred at room temperature for 15 minutes. Then, the chloro-derivative 11 (0.1 mmol) in dry DMF (5 mL) was added and the reaction mixture was stirred at room temperature for 3 h. The reaction was treated with water (10 mL) and extracted with EtOAc. The combined organic phases were dried over anhydrous MgSO₄, filtered and the solvent was removed under vacuum. The residue as purified as usual (17.3, 40%). Yellow solid; mp = 175–180 °C; elemental analysis: Found: C, 61.21; H, 4.2; N, 16.43. Calc. for C₂₂H₁₉N₅O₃S: C, 60.96; H, 4.4; N, 16.16%; v_{max} (KBr) /cm⁻¹ 3439, 2929, 2210, 1598, 1503, 1223, 1127; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.94 (3 H, s, CH₃), 3.93 (3 H, s, OCH₃), 3.97 (6 H, s, 2OCH₃), 7.62 (1 H, br s, NH), 7.73 (2 H, s), 7.82 (2 H, d, *J* = 5.4 Hz), 8.56–8.58 (2 H, m); $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 17.3, 56.1 (2C), 61.0, 103.8, 104.9, 105.7 (2C), 113.7, 115.1 (2C), 131.7, 140.0, 141.1, 145.0, 150.5 (2C), 153.2, 155.3, 161.7, 170.4; MS (ES, pos. mode) $m/z = 434.2 [M + H]^+$.

4-Cyclobutylamino-2-(3,4-dimethoxybenzyl)-5-methylthieno[2,3-*d***]pyrimidine-6carbonitrile 2bg¹ (31.5 mg, 80%). Yellow solid; mp = 193–195 °C; elemental analysis: Found: C, 64.12; H, 5.3; N, 14.56. Calc. for C₂₁H₂₂N₄O₂S: C, 63.94; H, 5.6; N, 14.20%; v_{max} (KBr) /cm⁻¹ 3428, 2939, 2211, 1568, 1547, 1512, 1260, 1234, 731; \delta_{\rm H} (300 MHz; CDCl₃; Me₄Si) 1.82–2.02 (4 H, m), 2.43–2.45 (2 H, m), 2.70 (3 H, s, CH₃), 3.82 (3 H, s, OCH₃), 3.85 (3 H, s, OCH₃), 4.00 (2 H, s, CH₂), 4.66–4.69 (1 H, m), 5.55 (1 H, d,** *J* **= 6.2 Hz NH), 6.76 (1 H, d,** *J* **= 8.0 Hz), 6.91 (1 H, d,** *J* **= 8.0 Hz), 6.95 (1 H, s); \delta_{\rm C} (75 MHz; CDCl₃; Me₄Si) 15.3, 16.6, 17.1, 31.2 (2C), 45.5, 46.4, 55.7, 101.7, 110.9, 112.5, 114.1, 121.2, 130.1, 130.7, 141.2, 147.6, 148.6, 157.5, 168,2, 169.0; MS (ES, pos. mode)** *m***/***z* **= 395.1 [M + H]⁺.**

2-(3,4-Dimethoxybenzyl)-5-methyl-4-(methylprop-2-ynyl-amino)thieno[2,3-

d]pyrimidine-6-carbonitrile 2bh¹ (15.3 mg, 39%). Yellow oil; v_{max} (NaCl) /cm⁻¹ 3412, 3280, 2931, 2212, 1536, 1547, 1463, 1261, 1028, 730; δ H (300 MHz; CDCl₃; Me₄Si) 2.30 (1 H, t, J = 2.0 Hz, CH), 2.69 (3 H, s, CH₃), 3.14 (3 H, s, CH₃), 3.83 (3 H, s, OCH₃), 3.86 (3 H, s, OCH₃), 4.09 (2 H, s, CH₂), 4.20 (2 H, d, J = 2.0 Hz, CH₂), 6.77 (1 H, d, J = 7.9 Hz), 6.93–6.98 (2 H, m); δ c (75 MHz; CDCl₃; Me₄Si) 17.2, 40.3, 42.1, 45.0, 55.7, 55.8, 73.3, 78.4, 102.2, 110.9, 112.6, 114.1, 115.5, 121.3, 138.2, 142.8, 147.7, 148.6, 162.6, 165.9, 170.5; MS (ES, pos. mode) m/z = 393.1 [M + H]⁺.

5-Methyl-4-(1-methylpropylamino)-2-(3,4,5-trimethoxybenzyl)thieno[2,3-

d]pyrimidine-6-carbonitrile 2bi¹ (35.0 mg, 82%). White solid; mp = 134–137 °C; elemental analysis: Found: C, 62.12; H, 6.3; N, 13.46. Calc. for $C_{22}H_{26}N_4O_3S$: C, 61.95; H, 6.1; N, 13.14%; v_{max} (KBr) /cm⁻¹ 3460, 2965, 2210, 1127, 1006, 732; δ_H (300 MHz; CDCl₃; Me₄Si) 0.94 (3 H, t, *J* = 7.3 Hz, C*H*₃CH₂), 1.24 (3 H, d, *J* = 6.4 Hz, C*H*₃CH), 1.56–1.62 (2 H, m), 2.69 (3 H, s, CH₃), 3.78 (3 H, s, OCH₃), 3.82 (6 H, s, 2OCH₃), 3.99 (2 H, s, CH₂), 4.35–4.40 (1 H, m, CH), 5.27 (1 H, br s, NH), 6.63 (2 H, s); δ_C (75 MHz; CDCl₃; Me₄Si) 10.2, 17.2, 20.0, 29.3, 46.2, 48.1, 56.0 (2C), 60.8, 100.9, 106.2 (2C), 112.6, 114.1, 128.7, 133.8, 136.1, 141.2, 152.4, 158.1, 167.9; MS (ES, pos. mode) *m*/*z* = 427.2 [M + H]⁺.

5-Methyl-4-(1-methylethylamino)-2-(3,4,5-trimethoxybenzyl)thieno[2,3-

d]pyrimidine-6-carbonitrile 2bj¹ (33.0 mg, 80%). White solid; mp = 143–147 °C; elemental analysis: Found: C, 61.12; H, 6.2; N, 13.46. Calc. for $C_{21}H_{24}N_4O_3S$: C, 61.15; H, 5.9; N, 13.58%; v_{max} (KBr) /cm⁻¹ 3440, 2970, 2832, 2210, 1568, 1548, 1504, 1450, 1006, 973, 732; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.28 (6 H, d, *J* = 6.3 Hz, 2CH₃), 2.69 (3 H, s, CH₃), 3.82 (3 H, s, OCH₃), 3.85 (6 H, s, 2OCH₃), 3.99 (2 H, s, CH₂), 4.46–4.50 (1 H, m), 5.27 (1 H, br s, NH), 6.63 (2 H, s); $\delta_{\rm C}$ (50 MHz; CDCl₃; Me₄Si) 16.4, 17.2, 18.0,

23.8, 42.2, 46.3 (2C), 56.6, 100.8, 105.8, 110.4, 112.5, 114.1, 133.8, 136.5, 141.2, 152.9, 157.8, 167.9; MS (ES, pos. mode) $m/z = 413.0 [M + H]^+$.

4-Cyclobutylamino-5-methyl-2-(3,4,5-trimethoxybenzyl)thieno[2,3-*d*]pyrimidine-6carbonitrile 2bk¹ (34.8 mg, 82%). White solid; mp = 121–122 °C; elemental analysis: Found: C, 62.12; H, 5.5; N, 13.46. Calc. for C₂₂H₂₄N₄O₃S: C, 62.24; H, 5.7; N, 13.20%; v_{max} (KBr) /cm⁻¹ 3433, 2939, 2250, 2211, 1574, 1322, 1241, 1125, 1006, 908, 729; δH (300 MHz; CDCl₃; Me₄Si) 1.80–1.96 (4 H, m), 2.40–2.50 (2 H, m), 2.72 (3 H, s, CH₃), 3.79 (3 H, s, OCH₃), 3.84 (6 H, s, 2OCH₃), 4.00 (2 H, s, CH₂), 4.65–4.75 (1 H, m), 5.58 (1 H, d, *J* = 6.2 Hz, NH), 6.64 (2 H, s); δc (75 MHz; CDCl₃; Me₄Si) 15.4, 17.1, 31.2 (2C), 46.2, 46.4, 56.0 (2C), 60.7, 101.0, 104.9, 106.2 (2C), 112.4, 114.1, 133.8, 136.5, 141.2, 152.4, 157.5, 167.9; MS (ES, pos. mode) *m*/*z* = 425.0 [M + H]⁺.

Phosphodiesterase inhibition assay

Compounds 1a-d, 2a-x and 2aa-bk were resuspended in DMSO at a stock concentration of 10 mM. The compounds were tested at concentrations ranging from 1 mM to 1 nM in order to calculate IC₅₀ values. All dilutions were performed in 96 well plates.

For each reaction, 10 μ L of the diluted compounds were poured into 'low binding' assay plates. 80 μ L of a reaction mixture containing 50 mM Tris pH 7.5, 8.3 mM MgCl₂, 1.7 mM EGTA, and 15 nM 3',5'[3H]-cAMP (around 150000 dpm) were added to each well. The reaction was initiated by adding 10 μ L of a solution containing PDE7, PDE3 or PDE4 to the reaction mixture. The plate was then incubated with stirring for 1 h at room temperature. After incubation the reaction was stopped with 50 μ L (0.89 mg) of PDE SPA beads (Amersham Pharmacia Biotech RPNQ0150), and the resulting mixture was allowed to settle for 20 min before counting in a microliter plate counter.

Some selected ¹H-NMR spectra for starting materials

SI-51

SI-52

¹H-NMR for compound 1a–d, 2a–x, 2aa–aw, 2bd and 2bf and selected ¹³C-NMR spectra

SI-60

SI-67

SI-86

¹H and ¹³C-NMR spectra for final compounds 2az, 2ba, 2bc, 2be and 2bg-bk

- ² A. V. Bogolubsky, S. V. Ryabukhin, A. S. Plaskon, S. V. Stetsenko, D. M. Volochnyuk and A. A.
- Tolmachev, J. Comb. Chem., 2008, **10**, 858; C. J. Shishoo, M. B. Devani, M. D. Karvekar, G. V. Ullas, S. Ananthan, V. S. Bhadti, R. B. Patel and T. P. Gandhi, *Indian J. Chem., Sect B*, 1982, **21B**, 666.
- ³ M. I. Crespo, L. Pages, A. Vega, V. Segarra, M. Lopez, T. Domenech, M. Miralpeix, J. Beleta, H. Ryder
- and J. M. Palacios, J. Med. Chem., 1998, 41, 4021; J. J. Baldwin, A. F. Wagner, R. L. Tolman, A.

- ⁴ M. Taguchi, T. Ota and K. Hatayama, *PCT Int. Appl.*, WO 9303040 A1, 1993.
- ⁵ M. R. Prasad, A. R. Rao, P. S. Rao and K. S. Rajan, *J. Chem. Res., Synop.*, 2002, 5; A. Davoodnia, M. Bakavoli, G. Barakouhi and N. Tavakoli-Hoseini, *Chin. Chem. Lett.*, 2007, **18**, 1483.
- ⁶ A. P. Mkrtchyan, S. G. Kazaryan, A. S. Noravyan, R. A. Akopyan, I. A. Dzhagatspanyan, N. E.
- Akopyan and A. G. Akopyan, Khimiko-Farmatsevticheskii Zhurnal 1986, 20, 1312.

⁷ M. Guetschow, L. Kuerschner, U. Neumann, M. Pietsch, R. Loeser, N. Koglin and K. Eger, *J. Med. Chem.* 1999, **42**, 5437.

⁸ P. Selles, J. S. Wailes, W. G. Whittingham and E. D. Clarke, *PCT Int. Appl.*, WO 2005044008 A2, 2005.

- ⁹ M. Guetschow, H. Schroeter, G. Kuhnle and K. Eger, *Monatsh. Chem.*, 1996, 127, 297.
- ¹⁰ K. Gewald, E. Schinke and H. Boettcher, *Chem. Ber.* 1966, **99**, 94.
- ¹¹ D. Briel, A. Rybak, C. Kronbach and K. Unverferth, Eur. J. Med. Chem., 2010, 45, 69.
- ¹² M. H. Elnagdi and A. W. Erian, *Liebigs Ann. Chem.*, 1990, 1215.
- ¹³ J. E. Mulvaney and C. S. Marvel, *J. Org. Chem.* 1961, **26**, 95.
- ¹⁴ I. R. Boudet, Bull. Soc. Chim. Fr., 1949, 172.
- ¹⁵ M. Nagl, C. Panuschka, A. Barta and W. Schmid, *Synthesis* 2008, 4012.
- ¹⁶ S. Miwatashi, Y. Arikawa, K-i. Naruo, K. Igaki, Y. Watanabe, H. Kimura, T. Kawamoto and S.
- Ohkawa, Chem. Pharm. Bull. 2005, 53, 410.
- ¹⁷B. Kaboudin and D. Elhamifar, *Synthesis* 2006, 224.
- ¹⁸ N. M. Yousif, *Tetrahedron* 1989, **45**, 4599.
- ¹⁹ W. Ried and R. Giesse, *Justus Liebigs Annalen der Chemie* 1968, **713**, 143.
- ²⁰ K. Dave, C. J. Shishoo, M. B. Devani, R. Kalyanaraman, S. Ananthan, G. V. Ullas and V. S. Bhadti, *J. Heterocycl. Chem.* 1980, **17**, 1497.

¹ E. Terricabras, V. M. Segarra Matamoros, J. Alvarez-Builla, J. J. Vaquero and J. M. Minguez, *PCT Int. Appl.*, WO 2004065391 A1, 2004.

Pietruszkiewicz, M. T. Wu, T. Mu, Eur. Pat. Appl., EP 276057 A2, 1988.