Supporting Information

Synthesis of Heterocyclic-Fused Benzopyrans via the Pd(II)-Catalyzed C–H Alkenylation/C–O Cyclization of Flavones an d Coumarins

Yechan Kim, Youngtaek Moon, Dahye Kang and Sungwoo Hong*

Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon 305-701,

Korea

I. Optimization Study

Appendix I

Spectral Copies of 1H- and 13C-NMR Data Obtained in this Study

Table S1. Oxidant screening.^a

Entry	Oxidant (equiv)	Time	Yield (%)
1	AgOAc (2)	3h	-
2	$Cu(OAc)_2 \cdot H_2O(3)$	3h	53%
3	CuOAc (3)	5h	56%
4	Cu(TFA) ₂ ·nH ₂ O (3)	11h	> 10%
5	Cu(OTf) ₂ (3)	3h	-
6	Cu(OPiv) ₂ (3)	3h	-
7	$CuCO_3 \cdot Cu(OH)_2 (3)$	11h	> 10%
8	CuO (3)	11h	> 10%
9	$Cu(acac)_2(3)$	11h	> 10%
10	K ₂ S ₂ O ₈ (3)	19h	trace
11	Ce(SO ₄) ₂ (3)	19h	trace
12	$Mn(OAc)_{3} \cdot 2H_{2}O(2)$	6h	38%
13	$PhI(OAc)_2(2)$	3h	-
14	CAN (2)	19h	trace
15	Oxone (2)	19h	12%
16	FeCl ₃ (3)	3h	-
17	DDQ (2)	3h	-
18	TEMPO (2)	3h	-
19	PhCO ₃ tBu (2)	3h	12%
20	MnO ₂ (2)	7h	11%
21	MnCl ₂ (3)	7h	13%
22	CuF ₂ (3)	11h	10%

23	CuCl ₂ (3)	3h	trace
24	CuBr ₂ (3)	24h	31%
25	CuCl (3)	24h	17%
26	CuBr (3)	11h	21%
27	CuI (3)	24h	20%

[a] Reactions were conducted with flavone, butyl acrylate (2 equiv), Pd catalyst (0.2 equiv), oxidant, and base (2 equiv) in *t*-BuO H at 120 °C.

Table S2. Pd screening.^a

Entry	Oxidant (equiv)	Time	Yield (%) ^b
1	Pd(TFA) ₂ (0.2)	3h	42%
2	Pd(OPiv) ₂ (0.2)	3h	53%
3	Pd(acac) ₂ (0.2)	3h	60%
4	$Pd(SO_4)_2(0.2)$	3h	39%
5	$Pd(NO_3)_2 \cdot nH_2O(0.2)$	3h	32%
6	$PdCl_2(TMEDA)_2(0.2)$	3h	-
7	Pd(HFac) ₂ (0.2)	3h	48%
8	Pd(MeCN) ₄ (BF ₄) ₂ (0.2)	3h	48%
9	PdCl ₂ (0.2)	2.5h	15%
10	Pd ₂ (dba) ₃ (0.1)	2.5h	30%
11	PdCl ₂ (PPh ₃) ₂ (0.1)	2.5h	35%
12	Pd(dppf)Cl ₂ (0.1)	6h	59%
13	Pd(PPh ₃) ₄ (0.1)	2.5h	45%

[a] Reactions were conducted with flavone, butyl acrylate (2 equiv), Pd catalyst, oxidant (3 equiv), and base (2 equiv) in *t*-BuOH a t 120 °C.

Table S3. Additive screening.^a

Entry	Additive (0.2 equiv)	Yield (%) ^b
1	Al ₂ O ₃	74%
2	V2O5	57%
3	ZnBr ₂	56%
4	Co(OAc) ₂	56%
5	MnO ₂	60%
6	$Mn(OAc)_2 \cdot 3H_2O$	64%
7	LiOTf	65%
8	KOTf	58%
9	Sm(OTf) ₃	59%
10	In(OTf)3	58%
11	Sn(OTf) ₂	63%
12	4A MS	43%
13	silica gel	50%

[a] Reactions were conducted with flavone, butyl acrylate (2 equiv), Pd catalyst (0.2 equiv), oxidant (3 equiv), additive (0.2 equiv), and base (2 equiv) in *t*-BuOH at 120 °C.

Appendix I

Spectral Copies of ¹H and ¹³C NMR Data

Obtained in this Study

P. 114. 2014. Control of the second secon

100 MHz, ¹³C NMR in CDCl₃

N,N-Dimethyl-2-(7-oxo-6,7-dihydrochromeno[4,3-b]chromen-6-yl)acetamide (3f)

Diethyl ((7-Oxo-6,7-dihydrochromeno[4,3-b]chromen-6-yl)methyl)phosphonate (3g)

Butyl 2-(10-Fluoro-7-oxo-6,7-dihydrochromeno[4,3-b]chromen-6-yl)acetate (3k)

Butyl 2-(2-Bromo-7-oxo-6,7-dihydrochromeno[4,3-b]chromen-6-yl)acetate (3p)

100 MHz, ¹³C NMR in CDCl₃

Butyl 2-(7-Oxo-6,7-dihydrobenzo[h]chromeno[4,3-b]chromen-6-yl)acetate (3q)

Butyl 2-(7-Oxo-5-tosyl-6,7-dihydro-5H-chromeno[3,2-c]quinolin-6-yl)acetate (3r)

Butyl 2-(7-Oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5a)

S25

Methyl 2-(7-Oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5c)

100 MHz, ¹³C NMR in CDCl₃

7-(2-Oxopropyl)chromeno[3,4-c]chromen-6(7H)-one (5d)

100 MHz, ¹³C NMR in CDCl₃

7-(2-Oxo-2-phenylethyl)chromeno[3,4-c]chromen-6(7H)-one (5e)

1911/1910

N,N-Dimethyl-2-(7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetamide (5f)

100 MHz, ¹³C NMR in CDCl₃

Butyl 2-(11-Methyl-7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5i)

100 MHz, ¹³C NMR in CDCl₃

Butyl 2-(10-Fluoro-7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5k)

Butyl 2-(11-Chloro-7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5l)

80551 80476 8046 80476 8

2.68/41 2.06/2 2

Butyl 2-(10-Methoxy-7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5m)

100 MHz, ¹³C NMR in CDCl₃

Butyl 2-(10-(Dimethylamino)-7-oxo-6,7-dihydrochromeno[3,4-c]chromen-6-yl)acetate (5n)

100 MHz, ¹³C NMR in CDCl₃

Butyl 2-(6-Oxo-8-tosyl-7,8-dihydro-6H-chromeno[3,4-c]quinolin-7-yl)acetate (50)

