Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Diene-transmissive hetero-Diels–Alder reaction of 2-vinyl α,β-unsaturated aldimines: stereoselective synthesis of hexahydroquinazolin-2-ones

Satoru Kobayashi, Kenji Kudo, Ai Ito, Satoru Hirama, Takashi Otani and Takao Saito*

Supplementary information

General information	S2
Experimental Procedure	S2
NMR Spectra for the Substrates and Product	S8

General information

All melting points were determined on a Yanaco melting point apparatus and are uncorrected. Infrared spectra were recorded on a Hitachi 270-30 or a Horiba FT-710 model spectrophotometer. ¹H and ¹³C NMR spectral data were obtained with a Bruker Avance-600, a JEOL JNM-EX 500, or a JEOL JNM-EX 300 instrument and chemical shifts are reported in ppm down field from tetramethylsilane (TMS) using an internal standard of TMS or CDCl₃. HRMS analysis were performed on a Bruker Daltonics microTOF or a Hitachi double-focusing M-80B spectrometer. Elemental analyses were performed with a YANACO CHN-CODER MT-6 model analyzer.

Experimental Procedure

2-Benzylidene-4-phenylbut-3-enal (1a)

A mixture of α -bromocinnamaldehyde (10.0 g, 47.4 mmol), tri(*a*-tolyl)phosphine (1.44 g, 4.73 mmol), styrene (6.17 g, 59.2 mmol), palladium(II) acetate (531 mg, 2.37 mmol), and triethylamine (20.0 g, 198 mmol) was heated at 80 °C for 8 h. The mixture was condensed under reduced pressure, and the residue was purified by column chromatography on silica gel with to give aldehyde **1a** (7.32 g, 66%) as yellow solid; mp 66–68 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.98 (ddd, 1H, J = 1.0, 2.0, 10.5 Hz), 7.25–7.29 (m, 4H), 7.40–7.49 (m, 5H), 7.54–7.57 (m, 2H), 7.67 (d, 1H, J = 16.6 Hz), 9.76 (d, 1H, J = 2.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 119.20 (CH), 126.77 (3CH), 128.20 (CH), 128.66 (CH), 128.76 (2CH), 129.82 (CH), 130.29 (2CH), 135.03 (C), 135.90 (CH), 136.19 (C), 137.30 (C), 149.85 (CH), 194.09 (C); LRMS-FAB *m/z* (ion, % relative intensity): 235 ([M+H]⁺, 100), 205 (62), 154 (40), 91 (54); HRMS-EI *m/z* [M]⁺ calcd for C₁₇H₁₄O: 234.1045, found: 234.1054.

4-Formyl-5-phenylpenta-2,4-dienoic acid methyl ester (1b)

To a solution of α -bromocinnamaldehyde (1.0 g, 4.7 mmol) in toluene (50 mL) was added (2*E*)-3-(tributylstannyl)-2-propenoic acid methyl ester^{S1} (2.11 g, 5.91 mmol) and Pd(PPh₃)₄ (277 mg, 0.24 mmol, 5 mol %), and the mixture was heated at 110 °C for 45 h. The mixture was condensed under reduced pressure, and the residue was purified by silica gel column chromatography to yield aldehyde **1b** (941 mg, 92%) as yellow oil; IR (NaCl): 1678 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H, Me), 7.02 (d, 1H, *J* = 16.1 Hz), 7.47–7.60 (m, 7H), 9.73 (d, 1H, *J* = 2.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 51.79 (CH₃), 125.12 (CH), 129.00 (2CH), 130.62 (2CH), 130.89 (CH), 133.86 (C), 133.93 (C), 134.37 (CH), 154.69 (CH), 167.56 (C), 192.00 (CH); HRMS-ESI calcd for C₁₃H₁₂O₃Na [M+Na]⁺: 239.0678, found: 239.0679.

1,4-Diphenyl-5-styryl-3-(toluene-4-sulfonyl)-3,4-dihydro-1*H*-pyrimidin-2-one (3a)

To a 1,2-dichloroethane (10 mL) solution of aldehyde 1 (100 mg, 0.43 mmol), aniline (48.4 mg, 0.52 mmol), and triethylamine (191 mg, 1.89 mmol) cooled by an ice bath, was added a 1.0 M dichloromethane solution of titanium tetrachloride (0.43 mL, 0.43 mmol). After the ice bath was removed, the mixture was stirred for 30 min, and then tosyl

isocyanate (0.10 mL, 0.65 mmol) was added. The mixture was heated at 80 °C for 5 h, and the reaction was quenched by aqueous sodium hydrogen carbonate. The mixture was extracted with dichloromethane, dried over anhydrous magnesium sulfate, and then evaporated. The residue was purified by column chromatography on silica gel with AcOEt/hexane (1/3, v/v) as an eluent to yield **3a** (211 mg, 97%) as colorless crystals; mp 204–206 °C; IR (KBr): 1652, 1590, 1484, 1344, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H, Me), 6.52 (s, 1H, H-6), 6.53 (d, 1H, *J* = 13.4 Hz, H-4), 6.61 (d, 2H, *J* = 13.4 Hz, H-7+H-8), 7.01 (d, 2H, *J* = 8.1 Hz, Ar), 7.18–7.43 (m, 15H, Ar), 7.53–7.55 (m, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.51 (CH₃), 58.94 (CH), 118.69 (C), 122.97 (CH), 126.13 (2CH), 126.40 (2CH), 127.58 (2CH), 127.60 (CH),

^{S1} H. Oda, T. Kobayashi, M. Kosugi and T. Migita, *Tetrahedron*, 1995, 51, 695–702.

127.63 (CH), 127.88 (CH), 128.09 (CH), 128.66 (2CH), 128.81 (2CH), 128.85 (CH), 128.89 (2CH), 129.13 (2CH), 129.31 (CH), 129.32 (CH), 136.12 (C), 136.77 (C), 139.24 (C), 139.43 (C), 144.15 (C), 148.73 (C); LRMS-FAB *m/z* (ion, % relative intensity): 507 ([M+H]⁺, 83), 351 ([M-Ts]⁺, 14), 310 ([M-TsNCO]⁺, 49), 231 (42), 185 (54); HRMS-FAB *m/z* [M+H]⁺ calcd for C₃₁H₂₇N₂O₃S: 507.1742, found: 507.1749.

4-Phenyl-5-styryl-3-(toluene-4-sulfonyl)-1-p-tolyl-3,4-dihydro-1H-pyrimidin-2-one (3b)

Colorless crystals; mp 135–137 °C; IR (KBr): 1650, 1344, 1162 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.29 (s, 3H, Me (Tol)), 2.34 (s, 3H, Me (Ts)), 6.49 (s, 1H, H-4), 6.54 (s, 1H, H-6), 6.58 (d, 1H, *J* = 16.2 Hz, H-7), 6.63 (d, 1H, *J* = 16.2 Hz, H-8), 7.00 (d, 2H, *J* = 8.2 Hz, Ar), 7.18–7.36 (m, 14H, Ar), 7.51–7.54 (m, 2H, Ar); ¹³C NMR (126)

MHz, CDCl₃) δ 21.00 (CH₃), 21.44 (CH₃), 58.90 (CH), 118.48 (C), 123.06 (CH), 126.12 (2CH), 126.17 (2CH), 127.49 (CH), 127.53 (CH), 127.56 (2CH), 128.30 (CH), 128.62 (2CH), 128.76 (3CH), 128.92 (2CH), 129.07 (2CH), 129.86 (2CH), 136.22 (C), 136.69 (C), 136.83 (C), 137.88 (C), 139.47 (C), 144.01 (C), 148.79 (C); LRMS-FAB *m/z* (ion, % relative intensity): 521 ([M+H]⁺, 100), 366 ([M–Ts]⁺, 12), 324 ([M–TsNCO]⁺, 39), 289 (13), 246 (36), 185 (13), 154 (42); HRMS-FAB *m/z* [M+H]⁺ calcd for C₃₂H₂₉N₂O₃S: 521.1898, found: 521.1898.

1-Benzyl-4-phenyl-5-styryl-3-(toluene-4-sulfonyl)-3,4-dihydro-1*H*-pyrimidin-2-one (3c)

Colorless crystals; mp 181–183 °C; IR (KBr): 1638, 1594, 1340, 1160 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H, Me), 4.65 (d, 1H, J = 14.9 Hz, CH₂ (Bn)), 4.76 (d, 1H, J = 14.9 Hz, CH₂ (Bn)), 6.25 (s, 1H, H-4), 6.48 (d, 1H, J = 16.3 Hz, H-7), 6.50 (s, 1H, H-6), 6.57 (d, 1H, J = 16.3 Hz, H-8), 7.10–7.19 (m, 5H, Ar), 7.24–7.39 (m, 10H, Ar), 7.37–7.39 (m, 2H, Ar), 7.47 (d, 2H, J = 8.5 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.57 (CH₃), 50.15 (CH₂), 58.33 (CH), 118.48 (C),

123.20 (CH), 126.08 (2CH), 126.71 (CH), 127.19 (CH), 127.48 (2CH), 127.49 (CH), 127.97 (CH), 128.03 (CH), 128.60 (2CH), 128.65 (CH), 128.72 (2CH), 128.82 (2CH), 128.93 (CH), 128.95 (2CH), 135.89 (2CH), 135.90 (C), 136.36 (C), 136.75 (C), 139.07 (C), 144.18 (C), 149.56 (C); LRMS-FAB *m/z* (ion, % relative intensity): 521 ([M+H]⁺, 93), 366 ([M–Ts]⁺, 12), 324 ([M–TsNCO]⁺, 21), 246 (23), 185 (60), 154 (78); HRMS-FAB *m/z* [M+H]⁺ calcd for C₃₂H₂₉N₂O₃S: 521.1898, found: 521.1902.

3-[1-Benzyl-2-oxo-4-phenyl-3-(toluene-4-sulfonyl)-1,2,3,4-tetrahydropyrimidin-5-yl]acrylic acid methyl ester (3d)

Colorless crystals; mp 178–180 °C; IR (KBr): 1678, 1612, 1344, 1160 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.34 (s, 3H, Me (Ts)), 3.67 (s, 3H, Me (CO₂Me)), 4.67 (d, 1H, *J* = 15.0 Hz, CH₂ (Bn)), 4.78 (d, 1H, *J* = 15.0 Hz, CH₂ (Bn)), 5.79 (d, 1H, *J* = 15.9 Hz, H-8), 6.30 (s, 1H, H-4), 6.50 (s, 1H, H-6), 7.07–7.18 (m, 5H, H-7+Ar), 7.25–7.31 (m, 8H, Ar), 7.39 (d, 2H, *J* = 8.2 Hz, Ar); ¹³C NMR (126 MHz, CDCl₃) δ 21.54 (CH₃), 50.41 (CH₂), 51.53 (CH₃), 58.39 (CH),

115.36 (CH), 115.92 (C), 127.51 (2CH), 128.08 (2CH), 128.34 (CH), 128.81 (2CH), 128.92 (2CH), 128.95 (CH), 128.98 (2CH), 129.04 (2CH), 133.01 (CH), 135.38 (C), 139.97 (C), 138.50 (C), 139.35 (CH), 144.38 (C), 149.13 (C), 167.05 (C); LRMS-EI 502 ([M]⁺, 1.4), 471 ([M–OMe]⁺, 3), 425 (3), 347 ([M–Ts]⁺, 51), 246 (14), 91 (100); HRMS-EI calcd for C₂₈H₂₆N₂O₅S [M]⁺: 502.1562, found: 502.1568.

2-Oxo-1,4,6-triphenyl-3-(toluene-4-sulfonyl)-1,2,3,4,6,8a-hexahydroquinazoline-7,7,8,8-tetracarbonitrile (4a)

To a solution of **3a** (100 mg, 0.18 mmol) in dichloromethane (5 mL) was added tetracyanoethylene 38.4 mg (0.30 mmol). The mixture was stirred for 4 h at room temperature, and then condensed under reduced pressure. The residue was purified by column chromatography on silica gel with EtOAc/Hex (1/3, v/v) as an eluent to yield **4a** (101.6 mg, 90%) as colorless crystals; mp 166–168 °C; IR (KBr): 1682, 1594, 1488, 1366, 1168 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H, Me),

4.65 (dd, 1H, J = 2.4, 4.0 Hz, H-6), 4.86 (dd, 1H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 2.4 Hz, H-8a), 6.57 (s, 1H, H-4), 6.68 (dd, 1H, J = 2.4, 4.0 Hz, H-5), 6.80 (d, 2H, J = 2.4, 4.0 Hz, H-5), 6.80 (d

7.6 Hz, Ar), 7.16–7.56 (m, 15H, Ar), 7.98 (d, 2H, J = 8.6 Hz, Ar); ¹³C NMR (126 MHz, CDCl₃) δ 21.77 (CH₃), 40.82 (C), 43.72 (C), 47.53 (CH), 61.23 (CH), 61.80 (CH), 107.17 (C), 108.93 (C), 109.05 (C), 111.22 (C), 124.42 (CH), 125.02 (3CH), 128.46 (CH), 129.04 (2CH), 129.13 (3CH), 129.18 (CH), 129.64 (2CH), 129.92 (3CH), 130.10 (CH), 130.19 (C), 130.96 (CH), 131.47 (2CH), 135.00 (C), 135.40 (C), 136.48 (2C), 145.57 (C), 149.63 (C); LRMS-FAB *m/z* (ion, % relative intensity): 635 ([M+H]⁺, 69), 507 ([M–TCNE]⁺, 16), 310 (27), 246 (18), 232 (17), 185 (30); Anal. Calcd. for C₃₇H₂₆N₆O₃S: C, 70.02; H, 4.13; N, 13.24; Found: C, 69.62; H, 3.97, N, 13.12.

2-Oxo-4,6-diphenyl-3-(toluene-4-sulfonyl)-1-p-tolyl-1,2,3,4,6,8a-hexahydroquinazoline-7,7,8,8-tetracarbonitrile (4b)

Colorless crystals; mp 152–154 °C; IR (KBr): 1686, 1594, 1490, 1386, 1166 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H, Me (*p*-Tol)), 2.46 (s, 3H, Me (Ts)), 4.64 (dd, 1H, *J* = 2.4, 3.9 Hz, H-6), 4.82 (dd, 1H, *J* = 2.4, 2.4 Hz, H-8a), 6.59 (s, 1H, H-4), 6.67 (dd, 1H, *J* = 2.4, 3.9 Hz, H-5), 6.69 (d, 2H, *J* = 6.6 Hz, Ar), 7.09 (d, 2H, *J* = 8.3 Hz, Ar), 7.14 (dd, 2H, *J* = 1.0, 7.1 Hz, Ar), 7.32 (d, 2H, *J* = 8.3 Hz, Ar), 7.39–7.57 (m, 8H, Ar), 7.97 (d, 2H, *J* = 8.3 Hz,

Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.19 (CH₃), 21.72 (CH₃), 40.82 (C), 43.73 (C), 47.47 (CH), 61.14 (CH), 61.78 (2CH), 107.17 (C), 108.95 (C), 109.11 (C), 111.19 (C), 124.28 (CH), 124.99 (2CH), 128.08 (CH), 128.99 (2CH), 129.10 (2CH), 129.56 (2CH), 129.83 (2CH), 130.15 (C), 130.23 (C), 130.45 (2CH), 130.90 (2CH), 131.43 (2CH), 134.04 (C), 134.99 (C), 135.36 (C), 140.40 (C), 145.47 (C), 149.71 (C); LRMS-FAB *m/z* (ion, % relative intensity): 649 ([M+H]⁺, 59), 520 (19), 324 (21), 289 (10), 246 (26), 185 (66); HRMS-FAB *m/z* [M+H]⁺ calcd for C₃₈H₂₉N₆O₃S: 649.2022, found: 649.2025.

1-Benzyl-2-oxo-4,6-diphenyl-3-(toluene-4-sulfonyl)-1,2,3,4,6,8a-hexahydroquinazoline-7,7,8,8-tetracarbonitrile (4c)

Colorless crystals; mp 123–125 °C; IR (KBr): 1688, 1364, 1170 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.49 (s, 3H, Me), 4.34 (d, 1H, J = 15.9 Hz, CH₂ (Bn)), 4.36 (dd, 1H, J = 2.8, 2.8 Hz, H-6), 4.58 (dd, 1H, J = 2.8, 2.8 Hz, H-8a), 5.32 (d, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 7.3 Hz, Ar), 6.57 (dd, 1H, J = 2.8, 2.8 Hz, H-5), 6.96 (dd, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, H-4), 6.43 (d, 2H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.42 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.43 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.43 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.44 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.45 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6.45 (s, 1H, J = 15.9 Hz, CH₂ (Bn)), 6

7.3, 7.3 Hz, Ar), 7.11–7.14 (m, 3H, Ar), 7.26–7.54 (m, 10H, Ar), 8.09 (d, 2H, J = 8.2 Hz, Ar); ¹³C NMR (126 MHz, CDCl₃)

δ 21.79 (CH₃), 41.95 (C), 45.44 (C), 47.30 (CH), 48.89 (CH₂), 56.26 (CH), 61.58 (CH), 107.54 (C), 108.93 (C), 110.77 (C), 111.54 (C), 125.10 (2CH), 126.55 (CH), 128.28 (CH), 128.73 (2CH), 128.76 (CH), 128.89 (2CH), 129.37 (2CH), 129.41 (2CH), 129.66 (2CH), 129.92 (2CH), 130.45 (2CH), 130.81 (CH), 131.80 (C), 131.92 (C), 132.58 (C), 134.75 (C), 135.41 (C), 145.76 (C), 151.34 (C); LRMS-FAB *m/z* (ion, % relative intensity): 649 ([M+H]⁺, 9), 635 (54), 507 ([M–TCNE]⁺, 16), 310 (31), 232 (24), 185 (35), 154 (100); Anal. Calcd. for C₃₈H₂₈N₆O₃S: C, 70.35; H, 4.35; N, 12.95. Found: C, 70.38; H, 4.16; N, 13.08.

2,4,6,9-Tetraphenyl-7-(toluene-4-sulfonyl)-3a,6,7,9,9a,9b-hexahydro-4*H*-2,7,9-triazacyclopenta[*a*]naphthalene-1,3,8-trione (5a)

A solution of **4a** (100 mg, 0.20 mmol), *N*-phenylmaleimide (52 mg, 0.30 mmol) in toluene (5 mL) was heated at 110 °C for 9 h. The mixture was condensed under reduced pressure, and the residue was purified by silica gel chromatography with AcOEt/Hex (1/2, v/v) as an eluent to yield **5a** (119.6 mg, 88%) as a colorless solid; mp 293–294 °C; IR (KBr): 1688, 1372, 1260, 1164, 1086, 1014 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H, Me (Ts)), 3.36 (m, 2H, H-9b+H-4), 3.62 (dd, 1H,

2H, *J* = 8.3 Hz, Ar), 7.12 (d, 2H, *J* = 7.6 Hz, Ar), 7.21–7.46 (m, 18H, Ar), 7.75 (d, 2H, *J* = 8.2 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.54 (CH₃), 40.88 (CH), 41.56 (CH), 44.59 (CH), 58.67 (CH), 61.34 (CH), 124.42 (CH), 125.75 (2CH), 126.42 (2CH), 127.54 (CH), 127.94 (CH), 128.17 (CH), 128.43 (CH), 128.51 (2CH), 128.62 (2CH), 128.68 (2CH), 128.85 (2CH), 128.86 (2CH), 128.89 (2CH), 129.25 (2CH), 129.31 (2CH), 131.36 (C), 136.01 (C), 137.08 (C), 137.62 (C), 137.92 (C), 139.34 (C), 141.14 (C), 151.46 (C), 173.11 (C), 173.72 (C); LRMS-FAB *m/z*

(ion, % relative intensity): 680 ([M+H]⁺, 100), 352 (19), 310 (43), 243 (46), 91 (47); HRMS-FAB *m*/*z* [M+H]⁺ calcd for C₄₁H₃₄N₃O₅S: 680.2219, found: 680.2217.

2,4,6-Triphenyl-7-(toluene-4-sulfonyl)-9-p-tolyl-3a,6,7,9,9a,9b-hexahydro-4H-2,7,9-triazacyclopenta[a]naphthalene-1,3,8-trione (5b)

Colorless crystals; mp 281–282 °C; IR (KBr): 1696, 1416, 1374, 1162, 1084, 1014 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H, Me (*p*-Tol)), 2.33 (s, 3H, Me (Ts)), 3.38 (dd, 1H, *J* = 6.6, 8.5 Hz, H-9b), 3.43 (dd, 1H, *J* = 6.6, 8.5 Hz, H-3a), 3.62 (br ddd, 1H, *J* = 3.2, 3.2, 6.3 Hz, H-4), 4.40 (m, 1H, H-9a), 6.44 (s, 1H, H-6), 6.64 (dd, 1H, *J* = 3.2, 3.2, 12, 3.2 Hz, H-5), 7.04 (d, 2H, *J* = 8.5 Hz, Ar), 7.12 (dd, 4H, *J* = 4.9, 7.3 Hz, Ar), 7.19–7.47 (m, 15H, Ar), 7.76 (d, 2H, *J* = 8.3 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.07 (CH₃), 21.57 (CH₃), 40.89 (CH), 41.56 (CH), 44.68 (CH),

58.75 (CH), 61.39 (CH), 124.34 (CH), 125.80 (2CH), 126.44 (3CH), 127.60 (CH), 127.93 (CH), 128.35 (2CH), 128.45 (CH), 128.55 (2CH), 128.70 (2CH), 128.85 (3CH), 128.91 (2CH), 129.34 (2CH), 129.96 (2CH), 131.36 (C), 136.01 (C), 136.70 (C), 137.22 (C), 137.63 (C), 137.96 (C), 138.23 (C), 144.11 (C), 151.61 (C), 173.14 (C), 173.77 (C); LRMS-FAB *m*/*z* (ion, % relative intensity): 694 ($[M+H]^+$, 100), 456 (10), 366 (13), 324 (28), 289 (14), 246 (35), 243 (29); HRMS-FAB *m*/*z* [M+H]⁺ calcd for C₄₂H₃₆N₃O₅S: 694.2376, found: 694.2376; Anal. Calcd. for C₄₃H₃₉N₃O₅S: C, 72.76; H, 5.54; N, 5.92. Found C, 72.35; H, 4.96; N, 6.01.

9-Benzyl-2,4,6-triphenyl-7-(toluene-4-sulfonyl)-3a,6,7,9,9a,9b-hexahydro-4H-2,7,9-triazacyclopenta[a]naphthalene-1,3,8-trione (5c)

Colorless crystals; mp 259–261 °C; IR (KBr): 1672, 1596, 1486, 1428, 1364, 1332, 1162, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H, Me (Ts)), 3.43 (dd, 1H, *J* = 7.3, 9.0 Hz, H-9b), 3.59 (m, 2H, H-3a+H-4), 3.86 (ddd, 1H, *J* = 2.4, 2.4, 6.4 Hz, H-9a), 4.04 (d, 1H, *J* = 15.9 Hz, CH₂ (Bn)), 5.46 (d, 1H, *J* = 15.9 Hz, CH₂ (Bn)), 6.34 (s, 1H, H-6), 6.58–6.60 (m, 3H, Ar+H-5), 6.98–7.06 (m, 4H, Ar), 7.12–7.18 (m, 2H, Ar), 7.24–7.45 (m, 14H, Ar), 7.84 (d, 2H, *J* = 8.3 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.65 (CH₃), 39.64 (CH), 40.80 (CH), 47.57 (CH), 51.83 (CH), 53.41 (CH₂), 60.67 (CH),

125.33 (CH), 125.81 (2CH), 126.47 (2CH), 127.59 (CH), 127.70 (CH), 127.74 (2CH), 127.83 (CH), 128.13 (CH), 128.42 (CH), 128.54 (2CH), 128.70 (2CH), 128.75 (2CH), 128.90 (2CH), 128.97 (2CH), 129.01 (2CH), 129.28 (2CH), 131.41 (C), 135.16 (C), 135.73 (C), 136.47 (C), 137.30 (C), 137.54 (C), 137.76 (C), 172.50 (C), 173.82 (C); LRMS-FAB *m/z* (ion, % relative intensity): 694 ([M+H]⁺, 50), 307 (9), 289 (10), 246 (22), 185 (40), 154 (100); HRMS-FAB *m/z* [M+H]⁺ calcd for C₄₂H₃₆N₃O₅S: 694.2376, found: 694.2381.

9-Benzyl-1,3,8-trioxo-2,6-diphenyl-7-(toluene-4-sulfonyl)-2,3,3a,4,6,7,8,9,9a,9b-decahydro-1*H*-2,7,9-triazacyclopenta[a]naphthalene-4-ca rboxylic acid methyl ester (5d)

Colorless crystals; mp 273–276 °C; IR (KBr): 1702, 1428, 1340, 1168, 1088 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.34 (s, 3H, Me (Ts)), 3.05 (ddd, 1H, J = 2.7, 3.0, 6.1 Hz, H-4), 3.59 (dd, 1H, J = 7.5, 9.0 Hz, H-9b), 3.66 (ddd, 1H, J = 2.7, 2.9, 7.5 Hz, H-9a), 3.82 (dd, 1H, J = 6.1, 9.0 Hz, H-3a), 3.86 (s, 3H, Me (CO₂Me)), 4.05 (d, 1H, J = 15.8 Hz, CH₂ (Bn)), 5.43 (d, 1H, J = 15.8 Hz, CH₂ (Bn)), 6.27 (s, 1H, H-6), 6.54 (d, 2H, J = 7.6 Hz, Ar), 6.71 (dd, 1H, J = 2.9, 3.0 Hz, H-5),

7.01 (m, 3H, Ar), 7.04 (d, 3H, *J* = 8.0 Hz, Ar), 7.13 (m, 1H, Ar), 7.23 (dd, 2H, *J* = 7.6, 7.6 Hz, Ar), 7.30 (m, 1H, Ar), 7.39 (d, 3H, *J* = 7.3 Hz, Ar), 7.45 (dd, 2H, *J* = 7.3, 7.3 Hz, Ar), 7.82 (d, 2H, *J* = 8.0 Hz, Ar); ¹³C NMR (126 MHz, CDCl₃) δ 21.78 (CH₃), 39.14 (CH), 39.67 (CH), 41.16 (CH), 47.78 (CH₂), 51.91 (CH₃), 52.89 (CH), 60.69 (CH), 121.28 (CH), 125.90 (2CH), 126.65 (2CH), 127.93 (2CH), 127.95 (CH), 128.01 (CH), 128.84 (CH), 128.91 (2CH), 129.08 (2CH), 129.13 (2CH), 129.19 (2CH), 129.37 (2CH), 131.32 (C), 134.98 (C), 135.88 (C), 136.18 (C), 137.31 (C), 144.59 (C), 152.79 (C), 169.95 (C), 172.41 (C), 175.04 (C); LRMS-EI 675 ([M]⁺, 5), 611 (34), 520 ([M–Ts]⁺, 61), 347 (31), 91 (100); HRMS-EI calcd for C₃₈H₃₃N₃O₇S [M]⁺: 675.2039, found: 675.2032.

8-Acetyl-1,4,6-triphenyl-3-(toluene-4-sulfonyl)-3,4,6,7,8,8a-hexahydro-1*H*-quinazolin-2-one (6a)

To a solution of **3a** (100 mg, 0.20 mmol) and methyl vinyl ketone (21 mg, 0.30 mmol) in dichloromethane (5 mL) was added 1.0 M dichloromethane solution of trimethylsilyl trifluoromethanesulfonate (40 μ L, 40 μ mol) at -20 °C. The resulting mixture was warmed to 0 °C and stirred for 36 h. The mixture was quenched by sodium hydrogen carbonate, extracted with dichloromethane, and dried over magnesium sulfate. The solvent was evaporated, and the residue was

purified by column chromatography on silica gel with AcOEt/Hex (1/2, v/v) to yield **6a** (61.1 mg, 53%) as colorless crystals; mp 254–256 °C; IR (KBr): 1668, 1592, 1414, 1346, 1242, 1150 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.35 (s, 3H, Me (COMe)), 2.31 (m, 2H, H-7+H-7'), 2.39 (dd, 1H, *J* = 4.3, 8.5 Hz, H-8), 2.42 (s, 3H, Me (Ts)), 3.76 (ddd, 1H, *J* = 3.2, 3.2, 9.5 Hz, H-6), 4.11 (ddd, 1H, *J* = 3.2, 3.4, 8.5 Hz, H-8a), 6.27 (dd, 1H, *J* = 3.2, 3.4 Hz, H-5), 6.50 (s, 1H, H-4), 6.76 (d, 2H, *J* = 7.9 Hz, Ar), 7.18 (d, 2H, *J* = 7.2 Hz, Ar), 7.22 (d, 3H, *J* = 7.3, 7.8 Hz, Ar), 7.25 (d, 3H, *J* = 4.2, 8.1 Hz, Ar), 7.32–7.38 (m, 7H, Ar), 7.95 (d, 2H, *J* = 8.2 Hz, Ar); ¹³C NMR (151 MHz, CDCl₃) δ 21.65 (CH₃), 27.47 (CH₃), 31.83 (CH₂), 38.20 (CH), 45.47 (CH), 58.19 (CH), 63.03 (CH), 124.51 (CH), 125.83 (2CH), 126.68 (CH), 127.51 (CH), 127.76 (CH), 127.94 (2CH), 128.47 (2CH), 128.84 (2CH), 128.86 (2CH), 129.03 (4CH), 129.14 (2CH), 133.60 (C), 137.15 (C), 138.57 (C), 139.10 (C), 142.42 (C), 143.80 (C), 151.30 (C), 205.32 (C); LRMS-FAB *m/z* (ion, % relative intensity): 577 ([M+H]⁺, 23), 307 (17), 289 (14), 246 (52), 219 (17), 185 (86), 154 (100); HRMS-EI *m/z* [M]⁺ calcd for C₁₅H₃₂N₂O₄S: 576.2083, found: 576.2081.

8-Acetyl-4,6-diphenyl-3-(toluene-4-sulfonyl)-1-p-tolyl-3,4,6,7,8,8a-hexahydro-1H-quinazolin-2-one (6b)

Colorless crystals; mp 228–230 °C; IR (KBr): 1672, 1412, 1346, 1244, 1156 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 0.96 (s, 3H, Me (COMe)), 1.44 (ddd, 1H, J = 5.2, 7.6, 15.0 Hz, H-7), 1.65 (dd, 1H, J = 3.1, 15.0 Hz, H-7'), 1.86 (s, 3H, Me (*p*-Tol)), 1.94 (s, 3H, Me (Ts)), 1.96 (ddd, 1H, J = 3.1, 5.2, 7.4 Hz, H-8), 3.13 (ddd, 1H, J = 3.4, 3.8, 7.6 Hz, H-6), 3.93 (ddd, 1H, J = 2.2, 3.4, 7.4 Hz, H-8a), 5.79 (dd, 1H, J = 2.2, 3.8 Hz, H-5), 6.72 (d, 2H, J = 8.4 Hz, Ar),

6.76 (d, 2H, *J* = 8.4 Hz, Ar), 6.79 (s, 1H, H-4), 6.88 (d, 2H, *J* = 8.1 Hz, Ar), 7.00 (d, 2H, *J* = 7.4 Hz, Ar), 7.04 (dd, 1H, *J* = 7.3, 7.3 Hz, Ar), 7.10–7.15 (m, 5H, Ar), 7.59 (d, 2H, *J* = 7.4 Hz, Ar), 8.37 (d, 2H, *J* = 8.1 Hz, Ar); ¹³C NMR (151 MHz, CDCl₃) δ 21.03 (CH₃), 21.66 (CH₃), 27.53 (CH₃), 31.83 (CH₂), 38.21 (CH), 45.49 (CH), 58.13 (CH₃), 63.08 (CH), 124.45 (CH), 125.85 (2CH), 126.65 (CH), 127.62 (2CH), 127.75 (CH), 128.46 (2CH), 128.82 (2CH), 128.88 (2CH), 128.90 (2CH), 129.07 (2CH), 129.77 (2CH), 133.65 (C), 136.39 (C), 137.17 (C), 137.42 (C), 138.60 (C), 142.52 (C), 143.75 (C), 151.40 (C), 205.40 (C); LRMS-FAB *m/z* (ion, % relative intensity): 591 ([M+H]⁺, 45), 307 (14), 289 (11), 246 (26), 219 (11), 185 (20), 154 (100); HRMS-EI *m/z* [M]⁺ calcd for C₃₆H₃₄N₂O₄S: 590.2239, found: 590.2240.

8-Acetyl-1-benzyl-4,6-diphenyl-3-(toluene-4-sulfonyl)-3,4,6,7,8,8a-hexahydro-1H-quinazolin-2-one (6c)

Colorless crystals; mp 204–206 °C; IR (KBr): 1662, 1342, 1162 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.27 (s, 3H, Me (COMe)), 2.28–2.29 (m, 1H, H-7), 2.29–2.35 (m, 1H, H-7'), 2.47 (s, 3H, Me (Ts)), 2.72 (dd, 1H, J = 3.8, 6.9 Hz, H-8), 3.50 (d, 1H, J = 15.5 Hz, CH₂ (Bn)), 3.50–3.53 (m, 1H, H-6), 3.69 (ddd, 1H, J = 3.2, 3.4, 6.9 Hz, H-8a), 4.94 (d, 1H, J = 15.6 Hz, CH₂ (Bn)), 6.16 (dd, 1H, J = 3.1, 3.2 Hz, H-5), 6.36 (s, 1H, H-4), 6.49 (d, 2H, J = 7.5 Hz, Ar), 6.97 (dd, 2H, J =

7.5, 7.7 Hz, Ar), 7.02–7.13 (m, 3H, Ar), 7.22 (dd, 2H, *J* = 7.2, 7.8 Hz, Ar), 7.30 (dd, 2H, *J* = 7.4, 7.5 Hz, Ar), 7.34–7.41 (m, 6H, Ar), 8.11 (d, 2H, *J* = 8.3 Hz, Ar); ¹³C NMR (76 MHz, CDCl₃) δ 21.87 (CH₃), 27.38 (CH₃), 31.94 (CH₂), 38.00 (CH), 44.01 (CH), 47.48 (CH₂), 52.86 (CH), 62.71 (CH), 125.32 (CH), 125.89 (2CH), 126.78 (CH), 127.40 (CH), 127.71 (3CH), 128.44 (2CH), 128.55 (2CH), 128.84 (2CH), 129.09 (2CH), 129.18 (2CH), 129.25 (2CH), 133.67 (C), 135.50 (C), 136.88 (C), 138.41 (C), 142.54 (C), 144.21 (C), 153.01 (C), 205.16 (C); LRMS-EI *m/z* (ion, % relative intensity): 590 (M⁺, 15), 520 (M⁺–MVK, 34), 435 (M⁺–Ts, 20), 393 (M⁺–TsNCO, 4), 331 (27), 91 (100); HRMS-EI *m/z* [M]⁺

8-Acetyl-1-benzyl-2-oxo-4-phenyl-3-(toluene-4-sulfonyl)-1,2,3,4,6,7,8,8a-octahydroquinazoline-6-carboxylicacid methyl ester (endo-6d)

Colorless crystals; ¹H NMR (600 MHz, CDCl₃) δ 1.81 (ddd, 1H, J = 5.1, 7.5, 15.5 Hz, H-7), 1.97 (s, 3H, Me (COMe)), 2.44 (s, 3H, Me (Ts)), 2.75 (ddd, 1H, J = 1.6, 2.9, 15.5 Hz, H-7'), 2.99 (dd, 1H, J = 3.4, 8.2 Hz, H-8), 3.22 (ddd, 1H, J = 3.4, 3.6, 7.3 Hz, H-9a), 3.47 (m, 1H, H-6), 3.56 (d, 1H, J = 15.5 Hz, CH₂ (Bn)), 3.76 (s, 3H, Me (CO₂Me)), 4.95 (d, 1H, J = 15.5 Hz, CH₂ (Bn)), 6.23–6.25 (m, 1H, H-5), 6.24 (s, 1H, H-4), 6.54 (d, 2H, J = 7.7 Hz, Ar), 6.99 (dd, 2H, J = 7.4,

7.5 Hz, Ar), 7.09 (dd, 1H, *J* = 7.0, 7.4 Hz, Ar), 7.29–7.36 (m, 7H, Ar), 7.99 (d, 2H, *J* = 8.4 Hz, Ar); ¹³C NMR (151 MHz, CDCl₃) δ 21.86 (CH₃), 24.46 (CH₂), 29.20 (CH₃), 37.99 (CH), 44.35 (CH), 47.85 (CH₂), 52.55 (CH₃), 52.79 (CH), 62.41 (CH), 121.91 (CH), 125.90 (2CH), 127.64 (CH), 127.84 (2CH), 127.86 (CH), 128.72 (2CH), 129.16 (2CH), 129.20 (2CH), 129.33 (2CH), 132.19 (C), 135.23 (C), 136.50 (C), 138.17 (C), 144.25 (C), 152.58 (C), 172.17 (C), 205.24 (C); HRMS-ESI calcd for C₃₂H₃₂N₂O₆SNa [M+Na]⁺: 595.1877, found: 595.1873.

8-Acetyl-1-benzyl-2-oxo-4-phenyl-3-(toluene-4-sulfonyl)-1,2,3,4,6,7,8,8a-octahydroquinazoline-6-carboxylic acid methyl ester (exo-6d)

Colorless crystals; ¹H NMR (600 MHz, CDCl₃) δ 1.87 (ddd, 1H, *J* = 4.2, 12.2, 15.8 Hz, H-7), 1.99 (s, 3H, Me (COMe)), 2.34–2.40 (m, 1H, H-7'), 2.47 (s, 3H, Me (Ts)), 3.12 (dd, 1H, *J* = 4.2, 8.3 Hz, H-8), 3.31–3.37 (m, 1H, H-9a), 3.55–3.59 (m, 1H, H-6), 3.66 (d, 1H, *J* = 15.5 Hz, CH₂ (Bn)), 3.77 (s, 3H, Me (CO₂Me)), 5.01 (d, 1H, *J* = 15.5 Hz, CH₂ (Bn)), 6.12 (dd, 2H, *J* = 2.7, 2.9 Hz, H-5), 6.22 (s, 1H, H-4), 6.51 (d, 2H, *J* = 7.7 Hz, Ar), 6.99 (dd, 1H, *J* = 7.5, 7.5 Hz, Ar),

7.11 (dd, 1H, *J* = 6.9, 7.2 Hz, Ar), 7.24–7.27 (m, 2H, Ar), 7.31–7.38 (m, 5H, Ar), 8.03 (d, 2H, *J* = 8.0 Hz, Ar); ¹³C NMR (151 MHz, CDCl₃) δ 21.87 (CH₃), 26.34 (CH₂), 28.60 (CH₃), 39.42 (CH), 46.03 (CH), 47.85 (CH₂), 52.61 (CH₃), 52.69 (CH), 62.25 (CH), 122.67 (CH), 125.82 (2CH), 127.73 (CH), 127.84 (2CH), 127.88 (CH), 128.75 (2CH), 129.20 (2CH), 129.25 (2CH), 129.41 (2CH), 132.42 (C), 135.00 (C), 136.68 (C), 137.73 (C), 144.45 (C), 152.56 (C), 173.10 (C), 205.15 (C); HRMS-ESI calcd for C₃₂H₃₂N₂O₆SNa [M+Na]⁺: 595.1869, found: 595.1873.

 \bigcirc

 \bigcirc

						·····	<u></u>		••••			Date : Thu Oct	24 21: 07: 46 2002
	•	14 . 06B		19.851	22.297 25.034 25.034 287-398 287-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 297-397 207-397 207-397 207-397 207-397 207-397 207-397 207-307 2	28.658 28.197 26.774 19.197	7.321	6.687	· · ·			FileName Comment EXMODE	: auto_13C.nmdata : bcm : bcm
-												POINT SAMPO FREQU FILTR DEAY DEADT INTVL TIMES DUMMY FD ACOTH PREDL INTWT RESOL PM1 OBNUC OBFRO OBSET RGAIN TEMUC	32768 points 32769 points 27100.3 Hz 13550 Hz 14.8 usec 19.9 usec 36.9 usec 128 times 1.7909 sec 1209.1393 asec 10.0000 msec 0.83 Hz 4.50 usec 13550 .00 Hz 30 1H
	•		•					ι.		•		IRFRO IRFRO IRSET IRRPH IRRNS SCANS	399.65 MHz 134300.00 Hz 45.0 usec 0 128 times
			•					e 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•		SLVNT SPINNING TEMP	: COCL 3 : 12 Hz : 23.4 C
2				•			,						
		et.									· · · · · · · · · · · · · · · · · · ·		DL
	•								•••		-	0.	. Pn
	•						•		•				P

.

Ö

O

¹³C NMR (**4b**)

 \mathbf{G}

6

¹H NMR (**5d**)

¹³C NMR (**5d**)

¹H NMR (**6a**)

¹³C NMR (**6a**)

¹H NMR (**6b**)

¹³C NMR (**6b**)

¹H NMR (**6c**)

¹³C NMR (**6c**)

¹H NMR (*endo*-**6d**)

¹³C NMR (*endo*-**6d**)

¹H NMR (*exo*-**6d**)

¹³C NMR (*exo*-**6d**)

