Electronic supplementary information

Water-promoted *ortho*-selective monohydroxymethylation of phenols in NaBO₂ system

Hui-Jing Li,*^{*a,b*} Ying-Ying Wu,^{*a*} Qin-Xi Wu,^{*a*} Rui Wang,^{*a*} Chun-Yang Dai,^{*a*} Zhi-Lun Shen,^{*a*} Cheng-Long Xie^{*a*} and Yan-Chao Wu*^{*a*}

^a School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, China

^b Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China

*E-mails: lihuijing@iccas.ac.cn, ycwu@iccas.ac.cn

1. Table of Contents

1. Table of Contents	S 1
2. General Information	S 2
3. NMR spectra ••••••	S 3
3a. NMR spectra of salicyl alcohol 2a–t	S 3
3b. NMR spectra of bishydroxymethyled product 3a ••••••••••••••••••••••••••••••••••••	\$45
3c. NMR spectra of bishydroxymethyled product 3i •••••••	547
3d. NMR spectra of <i>para</i> -hydroxymethyled product 4d	S49

2. General Information

Common reagents and materials were purchased from commercial sources and purified by recrystallization or distillation. Where necessary, organic solvents were routinely dried and/or distilled prior to use and stored over molecular sieves under argon. Organic extracts were, in general, dried over anhydrous sodium sulfate (Na₂SO₄). TLC plates were visualized by exposure to ultraviolet light (UV). Chemical shifts for protons are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvents (CHCl₃: δ 7.26; DMSO-*d*₆: δ 2.50). Chemical shifts for carbon resonances are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0; DMSO-*d*₆: δ 39.43). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, and coupling constant in Hz. Coupling constants (*J*) are reported in Hertz (Hz).

3. NMR Spectra

3a. NMR spectra of salicyl alcohol 2a–tSalicyl alcohol 2a

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, DMSO- d_6)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (400 MHz, DMSO- d_6)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

HSQC (100 MHz, DMSO- d_6)

Salicyl alcohol 2s

HSQC (100 MHz, DMSO- d_6)

3b. NMR spectra of bishydroxymethyled product 3a

¹H NMR (300 MHz, CDCl₃)

Bishydroxymethyled product **3a**

¹³C NMR (75 MHz, CDCl₃)

3c. NMR spectra of bishydroxymethyled product 3i

Bishydroxymethyled product 3i

3d. NMR spectra of *para*-hydroxymethyled product 4d

para-Hydroxymethyled product **4d**

