Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

> Electronic Supplementary Material (ESI) for Organic . This journal is © The Royal Society of Chemistry 2014

Supplementary Information

For

Diastereoselective formation of aziridines from diazocarbonyl compounds and N-(O-pivaloylated D-galactosyl) benzylideneamines and ring-opening reactions with p-toluenethiol

Yizhou Zhao^{a†}, Gang Wang^{a†}, Shanshan Zhou^a, Zhongjun Li^a* and Xiangbao Meng^a*

^a State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China

Fax: (+86)-10-8280-5496; E-mail: xbmeng@bjmu.edu.cn or zjli@bjmu.edu.cn

[†] These authors contributed equally to this research.

List of contents

1. General Remarks	S2
2. General procedure for the preparation of 3	S3
3. General procedure for the preparation of 4	S7
4. Copies of NMR spectra of 3 and 4	S9
5. Copies of HR-ESI-MS spectra of 3 and 4	S20
6. Copies of chiral HPLC data of 3 and 4	S26

General Remarks

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) using commercial silica gel HSGF254 plates. Column chromatography was performed on Silica Gel 60 (E. Merck, 230-400 mesh). The ¹H (400 MHz) and ¹³C NMR (100.6 MHz) spectra were recorded with Bruker AM-400 spectrometer in CDCl₃ solution. Chemical shifts were referenced with tetramethylsilane (0 ppm for ¹H and 77.0 ppm for ¹³C). The HR-ESI-MS data were measured on a Bruker Apex IV FTMS. The chiral HPLC data of **3** were measured by Daicel Chiralcel OD-H, and the data of **4** were measured by Daicel Chiralpak IB.

General procedure for the preparation of 3

An oven-dried 10 mL vial was charged with **1** (0.30 mmol), then 3 mL of dry CH_2Cl_2 and $BF_3 \cdot OEt_2$ (0.15 mmol) were added. The mixture solution was stirred at -40°C for 15 min before the addition of **2** (0.45 mmol) via a syringe. The resulting solution was continued stirring until the reaction was complete as shown by TLC (usually 2 hours). Then three drops of triethylamine were added and the mixture was gradually warmed to room temperature. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=15/1), yielding the corresponding compounds **3** as white or pale yellow solid.

cis-1-(2,3,4,6-tetra-O-pivaloyl- β -D-galactosyl)-(3S)-(4-nitrophenyl)-aziridine-(2R) -ethyl formate (3a)

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 2H, H-Ar), 7.56 (d, J = 8.0 Hz, 2H, H-Ar), 5.43 (d, J = 3.0 Hz, 1H, H-4), 5.33 (t, J = 9.6 Hz, 1H, H-2), 5.20 (dd, J = 10.5, 3.0 Hz, 1H, H-3), 4.54 (d, J = 8.8 Hz, 1H, H-1), 4.24 – 4.09 (m, 1H, H-5), 4.08 – 3.81 (m, 4H, H-6, -CH₂CH₃), 3.73 (d, J = 6.5 Hz, 1H, -CHCOO-), 3.27 (d, J = 6.5 Hz, 1H, -CH-Ar), 1.29 (s, 9H, H-Piv), 1.24 (s, 9H, H-Piv), 1.19 (s, 9H, H-Piv), 1.13 (s, 9H, H-Piv), 1.02 (t, J = 7.0 Hz, 3H, -CH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.78, 177.27, 176.66, 176.52, 166.67, 147.38, 141.99, 128.96, 122.95, 86.49, 72.45, 71.12, 67.72, 66.84, 61.04, 60.86, 40.47, 39.11, 38.73, 38.29, 27.21, 27.05, 13.96. **HR-ESI-MS**: Calcd for C₃₇H₅₅N₂O₁₃ [M+H]⁺: 735.3699, found: 735.3700.

cis-1-(2,3,4,6-tetra-O-pivaloyl- β -D-galactosyl)-(3S)-(4-chlorophenyl)-aziridine-(2 R)-ethyl formate (3b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (d, J = 6.8 Hz, 2H, H-Ar), 7.26 (d, J = 8.5 Hz, 2H, H-Ar), 5.44 (d, J = 3.1 Hz, 1H, H-4), 5.33 (dd, J = 10.4, 8.9 Hz, 1H, H-2), 5.20 (dd, J = 10.4, 3.2 Hz, 1H, H-3), 4.48 (d, J = 8.8 Hz, 1H, H-1), 4.23 – 4.08 (m, 1H, H-5), 4.08 – 3.81 (m, 4H, H-6, -C H_2 CH₃), 3.66 (d, J = 6.7 Hz, 1H, -CHCOO-), 3.19 (d, J = 6.7 Hz, 1H, -CH-Ar), 1.29 (s, 9H, H-Piv), 1.23 (s, 9H, H-Piv), 1.19 (s, 9H, H-Piv), 1.13 (s, 9H, H-Piv), 1.02 (t, J = 7.0 Hz, 3H, -C H_3). ¹³C NMR (101 MHz, CDCl₃) δ 177.83, 177.33, 176.76, 176.51, 167.13, 133.37, 133.00, 129.38, 127.92, 86.84, 72.36, 71.27, 67.83, 66.93, 61.15, 60.64, 40.62, 39.13, 38.78, 38.75, 38.73, 38.18, 27.24, 27.08, 13.98. **HR-ESI-MS**: Calcd for C₃₇H₅₅ClNO₁₁ [M+H]⁺: 724.3458, found:

724.3447.

cis-1-(2,3,4,6-tetra-O-pivaloyl- β -D-galactosyl)-(3*S*)-(4-fluorophenyl)-aziridine-(2 *R*)-ethyl formate (3c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (t, 2H, *H*-Ar), 6.97 (t, J = 8.6 Hz, 2H, *H*-Ar), 5.43 (d, J = 3.0 Hz, 1H, *H*-4), 5.33 (t, J = 9.6 Hz, 1H, *H*-2), 5.20 (dd, J = 10.4, 2.8 Hz, 1H, *H*-3), 4.47 (d, J = 8.8 Hz, 1H, *H*-1), 4.16 (m, 1H, *H*-5), 4.07 – 3.80 (m, 4H, *H*-6, -CH₂CH₃), 3.65 (d, J = 6.6 Hz, 1H, -CHCOO-), 3.17 (d, J = 6.6 Hz, 1H, -CH-Ar), 1.31 (s, 9H, *H*-Piv), 1.23 (s, 9H, *H*-Piv), 1.20 (s, 9H, *H*-Piv), 1.14 (s, 9H, *H*-Piv), 1.01 (t, J = 7.1 Hz, 3H, -CH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.79, 177.31, 176.74, 176.46, 167.19, 130.13, 129.62, 129.54, 114.72, 114.51, 86.97, 72.37, 71.32, 67.86, 66.95, 61.17, 60.53, 40.61, 39.12, 38.76, 38.73, 38.71, 38.18, 27.22, 27.07, 13.94. **HR-ESI-MS**: Calcd for C₃₇H₅₅FNO₁₁ [M+H]⁺: 708.3753, found: 708.3762.

cis-1-(2,3,4,6-tetra-O-pivaloyl- β -D-galactosyl)-(3S)-(4-bromophenyl)-aziridine-(2 R)-ethyl formate (3d)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, 2H, *H*-Ar), 7.26 (d, 2H, *H*-Ar), 5.42 (d, J = 3.1 Hz, 1H, *H*-4), 5.31 (dd, J = 10.4, 8.8 Hz, 1H, *H*-2), 5.18 (dd, J = 10.4, 3.2 Hz, 1H, *H*-3), 4.47 (d, J = 8.8 Hz, 1H, *H*-1), 4.21 – 4.07 (m, 1H, *H*-5), 4.07 – 3.78 (m, 4H, *H*-6, -CH₂CH₃), 3.61 (d, J = 6.7 Hz, 1H, -CHCOO-), 3.18 (d, J = 6.7 Hz, 1H, -CH-Ar), 1.29 (s, 9H, *H*-Piv), 1.22 (s, 9H, *H*-Piv), 1.19 (s, 9H, *H*-Piv), 1.12 (s, 9H, *H*-Piv), 1.01 (t, J = 7.1 Hz, 3H, -CH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.79, 177.30, 176.73, 176.48, 167.07, 133.55, 130.85, 129.72, 121.53, 86.83, 72.40, 71.29, 67.83, 66.94, 61.15, 60.62, 40.66, 39.12, 38.77, 38.73, 38.72, 38.12, 27.23, 27.07, 13.96. **HR-ESI-MS**: Calcd for C₃₇H₅₅BrNO₁₁ [M+H]⁺: 768.2953, found: 768.2967.

cis-1-(2,3,4,6-tetra-O-pivaloyl-β-D-galactosyl)-(3*S*)-(4-cyanophenyl)-aziridine-(2*R*)-ethyl formate (3e)

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, 2H, *H*-Ar), 7.51 (d, 2H, *H*-Ar), 5.43 (d, J = 3.1 Hz, 1H, *H*-4), 5.32 (dd, J = 10.4, 8.9 Hz, 1H, *H*-2), 5.19 (dd, J = 10.4, 3.1 Hz, 1H, *H*-3), 4.50 (d, J = 8.8 Hz, 1H, *H*-1), 4.17 (m, 1H, *H*-5), 4.07 – 3.80 (m, 4H, *H*-6, -*CH*₂CH₃), 3.70 (d, J = 6.7 Hz, 1H, -*CH*COO-), 3.24 (d, J = 6.7 Hz, 1H, -*CH*-Ar), 1.30 (s, 9H, *H*-Piv), 1.24 (s, 9H, *H*-Piv), 1.18 (s, 9H, *H*-Piv), 1.12 (s, 9H, *H*-Piv), 1.00 (t, J = 7.1 Hz, 3H, -*CH*₃). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.78, 177.28, 176.67, 176.50, 166.73, 140.01, 131.53, 128.86, 118.77, 111.37, 86.62, 72.47, 71.17, 67.77, 66.88, 61.08, 60.80, 40.69, 39.12, 38.77, 38.73, 38.31, 27.22, 27.06, 13.94. **HR-ESI-MS**: Calcd for C₃₈H₅₅N₂O₁₁ [M+H]⁺: 715.3800, found: 715.3806.

cis-1-(2,3,4,6-tetra-O-pivaloyl-β-D-galactosyl)-(3*S*)-(4-trifluoromethylphenyl)-azi ridine-(2*R*)-ethyl formate (3f)

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 8.7 Hz, 2H, *H*-Ar), 7.50 (d, J = 8.7 Hz, 2H, *H*-Ar), 5.43 (d, J = 3.1 Hz, 1H, *H*-4), 5.32 (dd, J = 10.4, 8.9 Hz, 1H, *H*-2), 5.20 (dd, J = 10.4, 3.2 Hz, 1H, *H*-3), 4.51 (d, J = 8.8 Hz, 1H, *H*-1), 4.22 – 4.08 (m, 1H, *H*-5), 4.07 – 3.79 (m, 4H, *H*-6, -C*H*₂CH₃), 3.71 (d, J = 6.7 Hz, 1H, -C*H*COO-), 3.23 (d, J = 6.7 Hz, 1H, -C*H*-Ar), 1.30 (s, 9H, *H*-Piv), 1.23 (s, 9H, *H*-Piv), 1.19 (s, 9H, *H*-Piv), 1.12 (s, 9H, *H*-Piv), 0.98 (t, J = 7.1 Hz, 3H, -C*H*₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.80, 177.30, 176.71, 176.51, 166.94, 138.55, 128.38, 124.67, 124.63, 86.67, 72.38, 71.19, 67.78, 66.89, 61.11, 60.68, 40.64, 39.11, 38.76, 38.72, 38.18, 27.21, 27.05, 13.85. **HR-ESI-MS**: Calcd for C₃₈H₅₅F₃NO₁₁ [M+H]⁺: 758.3721, found: 758.3722.

cis-1-(2,3,4,6-tetra-O-pivaloyl- β -D-galactosyl)-(3S)-(3,4-dichlorophenyl)-aziridine -(2R)-ethyl formate (3j)

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, 1H, *H*-Ar), 7.34 (d, 1H, *H*-Ar), 7.20 (dd, J = 8.3, 1.9 Hz, 1H, *H*-Ar), 5.40 (d, J = 3.1 Hz, 1H, *H*-4), 5.34 – 5.24 (m, 1H, *H*-2), 5.23 – 5.14 (m, 1H, *H*-3), 4.49 (d, J = 8.9 Hz, 1H, *H*-1), 4.13 (m, 1H, *H*-5), 4.08 – 3.84 (m, 4H, *H*-6, -C*H*₂CH₃), 3.60 (d, J = 6.6 Hz, 1H, -C*H*COO-), 3.20 (d, J = 6.7 Hz, 1H, -C*H*-Ar), 1.29 (s, 9H, *H*-Piv), 1.25 (s, 9H, *H*-Piv), 1.19 (s, 9H, *H*-Piv), 1.13 (s, 9H, *H*-Piv), 1.05 (t, J = 7.1 Hz, 3H, -C*H*₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.79, 177.28, 176.70, 176.50, 166.98, 134.81, 131.87, 131.52, 130.21, 129.73, 127.34, 86.47, 72.38, 71.19, 67.75, 66.85, 61.06, 60.77, 39.95, 39.11, 38.76, 38.74, 38.73, 38.13, 27.22,

27.06, 13.96. **HR-ESI-MS**: Calcd for $C_{37}H_{54}Cl_2NO_{11}$ [M+H]⁺: 758.3068, found: 758.3081.

cis-1-(2,3,4,6-tetra-*O*-pivaloyl-β-D-galactosyl)-(2R)-benzoyl-(3S)-(4-nitrophenyl)-aziridine (3k)

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 8.7 Hz, 2H, H-p-NO₂-Ph), 8.03 (d, 2H, H-p-NO₂-Ph), 7.62 (t, J = 7.4 Hz, 1H, H-Ph), 7.58 – 7.46 (m, 4H, H-Ph), 5.64 (dd, J = 2.7, 3.1 Hz, 1H, H-4), 5.36 (d, J = 10.4, 8.9 Hz, 1H, H-2), 5.21 – 5.06 (m, 1H, H-3), 4.31 (d, J = 8.9 Hz, 1H, H-1), 3.91 (d, J = 2.7 Hz, 1H, H-5), 3.86 – 3.68 (m, 2H, H-6), 3.57 (d, J = 2.8 Hz, 1H, -CHCO-), 3.39 (dd, J = 10.5, 5.4 Hz, 1H, -CH-Ar), 1.28 (s, 9H, H-Piv), 1.10 (s, 9H, H-Piv), 0.99 (s, 9H, H-Piv), 0.81 (s, 9H, H-Piv). ¹³C NMR (101 MHz, CDCl₃) δ 193.32, 177.57, 177.33, 176.74, 176.22, 147.55, 144.38, 137.38, 133.90, 128.81, 128.58, 127.49, 123.76, 88.37, 72.52, 71.54, 70.11, 66.63, 60.15, 47.19, 45.53, 39.04, 38.76, 38.56, 38.47, 27.18, 27.11, 26.87, 26.83. HR-ESI-MS: Calcd for C₄₁H₅₅N₂O₁₂ [M+H]⁺: 767.3749, found: 767.3750.

General procedure for the preparation of 4

An oven-dried 10 mL vial was charged with **3** (0.15 mmol) and 4-methylbenzenethiol (0.30 mmol). After the solid was dissolved by 2.5 mL of dry CH₂Cl₂, BF₃·OEt₂ (0.20 mmol) was added. Then the solution was stirred at room temperature for 7 days. When the reaction was complete as shown by TLC, triethylamine (0.20 mmol) was added to adjust the PH, decreasing the salt form of amino acids. The mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1), yielding the corresponding β -S-substituted phenylalanine derivatives **4** as yellow viscous oil.

ethyl-(2S,3S)-2-amino-3-(4-methoxyphenylthiol)-3-(4-nitrophenyl)-propanoate (4a)

¹**H NMR** (400 MHz, CD₃OD) δ 8.12 (d, J = 8.6 Hz, 2H, H-p-NO₂-Ph), 7.54 (d, J = 8.6 Hz, 2H, H-p-NO₂-Ph), 7.19 (d, J = 7.8 Hz, 2H, H-p-CH₃-Ph), 7.06 (d, J = 7.8 Hz, 2H, H-p-CH₃-Ph), 4.60 (d, J = 7.2 Hz, 1H, -CH-NH₂), 4.03-3.95 (m, 2H, -C H_2 CH₃), 3.91 (d, J = 7.2 Hz, 1H, -CH-S-), 2.27 (s, 3H, -C H_3), 1.06 (t, J = 7.0 Hz, 3H, -C H_2 CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 173.46(CO), 148.67(Ar), 148.58(Ar), 139.71(Ar), 134.66(Ar), 130.96(Ar), 130.90(Ar), 130.62(Ar), 124.26(Ar), 62.39(-CH-NH₂), 60.01 (2, -CH₂CH₃, -CH-S-), 21.11(-CH₃), 14.25(-CH₂CH₃). **HR-ESI-MS**: Calcd for C₁₈H₂₀N₂O₄S [M+H]⁺: 361.1216, found: 361.1210. $[\alpha]_D^{20} = 120^\circ$ (*c* 0.5g/100mL in CH₃OH).

ethyl-(2S,3S)-2-amino-3-(4-methoxyphenylthiol)-3-(4-chlorophenyl)-propanoate (4b)

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 8.0 Hz, 2H, H-p-Cl-Ph), 7.24 (d, J = 8.0 Hz, 2H, H-p-Cl-Ph), 7.15 (d, J = 8.0 Hz, 2H, H-p-CH₃-Ph), 7.01 (d, J = 8.0 Hz, 2H, H-p-CH₃-Ph), 4.43 (d, J = 6.0 Hz, 1H, -CH-NH₂), 4.06-3.92 (m, 2H, -CH₂CH₃), 3.80 (d, J = 6.0 Hz, 1H, -CH-S-), 2.28 (s, 3H, -CH₃), 1.08 (t, J = 6.8 Hz, 3H, -CH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 156.01(CO), 137.95(2, Ar), 133.32(Ar), 133.17(Ar), 129.88(Ar), 129.79(Ar), 129.71(Ar), 128.44(Ar), 61.30(-CH-NH₂), 59.62(-CH₂CH₃), 58.99(-*C*H-S-), 21.09(-*C*H₃), 13.92(-*C*H₂*C*H₃). **HR-ESI-MS**: Calcd for C₁₈H₂₀ClNO₂S [M+H]⁺: 350.0976, found: 350.0972; [M+Na]⁺:372.0796, found: 372.0801. $[\alpha]_D^{20} = 140^\circ$ (*c* 0.5g/100mL in CH₃OH).

ethyl-(2S,3S)-2-amino-3-(4-methoxyphenylthiol)-3-(4-fluorophenyl)-propanoate (4c)

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H, *H*-p-F-Ph), 7.15 (d, *J* = 8.0 Hz, 2H, *H*-p-CH₃-Ph), 7.01 (d, *J* = 8.0 Hz, 2H, *H*-p-CH₃-Ph), 6.98-6.93 (m, 2H, *H*-p-F-Ph), 4.44 (d, *J* = 6.0 Hz, 1H, -C*H*-NH₂), 4.04-3.91 (m, 2H, -C*H*₂CH₃), 3.80 (d, *J* = 6.0 Hz, 1H, -C*H*-S-), 2.28 (s, 3H, -C*H*₃), 1.07 (t, *J* = 8.0 Hz, 3H, -CH₂CH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 163.32(CO), 137.88(Ar), 135.43(Ar), 133.20(Ar), 130.08(Ar), 130.00(Ar), 129.67(Ar), 115.25(Ar), 115.03(Ar), 61.22(-CH-NH₂), 59.84(-CH₂CH₃), 58.94(-CH-S-), 21.08(-CH₃), 13.91(-CH₂CH₃). **HR-ESI-MS**: Calcd for C₁₈H₂₀FNO₂S [M+H]⁺: 334.1277, found: 334.1272. $[\alpha]_D^{20} = 130^{\circ}$ (*c* 0.5g/100mL in CH₃OH). 3a

 $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$ 1.31 1.24 1.03 1.03 1.03 1.03 H OPiv _OPiv COOEt PivO OPiv LUL i Ali ĺ 2.00 ¥ 0.95 ¥ 0.96 ₹ 0.95 Å 0.96<u>-</u>I 1.06<u>-</u> 3.96-0.98-1 0.96-I 8.78 8.73 8.64 8.73 3.03 3.03 4.5 4.0 5.5 3.5 8.5 8.0 7.5 7.0 6.5 6.0 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 $\int_{176,51}^{177,83} 176.76$ -167.13 $\sum_{\substack{133.37\\133.00}} \frac{133.37}{123.00}$ $\overline{}_{127.92}$ -86.84 -77.03 -77.03 -71.27 -71.27 -66.93 -76.93 -76.94 -

3b

3c

3d

3e

3f

3j

3k

4a:

4b:

4c:

Copies of HR-ESI-MS spectra of 3 and 4

3a:

3b:

3d:

3f:

3j:

4b:

Bruker Compass DataAnalysis 4.0	printed:	9/24/2013 3:18:27 PM	Page 1 of 1

printed:

Bruker Compass DataAnalysis 4.0

9/18/2013 5:02:41 PM

Page 1 of 1

Copies of chiral HPLC data of 3 and 4

3a:

3b:

信号 1: MWD1 A, Sig=220,4 Ref=off

峰保	昭时间 类型	峰宽	峰面积	峰高	峰面积
#	[min]	[min]	[mAU*s]	[mAU]	8
1	16.429 VB	0.3511	4.12330e4	1774.35815	89.5958
2	19.452 BV	0.2846	1069.91467	56.07209	2.3248
З	19.872 VB	0.3428	3718.21240	165.05069	8.0794
总量:	:		4.60211e4	1995.48093	

3d:

信号 1: MWD1 A, Sig=220,4 Ref=off

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 [%]
		[]		[[
1	18.187	BB	0.4762	6.79308e4	2225.08398	94.0606
2	22.214	BV	0.3758	3267.39575	134.34055	4.5242
3	23.216	VB	0.3876	419.78641	16.68236	0.5813
4	24.899	BB	0.4090	602.27289	22.73775	0.8339

总量 :

7.22203e4 2398.84464

信号 2: MWD1 B, Sig=254,4 Ref=off

峰 保留时间	类型 峰宽	峰面积	峰高	峰面积
# [min]	[min]	[mAU*s]	[mAU]	8
		-	- [
1 9.968	BB 0.184	1 7641.28223	645.74554	100.0000

总量: 7641.28223 645.74554

3f:

峰伐	展留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	80
$\left (-1,-1)(-1)(-1,-1)(-1)(-1,-1)(-1)(-1,-1)(-1)(-$	Sector Contractor	[] -	a taka karina da karina]		
1	16.204	VB	0.4205	7.94137e4	2628.37769	88.3491
2	19.424	BV	0.2770	2203.21704	117.37755	2.4511
3	19.824	VB	0.3533	7554.48926	324.88876	8.4045
4	21.950	BB	0.3824	714.80963	28.71903	0.7952
总量	3			8.98862e4	3099.36302	

检测	器 A	Ch1 220nm			****	
山	£#	保留时间	面积	高度	面积 %	高度 %
	1	5.805	3128591	463283	98.380	98.698
	2	7.115	24473	2978	0.770	0.634
	3	7.716	27058	3133	0.851	0.667
	总讯		3180122	469393	100.000	100.000

3k:

S29

信号 1: MWD1 A, Sig=254,4 Ref=off

峰亻	呆留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.335	BB	0.1237	124.83826	16.60329	0.3497
2	7.900	BV	0.3005	3.34783e4	1679.68140	93.7897
3	9.443	vv	0.4392	605.48401	20.00107	1.6963
4	10.270	VB	0.7278	1486.44800	28.07254	4.1643
总量	:			3.56950e4	1744.35830	

信号 1: MWD1 A, Sig=254,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	5.121	ММ	0.1304	2538.30786	324.31229	6.8873
2	5.782	MM	0.2066	3.43167e4	2767.93555	93.1127
总量	:			3.68550e4	3092.24783	

S30

信号 1: MWD1 A, Sig=254,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	3.625	MM	0.0806	647.91589	133.94518	3.4926
2	3.834	MM	0.1140	1828.50806	267.26379	9.8566
3	4.434	MM	0.1221	1273.48450	173.87038	6.8647
4	5.094	MM	0.1849	1.48012e4	1334.19653	79.7861

总量:

1.85511e4 1909.27588