Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Design, Synthesis and Biological evaluation of Bicyclic Iminosugar Hybrids: Conformational constraint as an effective tool for tailoring the selectivity of α -glucosidase inhibitors

Inderpreet Arora^a Vivek Kr. Kashyap,^b Alok Kumar Singh, ^b Arunava Dasgupta, ^{b,c} Brijesh Kumar,^d and Arun K. Shaw.^{a,*}

^aDivision of Medicinal and Process Chemistry CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India

^bMicrobiology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.

^cAcademy of Scientific and Innovative Research, New Delhi 110001, India

^dSophisticated Analytical Instrumentation Facility, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India

Contents

akshaw55@yahoo.com

Page no.

1	Abbreviations	2
2	NMR Spectra of compounds 3-18	3-95
3	General methods for glycosidase inhibition studies	96
4	Table 1 : List of enzymes, respective substrates, buffers and optimum incubation temperatures.	96
5	Table 2. Percentage of inhibition of 11 glycosidase by compounds 17a , 17b , 18a and 18b at 400μ M and $1000\ \mu$ M.	97
6	Michaelis-Menten plot of Activity versus Substrate concentration for inhibition of various enzymes.	98-102
7.	References	103

Abbreviations

Bn	Benzyl
DCM	Dichloromethane
DIAD	Diisopropylazodicarboxylate
DPPA	Diphenylphosphoryl azide
DMF	Dimethylformamide
EtOAc	Ethyl acetate
EtOH	Ethanol
Eq	Molar equivalent(s)
NMR	Nuclear magnetic resonance
TBAF	Tetrabutylammonium fluoride
t-BuOOH	tert-Butyl hydroperoxide
TBSOTf	tert-Butyldimethylsilyl trifluoromethanesulfonate
THF	Tetrahydrofuran
TLC	Thin Layer chromatogram
TMS	Tetra methyl silane
<i>n</i> -BuLi	<i>n</i> -butyl lithium

¹H NMR Spectrum of 3a

¹³C NMR Spectrum of 3a

VIP-360

HSQC Spectra of 3a

¹H NMR Spectrum of 4a

¹³C NMR Spectrum of 4a

HSQC Spectra of 4a

¹H NMR Spectrum of 5a

¹³C NMR Spectrum of 5a

VIP-361

HSQC Spectra of 5a

¹H NMR Spectrum of 6a

¹³C NMR Spectrum of 6a

¹H NMR Spectrum of 7a

¹³C NMR Spectrum of 7a

¹H NMR Spectrum of 8a

¹³C NMR Spectrum of 8a

HSQC Spectra of 8a

¹H NMR Spectrum of 9a

¹³C NMR Spectrum of 9a

VIP-384-A

HSQC Spectra of 9a

¹H NMR Spectrum of 9c

¹³C NMR Spectrum of 9c

HSQC Spectra of 9c

¹H NMR Spectrum of 3b

¹³C NMR Spectrum of 3b

HSQC Spectra of 3b

¹H NMR Spectrum of 4b

¹³C NMR Spectrum of 4b

HSQC Spectra of 4b

¹H NMR Spectrum of 5b

¹³C NMR Spectrum of 5b

HSQC Spectra of 5b

VIP-367

¹H NMR Spectrum of 6b

¹³C NMR Spectrum of 6b

¹H NMR Spectrum of 7b

¹³C NMR Spectrum of 7b

VIP-394C

HSQC Spectra of 7b

¹H NMR Spectrum of 8b

¹³C NMR Spectrum of 8b

HSQC Spectra of 8b

¹H NMR Spectrum of 9b

¹³C NMR Spectrum of 9b

HSQC Spectra of 9b

¹H NMR Spectrum of 10a

¹³C NMR Spectrum of 10a

HSQC Spectra of 10a

¹H NMR Spectrum of 11a

¹³C NMR Spectrum of 11a

HSQC Spectra of 11a

¹³C NMR Spectrum of 12a

HSQC Spectra of 12a

¹H NMR Spectrum of 13a

¹³C NMR Spectrum of 13a

HSQC Spectra of 13a

¹H NMR Spectrum of 14a

¹³C NMR Spectrum of 14a

VIP-406LS

HSQC Spectra of 14a

¹H NMR Spectrum of 10b

¹³C NMR Spectrum of 10b

HSQC Spectra of 10b

¹H NMR Spectrum of 11b

¹³C NMR Spectrum of 11b

HSQC Spectra of 11b

¹H NMR Spectrum of 12b

¹³C NMR Spectrum of 12b

HSQC Spectra of 12b

¹H NMR Spectrum of 13b

¹³C NMR Spectrum of 13b

VIP-409-A

HSQC Spectra of 13b
5,1233 5,1205 5,1205 5,1205 5,1205 5,1205 5,1205 6,

VIP-411

Data Parameters VIP 411 01.06.12 100 1 Curre NAME EXPNO NS DS SWH FID AQ RG DW DE TE D1 TD0 NUC1 P1 PL1 SF01 F2 -SI SF WDW SSB LB GB PC 1H 11.60 use -1.00 dB 300.1318534 MHz ang parameters 32768 300.1300139 MHz 6 0.30 Hz 0 1.00 4.0 ppm 3.9 3.8 3.7 3.6 3.5 4 2.02 4.15 VIP-411 - 0.0000 Vata Parameters VIP 411 01.06.12 100 1 CICH₂SO₂O QBn BnO SO NS DS SWE FII AQ RG DW DE TE D1 TD0 Θ̈́Bn NUC1 P1 SF01 F2 -SI SF WDW SSB LB GB PC 1H 11.60 -1.00 300.1318534 dB MHz ing paramet 32768 EM 0.30 0.1.00 Hz 0 1 ppm 1.00 14.89 1.02 4.15 1.09 2.02 2.02

¹H NMR Spectrum of 14b

¹³C NMR Spectrum of 14b

HSQC Spectra of 14b

¹³C NMR Spectrum of 15a

HSQC Spectra of 15a

Proton coupled ¹³C Spectra of 15a

¹H NMR Spectrum of 15b

¹³C NMR Spectrum of 15b

VIP-400

HSQC Spectra of 15b

¹H NMR Spectrum of 16a

¹³C NMR Spectrum of 16 a

HSQC Spectra of 16a

¹H NMR Spectrum of 16b

¹³C NMR Spectrum of 16b

HSQC Spectra of 16b

¹H NMR Spectrum of 17a

¹³ C NMR Spectrum of 17a

¹H NMR Spectrum of 17b

¹³C NMR Spectrum of 17b

¹H NMR Spectrum of 18a

¹³ C NMR Spectrum of 18a

Glycosidase Inhibition

General Methods are mentioned in the manuscript text. Inhibition potencies of compounds were determined according to Gunter and Stefan (1986), Li *et al* (2011) by minute modifications, measuring the residual hydrolytic activities of glycosidase of the corresponding p-nitrophenyl glycosides in presences of compounds specterophometrically. Michaelis-Menten plot of Activity versus Substrate concentration for inhibition and K_i were determined by nonlinear regression using data to a competitive inhibition model using Graph Pad Prism (version 6.01 for Windows, Graph Pad Software, San Diego California (USA).¹⁻³

S.No	Enzyme	Substrate	Buffer	Incubation
				temperature.
1	α -galactosidase (green	<i>p</i> -nitrophenyl α -D-	Citrate	25°C
	coffee bean)	galactopyranoside	phosphate buffer	
-			(50 mM, pH 6.5	
2	β -galactosidase (bovine	<i>p</i> -nitrophenyl β -D-	Citrate	30°C
	liver)	galactosidase	phosphate buffer	
-			(50 mM, pH 4.5)	
3	Trehalase (porcine kidney)	D-trehalose	Sodium acetate	25 °C
		dihydrate	buffer (50 mM,	
			pH 6.5)	
4	Amyloglucosidase (A.	Starch wheat	Citrate	45 °C
	niger)		phosphate buffer	
			(50 mM, pH 5.5)	
5	α -mannosidase (jack bean)	<i>p</i> -nitrophenyl α-D-	Acetate buffer	25 °C
		mannpyranoside	(50 mM, pH 4.5)	
6	β -glucosidase (almond)	<i>p</i> -nitrophenyl β -D-	Citrate	37 °C
		glucopyranoside	phosphate buffer	
			(50 mM, pH 5.5)	
7	α -glucosidase (yeast)	<i>p</i> -nitrophenyl α -D-	Citrate	37 °C
		glucopyranoside	phosphate buffer	
			(50 mM, pH 6.8)	
8	Glucosidase (A. niger)	<i>p</i> -nitrophenyl α -D-	Citrate	37 °C
		glucopyranoside	phosphate buffer	
			(50 mM, pH 6.8)	
9	α -glucosidase (rice)	<i>p</i> -nitrophenyl α -D-	Citrate	37 °C
		glucopyranoside	phosphate buffer	
			(50 mM, pH 6.8)	
10	β -N-acetyl	4-nitrophenyl N-	Citrate buffer (50	37°C
	glucosaminidase (jack	Acetyl β -D	mM, pH 4)	
	bean)	glucosaminide		
11	α -L-fucosidase (bovine	4-nitrophenyl α-L	Citrate	30 °C
	kidney)	fucopyranoside	phosphate buffer	
			(50 mM, pH 5)	

Table 1: List of Enzyme respective substrates, buffer and optimum incubation temperature

Table 2: % of inhibition of 11 glycosidase by all 4 compounds (17a, 17b, 18a and 18b)at 400μ M and 1000μ M

	(% of inhibition at 400μ M)				(% of inhibition at 1000μ M)			
ENZYME	17a	17b	18a	18b	17a	17b	18a	18b
<i>a</i> -galactosidase (green coffee bean)	NI (2.78)	NI (1.7)	NI (0.66)	NI (4.44)	NI (6.55)	NI (6.5)	NI (4.76)	NI (5.88)
β -galactosidase (bovine liver)	NI (6.58)	NI (6.16)	NI (6.66)	NI (1.43)	NI (6.75)	NI (8.05)	NI (5.56)	NI (3.49)
α-glucosidase (yeast)	NI (1.31)	NI (1.18)	NI (0.64)	NI (0.8)	NI (3.26)	NI (1.66)	NI (0.98)	NI (0.97)
a-glucosidase (rice)	(81.53)	(84.86)	(81.04)	(87.78)	(86.62)	(86.13)	(86.12)	(93.45)
β-glucosidase (almond)	NI (3.44)	NI (3.18)	NI (3.8)	NI (1.81)	NI (1.48)	NI(13.23)	NI (2.7)	NI (2.2)
a-glucosidase (A. niger)	(81.16)	(81.96)	(80.66)	(81.46)	(84.26)	(84.63)	(84.85)	(85.47)
α-mannosidase (jack bean)	NI (2.07)	NI (2.72)	NI (3.51)	NI (3.01)	NI (1.40)	NI (5.95)	NI (4.38)	NI (1.4)
Trehalase (porcine kidney)	NI (0.58)	NI (0.54)	NI (0.85)	NI (1.23)	NI (5.05)	NI (4)	NI (1.14)	NI (2.39)
Amyloglucosidase (A. niger)	NI (0.82)	NI (1.17)	NI (0.35)	NI (2.7)	NI (3.41)	NI (2.74)	NI (3.53)	NI (3.97)
β -N- acetyl glucosaminidase (jack bean)	NI (1.57)	NI (2.53)	NI (1.32)	NI (3.83)	NI (2.09)	NI (6.76)	NI (2.14)	NI((1.04)
α -L-fucosidase (Bovine Kidney)	NI (0.55)	NI (0.05)	NI (0.04)	(86.15)	NI (0.63)	NI (0.04)	NI (0.98)	(91.78)

Figures A, B, C, D, E, F, G, H and I represent Michaelis-Menten plot of Activity versus Substrate concentration for inhibition of various enzymes(see methods) by compounds 17a. 17b, 18a and 18b. The K_i were determined by nonlinear regression using Graph Pad Prism (version 6.01 for Windows, Graph Pad Software, San Diego California USA) These curves show that the inhibition is competitive. Activity represented absorbance of liberated *p*-nitrophenol measured at 405 nm.

References

- (1) L. Gunter and P. Stefan, Carbohydr. Res. 1986, 155, 119–129.
- (2) Y. X. Li, M. H. Huang, Y. Yamashita, A. Kato, Y. M. Jia, W. B. Wang, G. W. J. Fleet, R. J. Nash and C.

Yu, Org. Biomol. Chem. 2011, 9, 3405-3414.

(3) K. Wagschal, D. Franqui-Espiet, C. C Lee, R. E. Kibblewhite-Accinelli, G. H. Robertson and D. W. S. Wong, *Enzyme Microb.Technol.* 2007, **4**, 747–753.