Supporting Information The base discriminating potential of pyrrolidinyl PNA demonstrated by magnetic Fe_xO_y particles

Claudia Stubinitzky,^a Tirayut Vilaivan*^b and Hans-Achim Wagenknecht*^a

Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Fax: +49-721-608-44825; Tel: +49-721-608-47486; E-mail: Wagenknecht@kit.edu

Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand, Fax: 02-2187598 Tel: 02-2187627 ext 101 E-mail: vtirayut@chula.ac.th

Contents	Page
1. Materials and methods	2
2. PNA/DNA sequences and melting temperatures	8
3. Spectroscopic analysis of capture experiments	10
3.1. General remarks	10
3.2. Immobilisation of biotinylated oligonucleotides	10
3.3. UV/Vis absorption spectroscopy of capture experiments	10
4. References	12

1. Materials and Methods

DNA0-DNA5 have been purchased from metabion international AG, DNA6-9 from biomers.net GmbH and pierce streptavidin magnetic beads from Thermo Fisher Scientific (Streptavidin monolayer covalently coupled to magnetic bead surface, bead concentration: 10mg/ml, binding capacitiy: ~ 3500 pmol biotinylated fluorescein/mg of beads).

Structures of Atto488 and DY649

Synthesis of PNA1-PNA5

The PNAs were synthesized manually by Fmoc-solid phase peptide synthesis on TentaGel S RAM resin (0.24 mmol/g substitution, 1.5 µmol for PNA2 and 1 µmol for PNA1,3-5) preloaded with Lys(Boc) using the standard protocol.^[1,2] Acpc PNA was modified at the N-terminus with biotin via two aminoethoxyethyoxyacetyl linkers. The nucleobase protecting groups (Bz and Ibu) were removed by NH₄OH:dioxane (1:1) treatment at 60 °C overnight. Cleavage of the PNA oligomers from the resin was achieved by treatment with trifluoroacetic acid (TFA). After precipitation with diethyl ether, the PNAs were purified by reverse phase HPLC using the following conditions: A = 0.1% TFA in water; B = 0.1% TFA in MeOH; gradient = 0-80% B over 70 min. The collected fractions were lyophilized and quantified by their absorbance at 260 nm. Identity was verified by MS (MALDI) in the linear negative mode (matrix: saturated CCA solution with H₂O:acetonitrile (1:1) + 0.1 % TFA) and purity was verified by analytical reverse phase HPLC.

(HPLC conditions: C18 column 4.6×50 mm 3 μ , gradient H₂O:MeOH containing 0.1% TFA 90:10 for 5 min then linear gradient to 10:90 over 30 min, 260 nm)

$M \cdot H^+$ (calculated) = 4670.1 g/mol

 $M \cdot H^+$ (found) = 4670.7 g/mol

 $M \cdot H^+$ (calculated) = 4654.1 g/mol

 $M \cdot H^+$ (found) = 4655.7 g/mol

 $M \cdot H^+$ (calculated) = 4703.1 g/mol

 $M \cdot H^+$ (found) = 4703.7 g/mol

2. PNA/DNA sequences and melting temperatures

Table S1:	Sequences	concerning	R1	75H	mutation
-----------	-----------	------------	----	-----	----------

PNA2:	Biotin-O-O-AGGCGCTGCCCC-LysNH ₂
PNA3:	Biotin-O-O-AGGCACTGCCCC-LysNH ₂
DNA10	5′-TGCGGGGCAGCGCCT-3′
DNA11	5'-TGCGGGGCAGTGCCT-3'
DNA12	5'-AGG <mark>CGC</mark> TGCCCC-3'
DNA13	5´-AGGCACTGCCCC-3´

Table S2: Sequences concerning R248Q mutation

PNA4	Biotin-O-O-AACCGGAGGCCC-LysNH ₂
PNA5	Biotin-O-O-AACCAGAGGCCC-LysNH ₂
DNA14	5′-TGCGGGCCT <mark>CCG</mark> GTT-3′
DNA15	5'-TGCGGGCCTCTGGTT-3'
DNA16	5´-AAC <mark>CGG</mark> AGGCCC-3´
DNA17	5'-AACCAGAGGCCC-3'

Melting temperatures

 T_m were recorded with a Varian Cary 100 spectrometer using 2.5µM PNA-DNA / DNA-DNA solutions in 10 mM NaP_i buffer (pH =7) and 250 mM NaCl: λ = 260 nm, 10-90 °C, interval: 0.7 °C/min.

PNA	DNA	T _m [°C]	-	
PNA2	DNA10	69.2	- 	ΔT – 160 °C
PNA2	DNA11	53.2	· _	$\Delta T_{\rm m} = 10.0$ C
PNA3	DNA10	36.3]	ΔT – 33.5 °C
PNA3	DNA11	69.8		$\Delta T_{\rm m} = 55.5$ C
DNA12	DNA10	66.3		ΔT – 10.6 °C
DNA12	DNA11	55.8		$\Delta T_{\rm m} = 10.0$ C
DNA13	DNA10	43.1		
DNA13	DNA11	62.3		$\Delta T_{\rm m} = 19.2$ °C

Table S3: $T_{\rm m}$ of PNA2-3, DNA12-13 with DNA10-11

PNA	DNA	$T_m [°C]$		
PNA2	DNA2	65.1		$\Delta T_m = 15.5 \ ^{\circ}C$
PNA2	DNA3	49.6		
PNA2	DNA6	67.4]	$\Delta T_m = 11.4 \ ^{\circ}C$
PNA2	DNA7	56.0		
PNA3	DNA2	29.3]	ΔT - 34.8 °C
PNA3	DNA3	64.1		Δ1 _m - 54.0 C
PNA3	DNA6	35.9]	ΔT – 38.0 °C
PNA3	DNA7	73.9		$\Delta T_{\rm m} = 50.0$ C

Table S4: T_m of PNA2-3 with DNA2-3/DNA6-7

Table S5: $T_{\rm m}$ of PNA4-5, DNA16-17 with DNA14-15

PNA	DNA	$T_m [^{\circ}C]$	-	
PNA4	DNA14	70.0		AT 124°C
PNA4	DNA15	56.6		$\Delta T_{\rm m} = 13.4$ °C
PNA5	DNA14	47.2		$\Delta T_{m} = 21.1 ^{\circ}C$
PNA5	DNA15	68.3		
DNA16	DNA14	63.9		
DNA16	DNA15	53.5		$\Delta T_{\rm m} = 10.4$ °C
DNA17	DNA14	45.9		$\Delta T_m = 15.2 \ ^{\circ}C$
DNA17	DNA15	61.1		

Table S6: $T_{\rm m}$ of PNA4-5 with DNA4-5/DNA8-9

DNA	$T_m [°C]$	-	
DNA4	70.7		ATT 15100
DNA5	55.6		$\Delta T_{\rm m} = 15.1 {}^{\circ}{\rm C}$
DNA8	70.5]	ATT 12.4.0C
DNA9	57.1		$\Delta I_{\rm m} = 13.4$ °C
DNA4	43.3		$\Delta T_{m} = 25.5 ^{\circ}$
DNA5	68.8		
DNA8	46.3		$\Delta T_{m} = 23.1 ^{\circ}C$
DNA9	69.4	-	$\Delta r_{\rm m} = 23.1$ C
	DNA DNA4 DNA5 DNA8 DNA9 DNA4 DNA5 DNA8 DNA9	DNA Tm [°C] DNA4 70.7 DNA5 55.6 DNA8 70.5 DNA9 57.1 DNA4 43.3 DNA5 68.8 DNA8 46.3 DNA9 69.4	DNA Tm [°C] DNA4 70.7 DNA5 55.6 DNA8 70.5 DNA9 57.1 DNA4 43.3 DNA5 68.8 DNA8 46.3 DNA9 69.4

3. Spectroscopic analysis of capture experiments

3.1. General remarks

All absorption spectra were recorded with a Varian Cary 100 spectrometer using 2.5 μ M solutions (V = 1 mL) in 10 mM NaP_i buffer (pH = 7) and 250 mM NaCl at 20°C, except otherwise mentioned. Oligonucleotide solutions were added to particles, after shaking they were kept for a certain time (specified in spectra). After capturing the Fe_xO_y particles with a magnet, the absorbance of the supernatant was measured spectrophotometrically.

3.2. Immobilisation of biotinylated oligonucleotides and biotinylated PNA

150 μ L of magnetic streptavidin coated Fe_xO_y particles (marked with "P" in the spectra) were added into an Eppendorf tube and washed three times with milliQ water (3×1 mL). Afterwards the biotinylated oligonucleotide (DNA0 or biotinylated PNA) was added for immobilization for 15min.

Figure S1: Immobilisation of **PNA3** on Fe_xO_y particles.

3.3. UV/Vis absorption spectroscopy of capture experiments

Figure S2: Measurements of DNA7 with PNA3 bearing particles.

Figure S3: Measurements with a) DNA0 and b) PNA1 bearing particles.

Figure S4: Measurements with PNA2 bearing particles.

Figure S5: Measurements with PNA3 bearing particles.

Figure S6: Measurements with PNA4 bearing particles.

Figure S7: Measurements with PNA5 bearing particles.

Figure S8: Hybridization control experiment of **DNA18** (5'-Cy5-GGGGGCAGTGCCT-3') and **PNA3**: (a) Equimolar hybridization of **DNA18** with **PNA3** bearing particles, (b) Hybrization of **DNA18** (1 equiv.) with excess of **PNA3** (1.2 equiv.) and subsequent immobilization on the streptavidin coated particles.

Figure S9: Control expertiment using "non-sense" **DNA19** (5'-Cy5-GATAGTCTCATCGTC-3') and magnetic paricles bearing non-complementary **DNA20** (5'-Biotin-GTACTGTGACTGATGCTGTGACGCA-3').

4. References

- [1] T. Vilaivan and C. Srisuwannaket, *Org. Lett.* **2006**, *8*, 1897.
- [2] C. Vilaivan, C. Srisuwannaket, C. Ananthanawat, C. Suparpprom, J. Kawakami, Y. Yamaguchi, Y. Tanaka and T. Vilaivan, *Artificial DNA: PNA & XNA* **2011**, *2*, 50.