Supporting Information:

Lewis Acid Promoted Dual Bond Formation: Facile Synthesis of Dihydrocoumarins & Spiro-Tetracyclic Dihydrocoumarins

P. Niharika, B. Venkat Ramulu, and G. Satyanarayana*

Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram – 502 205, Medak District, Andhra Pradesh, India. Fax: +91(40) 2301 6032 E-mail: gvsatya@iith.ac.in

Spectral data for the known compounds	S2-S6
¹ H-NMR and ¹³ C-NMR spectra for all new and known compounds	S7-S49

Ethyl cinnamate **5a** is commercially available and the other following cinnamate esters **5b**,¹ **5c**,² **5d**,³ **5e**,⁴ **5f**,⁴ **5g**,⁵ **5h**,⁵ **5i**⁶ and **5j**⁵ are known in the literature.

The following Michael addition ester product 8a⁷ is known in literature

The following 4-aryl-3,4-dihydrocoumarins 7a,⁸ 7b,⁹ 7c,⁷ 7d,¹⁰ 7f,¹¹ 7g,⁴ and 7h¹² are known in the literature.

¹M. Tani, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2004, **69**, 1221–1226

²A. Kubota, M. H. Emmert and M. S. Sanford, Org. Lett., 2012, 14, 1760-1763

³T. Hashimoto, T. Shiomi, J. Ito and H. Nishiyama, *Tetrahedron*, 2007, 63, 12883-12887

⁴S. Aoki, C. Amamoto, J. Oyamada and T. Kitamura, *Tetrahedron*, 2005, **61**, 9291–9297

⁵B. V. Ramulu, A. G. K. Reddy and G. Satyanarayana, *Synlett*, 2013, 24, 863–872

⁶ D. A. Evans, G. C. Andrews, T. T. Fujimoto and D. Wells, *Tetrahedron Lett.*, 1973, 16, 1389–1392

⁷ F. Song, S. Lu, J. Gunnet, J. Z. Xu, P. Wines, J. Proost, Y. Liang, C. Baumann, J. Lenhard, W. V. Murray, K. T.

Demarest and G.-H. Kuo, J. Med. Chem., 2007, 50, 2807-2817

⁸A. R. Jagdale and A. Sudalai, *Tetrahedron Lett.*, 2007, 48, 4895–4898

⁹A. R. Jagdale and A. Sudalai, *Tetrahedron Lett.*, 2008, 49, 3790–3793

¹⁰J. O. Park and S. W. Youn, Org. Lett., 2010, **12**, 2258–2261

¹¹W. H. Dos Santos and L. C. da Silva-Filho, Synthesis, 2012, 44, 3361–3365

¹²D. P. Kamat, S. G. Tilve and V. P. Kamat, *Tetrahedron Lett.*, 2012, 53, 4469–4472

The following 4-aryl-3,4-dihydrocoumarins **10a**,¹³ **10b**,¹⁴ and **10c**¹⁴ are known in the literature.

Data for the reported compounds:

4-phenylchroman-2-one (7a): ¹H NMR (CDCl₃, 400 MHz): δ =7.42–7.20 (m, 4H, ArH), 7.13 (d, 2H, *J*=8.8 Hz, ArH), 7.10 (d, 1H, *J*=7.8 Hz, ArH), 7.05 (ddd, 1H, *J*=7.8, 7.3 and 1.5 Hz, ArH), 6.96 (d, 1H, *J*=7.3 Hz, ArH), 4.31 (dd, 1H, *J*=7.8 and 5.9 Hz, ArCHCH₂CO), 3.77 (s, 3H, ArOCH₃), 3.04 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHCH_aH_bCO), 2.98 (dd, 1H, *J*=15.6 and 7.8 Hz, ArCHCH_aH_bCO) ppm.

¹³ J. Ferguson, F. Zeng and H. Alper, Org. Lett., 2012, **14**, 5602–5605

¹⁴ J. Chang, S. Wang, Z. Shen, G. Huang, Y. Zhang, J. Zhao, C. Li, F. Fan and C. Song, *Tetrahedron Lett.*, 2012, 53, 6755–6757

7-methyl-4-phenylchroman-2-one (7b): ¹H NMR (CDCl₃, 400 MHz): δ =7.31 (dd, 2H, *J*=8.3 and 7.3 Hz, ArH), 7.25 (t, 1H, *J*=7.3 Hz, ArH), 7.13 (d, 2H, *J*=8.3 Hz, ArH), 6.92 (s, 1H, ArH), 6.86 (d, 1H, *J*=7.8 Hz, ArH), 6.84 (d, 1H, *J*=7.8 Hz, ArH), 4.27 (dd, 1H, *J*=7.3 and 5.9 Hz, ArC*H*CH₂CO), 3.03 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHCH_aH_bCO), 2.96 (dd, 1H, *J*=15.6 and 7.3 Hz, ArCHCH_aH_bCO), 2.33 (s, 3H, ArCH₃) ppm.

6-methyl-4-phenylchroman-2-one (7c): ¹H NMR (CDCl₃, 400 MHz): δ =7.34 (dd, 2H, *J*=8.3 and 7.3 Hz, ArH), 7.28 (t, 1H, *J*=7.3 Hz, ArH), 7.15 (d, 2H, *J*=8.3 Hz, ArH), 7.08 (dd, 1H, *J*=8.3 and 2.0 Hz, ArH), 7.03 (d, 1H, *J*=8.3 Hz, ArH), 6.78 (br. s, 1H, ArH), 4.29 (dd, 1H, *J*=7.3 and 5.9 Hz, ArCHCH₂CO), 3.04 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHCH_aH_bCO), 3.00 (dd, 1H, *J*=15.6 and 7.3 Hz, ArCHCH_aH_bCO), 2.25 (s, 3H, ArCH₃) ppm.

4-(4-chlorophenyl)-6-methylchroman-2-one (7d): ¹H NMR (CDCl₃, 400 MHz): δ =7.31 (d, 2H, *J*=8.8 Hz, ArH), 7.19–7.05 (m, 3H, ArH), 7.01 (d, 1H, *J*=8.3 Hz, ArH), 6.76 (br. s, 1H, ArH), 4.27 (dd, 1H, *J*=7.3 and 6.4 Hz, ArCHCH₂CO), 3.02 (dd, 1H, *J*=15.6 and 6.4 Hz, ArCHCH_aH_bCO), 2.95 (dd, 1H, *J*=15.6 and 7.3 Hz, ArCHCH_aH_bCO), 2.26 (s, 3H, ArCH₃) ppm.

4-(4-methoxyphenyl)chroman-2-one (7f): ¹H NMR (CDCl₃, 400 MHz): δ=7.28 (ddd, 1H, *J*=7.8, 7.8 and 1.5 Hz, ArH), 7.11 (dd, 1H, *J*=8.3 and 1.0 Hz, ArH), 7.10–7.03 (m, 3H, ArH), 6.97 (d, 1H, *J*=7.3 Hz, ArH), 6.87 (d, 2H, *J*=8.8 Hz, ArH), 4.29 (dd, 1H, *J*=7.8 and 5.9 Hz,

ArC*H*CH₂CO), 3.79 (s, 3H, Ar-OCH₃), 3.04 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHC*H*_aH_bCO), 2.99 (dd, 1H, *J*=15.6 and 7.8 Hz, ArCHCH_aH_bCO) ppm.

4-(4-methoxyphenyl)-7-methylchroman-2-one (7g): ¹H NMR (CDCl₃, 400 MHz): δ =7.05 (d, 2H, *J*=8.8 Hz, ArH), 6.93 (s, 1H, ArH), 6.91–6.75 (m, 4H, ArH), 4.24 (dd, 1H, *J*=7.8 and 5.9 Hz, ArCHCH₂CO), 3.78 (s, 3H, Ar-OCH₃), 3.01 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHCH_aH_bCO), 2.95 (dd, 1H, *J*=15.6 and 7.8 Hz, ArCHCH_aH_bCO), 2.35 (s, 3H, ArCH₃) ppm.

4-(4-methoxyphenyl)-6-methylchroman-2-one (7h): ¹H NMR (CDCl₃, 400 MHz): δ =7.13–7.03 (m, 3H, ArH), 7.00 (d, 1H, *J*=8.3 Hz, ArH), 6.87 (d, 2H, *J*=8.8 Hz, ArH), 6.77 (s, 1H, ArH), 4.24 (dd, 1H, *J*=7.8 and 5.9 Hz, ArCHCH₂CO), 3.79 (s, 3H, Ar-OCH₃), 3.01 (dd, 1H, *J*=15.6 and 5.9 Hz, ArCHCH_aH_bCO), 2.96 (dd, 1H, *J*=15.6 and 7.8 Hz, ArCHCH_aH_bCO), 2.25 (s, 3H, ArCH₃) ppm.

4-methyl-2*H***-chromen-2-one (10a):** ¹H NMR (CDCl₃, 400 MHz): *δ*=7.60 (dd, 1H, *J*=8.8 and 1.5 Hz, ArH), 7.52 (ddd, 1H, *J*=8.8, 7.8 and 1.5 Hz, ArH), 7.32 (dd, 1H, *J*=8.8 and 1.5 Hz, ArH), 7.29 (ddd, 1H, *J*=7.8, 7.8 and 1.5 Hz, ArH), 6.29 (q, 1H, *J*=1.0 Hz, ArC(CH₃)=CH], 2.43 (d, 3H, *J*=1.0 Hz, ArC(CH₃)=CH] ppm.

4,7-dimethyl-2*H***-chromen-2-one (10b):** ¹H NMR (CDCl₃, 400 MHz): *δ*=7.43 (d, 1H, *J*=8.8 Hz, ArH), 7.07 (s, 1H, ArH), 7.06 (d, 1H, *J*=8.8 Hz, ArH), 6.17 (q, 1H, *J*=1.0 Hz, ArC(CH₃)=C*H*], 2.40 (s, 3H, ArCH₃), 2.37 (d, 3H, *J*=1.0 Hz, ArC(CH₃)=CH] ppm.

4,6-dimethyl-2*H***-chromen-2-one (10c):** ¹H NMR (CDCl₃, 400 MHz): *δ*=7.35 (s, 1H, ArH), 7.30 (d, 1H, *J*=8.3 Hz, ArH), 7.18 (d, 1H, *J*=8.3 Hz, ArH), 6.23 (s, 1H, ArC(CH₃)=CH], 2.40 [s, 6H, ArCH₃ and ArC(CH₃)=CH] ppm.

¹³C NMR (100 MHz) spectrum of **7b** in CDCl₃

190 180 ppm

¹³C NMR (100 MHz) spectrum of **7f** in CDCl₃

 $^{\rm 13}\text{C}$ NMR (100 MHz) spectrum of 7i in CDCl_3

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\bf 7j}$ in ${\rm CDCl}_{\rm 3}$

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of 7k in ${\rm CDCl}_{\rm 3}$

C NMR (100 MHz) spectrum of **9a** in CDCl₃

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\bf 9b}$ in CDCl_3

¹H NMR (400 MHz) spectrum of **9c** in CDCl₃

¹³C NMR (100 MHz) spectrum of **9c** in CDCl₃

¹³C NMR (100 MHz) spectrum of **9d** in CDCl₃

¹³C NMR (100 MHz) spectrum of **9e** in CDCl₃

S25

¹H NMR (400 MHz) spectrum of 9g in CDCl₃

¹³C NMR (100 MHz) spectrum of **9g** in CDCl₃

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\bf 9h}$ in ${\rm CDCI}_{\rm 3}$

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\rm 9i}$ in ${\rm CDCI}_{\rm 3}$

¹³C NMR (100 MHz) spectrum of **9j** in CDCl₃

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\rm 9k}$ in ${\rm CDCI}_{\rm 3}$

¹³C NMR (100 MHz) spectrum of **9I** in CDCl₃

Chloroform-d

¹³C NMR (100 MHz) spectrum of **9p** in CDCl₃

¹³C NMR (100 MHz) spectrum of **10a** in CDCl₃

ppm

140 130

180 170

¹³C NMR (100 MHz) spectrum of **11a** in CDCl₃

¹³C NMR (100 MHz) spectrum of **11b** in CDCl₃

¹³C NMR (100 MHz) spectrum of **12a** in CDCl₃

¹³C NMR (100 MHz) spectrum of **12b** in CDCl₃

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\rm 13e}$ in ${\rm CDCI}_{\rm 3}$

