Supporting Information

Efficient synthesis of mibefradil analogues: an insight into in vitro stability

Ji Eun Lee,,${ }^{\text {a,b, } \ddagger}$ Tae Hui Kwon,,${ }^{\text {a,c, } \ddagger}$ Su Jin Gu, ${ }^{\text {a }}$ Duck-Hyung Lee, ${ }^{\text {b }}$ B. Moon Kim, ${ }^{\text {c }}$ Jae Yeol Lee, ${ }^{\mathrm{d}}$ Jae Kyun Lee, ${ }^{\mathrm{a}}$ Seon Hee Seo, ${ }^{\mathrm{a}}$ Ae Nim Pae, ${ }^{\mathrm{a}, \mathrm{e}}$ Gyochang Keum, ${ }^{\mathrm{a}, \mathrm{e}}$ Yong Seo Cho, ${ }^{*, a, e}$ Sun-Joon Min ${ }^{*, \text { a,e }}$

${ }^{a}$ Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea
${ }^{b}$ Department of Chemistry, Sogang University, Seoul, 121-742, South Korea
${ }^{c}$ Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
${ }^{d}$ Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, South Korea
${ }^{e}$ Department of Biological Chemistry, University of Science and Technology (UST), 176 Gajung-dong, 217 Gajungro, Yuseong-gu, Daejeon, 305-333, South Korea
email: ys4049@kist.re.kr;sjmin@kist.re.kr

Table of Contents

I. Experimental Procedures for Scheme 4 S2
II. Experimental Procedures for 2ab-g, 2cb-g, 2db, and 2fb-d in Scheme 5 S18
III. Spectral Data S31

I. Experimental Procedures for Scheme 4

General Methods

All reactions were carried out under dry nitrogen unless otherwise indicated. Commercially available reagents were used without further purification. Solvents and gases were dried according to standard procedures. Organic solvents were evaporated with reduced pressure using a rotary evaporator. Analytical thin layer chromatography (TLC) was performed using glass plates precoated with silica gel (0.25 mm). TLC plates were visualized by exposure to UV light (UV), and then were visualized with a p-anisaldehyde stain followed by brief heating on hot plate. Flash column chromatography was performed using silica gel 60 (230400 mesh, Merck) with the indicated solvents. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker 300, Bruker 400 or Varian 300 NMR spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), integration, and coupling constant (J) in Hertz $(H z) .{ }^{1} H$ NMR chemical shifts are reported relative to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR was recorded relative to the central line of CDCl_{3} (77.0 ppm). HPLC data were acquired from a Waters Alliance System with UV detector set to at 254 and 280 nm . Samples were injected ($10 \mu \mathrm{~L}$) onto a Waters Sunfire 4.6 x $150 \mathrm{~mm}, 5.0 \mu \mathrm{M}, \mathrm{C} 18$ column maintained at $25.8^{\circ} \mathrm{C}$. A linear gradient from 30% to $100 \% \mathbf{B}$ (MeCN) in 20 min was followed by pumping 100% B for another 10 minutes with \mathbf{A} being $\mathrm{H}_{2} \mathrm{O}+0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ (or $\mathrm{NH}_{4} \mathrm{HCO}_{2}$). The flow rate was $1.0 \mathrm{~mL} / \mathrm{min}$.

Benzyl 4-(2-aminophenylamino)-4-oxobutyl(methyl)carbamate (17): To a solution of 4(methylamino)butyric acid hydrochloride ($1.00 \mathrm{~g}, 6.51 \mathrm{mmol}$) in $4 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ was added benzyl chloroformate ($1.02 \mathrm{~mL}, 7.16 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 1 h at room temperature. The resulting solution was extracted with diethyl ether (3 x 20 mL). The organic layers were washed with brine, dried over anhydrous MgSO_{4} and
concentrated in vacuo. Concentration afforded the Cbz-protected amine (1.28 g, 78\%), which was used for the next step without purification. The spectroscopic data were identical with those reported in the literature ${ }^{1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.12$ (s, 2H), 3.33-3.35 (m, 2H), 2.93 (s, 3H), 2.34-2.37 (m, 2H), 1.85-1.87 (m, 2H).

Benzyl 4-(2-aminophenylamino)-4-oxobutyl(methyl)carbamate (19a): To a solution of the Cbz protected amine 17 ($1.28 \mathrm{~g}, 5.09 \mathrm{mmol}$) in distilled THF (4 mL) was added TEA (1.07 mL) and a solution of isobutyl chloroformate ($0.67 \mathrm{~mL}, 5.09 \mathrm{mmol}$) in distilled THF (1 mL) at $-15^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 3 h at the same temperature. Then, a solution of 1,2-phenylene diamine 18a ($0.61 \mathrm{~g}, 5.60 \mathrm{mmol}$) in distilled THF (5 mL) was added to the reaction mixture at the same temperature. The reaction mixture was allowed to stir for 2 h at room temperature. The solvent was partially removed under reduced pressure. The resulting mixture was diluted aq NaHCO_{3} /ethyl acetate and extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:n-hexane $=4: 1$) to afford amide 19a ($1.40 \mathrm{~g}, 86 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.34-7.40 (m, 6H), 7.00-7.04 (m, 1H), 6.74-6.79 (m, 2H), 5.13 (s, 2H), 3.41-3.45 (m, 2H), $2.94(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 2 \mathrm{H})$.

Benzyl (4-((2-amino-4-methylphenyl)amino)-4-oxobutyl)carbamate (19b): The following the same procedure as that used for the synthesis of $\mathbf{1 9 a}$, the reaction of amine $\mathbf{1 7}(0.817 \mathrm{mg}$, 3.45 mmol), TEA ($721 \mu \mathrm{l}, 5.17 \mathrm{mmol}$), iso-butyl chloroformate ($451 \mu \mathrm{l}, 3.45 \mathrm{mmol}$), and 3,4diaminotoluene 18b ($463 \mathrm{mg}, 3.79 \mathrm{mmol}$) in dry THF gave amide $\mathbf{1 9 b}(0.91 \mathrm{mg}, 78 \%)$ as a

[^0]white solid after purification by column chromatography on silica gel (EtOAc:n-hexane $=$ 4:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}) 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.54 (s, 1H), 5.21 (s, 1H), 5.06 (s, 2H), 3.96 (s, 1H), 3.27-3.20 (m, 2H), 2.35 (t, $J=6.1 \mathrm{~Hz}$, 2 H), $2.22(\mathrm{~s}, 3 \mathrm{H}) 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,157.2,140.7$, 137.0, 136.4, 128.6, 128.1, 125.4, 121.5, 119.9, 118.2, 66.9, 40.1, 33.7, 26.6, 21.0. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} 341.17$, found 341 .

Benzyl (4-((2-amino-4-fluorophenyl)amino)-4-oxobutyl)carbamate (19c): The following the same procedure as that used for the synthesis of 19a, the reaction of amine $\mathbf{1 7}$ (799 mg , 3.36 mmol), TEA ($702 \mathrm{ml}, 5.04 \mathrm{mmol}$), iso-butyl chloroformate ($439 \mathrm{ml}, 3.36 \mathrm{mmol}$), and 4-fluoro-1,2-phenylenediamine 18c ($466 \mathrm{mg}, 3.69 \mathrm{mmol}$) in dry THF gave the carbamate 19c ($899 \mathrm{mg}, 78 \%$) as a brown solid after purification by column chromatography on silica gel $($ EtOAc:n-hexane $=4: 1) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H}), 7.17(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~m}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~m}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 173.4,162.1\left(\mathrm{~d},{ }^{1} J\right.$ $=239.6 \mathrm{~Hz}), 157.7144 .7,137.0,128.1,127.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.9 \mathrm{~Hz}\right)$, 118.9, 103.3 (d, $\left.{ }^{2} J=22.9 \mathrm{~Hz}\right), 102.2\left(\mathrm{~d},{ }^{2} J=25.8 \mathrm{~Hz}\right), 66.0,39.8,32.7$, 25.7. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3} 345.15$, found 345 .

Benzyl (4-((2-amino-4-chlorophenyl)amino)-4-oxobutyl)carbamate (19d): The following the same procedure as that used for the synthesis of 19a, the reaction of amine $\mathbf{1 7}(1.51 \mathrm{~g}$, $6.38 \mathrm{mmol})$, TEA ($1.33 \mathrm{ml}, 9.57 \mathrm{mmol}$), isobutyl chloroformate ($910 \mu \mathrm{~L}, 6.38 \mathrm{mmol}$), and 4-chloro-1,2-phenylenediamine ($1.00 \mathrm{~g}, 7.02 \mathrm{mmol}$) in dry THF gave amide $\mathbf{1 9 d}(1.67 \mathrm{~g}, 72 \%)$ as a yellow solid after purification by column chromatography on silica gel (EtOAc:n-hexane $=4: 1) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
6.72-6.65 (m, 2H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.88(\mathrm{~m}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,157.3,142.5,136.5,132.2$, $128.6,128.2,128.0,127.2,122.0,118.3,116.6,66.8,40.1,33.5,26.3$.

Benzyl (4-((2-amino-4-bromophenyl)amino)-4-oxobutyl)carbamate (19e): The following the same procedure as that used for the synthesis of 19a, the reaction of amine $\mathbf{1 7}(1.43 \mathrm{~g}$, $6.02 \mathrm{mmol})$, TEA ($1.26 \mathrm{ml}, 9.02 \mathrm{mmol}$), isobutyl chloroformate ($786 \mu 1,6.02 \mathrm{mmol}$), and 4-bromo-1,2-phenylenediamine $\mathbf{1 8 e}(1.24 \mathrm{~g}, 6.62 \mathrm{mmol})$ in dry THF gave amide $\mathbf{1 9 e}(1.64 \mathrm{~g}$, 67 \%) as a white solid after purification by column chromatography on silica gel (EtOAc:nhexane $=4: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=2.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~m}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H})$, 2.41 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 173.2$, 157.6, 144.0, 136.9, 129.4, 128.2, 127.7, 127.5, 122.2, 120.0, 118.8, 118.0, 66.2, 39.9, 33.0, 25.8.

Benzyl (4-((2-amino-4,5-dichlorophenyl)amino)-4-oxobutyl)carbamate (19f): The following the same procedure as that used for the synthesis of 19a, the reaction of amine $\mathbf{1 7}$ ($1.62 \mathrm{~g}, 6.83 \mathrm{mmol}$), TEA ($1.43 \mathrm{ml}, 10.6 \mathrm{mmol}$), isobutyl chloroformate ($893 \mu \mathrm{l}, 6.83 \mathrm{mmol}$), and 4,5-dichloro-1,2-phenylenediamine $\mathbf{1 8 f}(1.33 \mathrm{~g}, 7.52 \mathrm{mmol})$ in dry THF gave amide $\mathbf{1 9 f}$ ($2.51 \mathrm{~g}, 93 \%$) as a pale orange solid after purification by column chromatography on silica gel (EtOAc:n-hexane $=4: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.33-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $5.01(\mathrm{~s}, 2 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~m}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, MeOD) δ 173.1, 157.7, 142.3, 137.0, 129.4, 128.1, 127.6, 127.4, 126.9, 122.8, 118.6, 116.7, 66.1, 39.7, 32.8, 25.6

Benzyl (4-((2-amino-4-nitrophenyl)amino)-4-oxobutyl)carbamate (19g): The following the same procedure as that used for the synthesis of 19a, the reaction of amine $\mathbf{1 7}$ (695 mg , 2.93 mmol), TEA ($613 \mathrm{ml}, 4.40 \mathrm{mmol}$), isobutyl chloroformate ($383 \mathrm{ml}, 2.93 \mathrm{mmol}$), and 4-nitro-1,2-phenylenediamine ($494 \mathrm{mg}, 3.22 \mathrm{mmol}$) in dry THF gave amide $\mathbf{1 9 g}(0.26 \mathrm{~g}, 24 \%)$ as a orange solid after purification by column chromatography on silica gel (EtOAc:n-hexane $=4: 1)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.28(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=2.6,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.42 (m, 5H), 6.93 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.04(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 173.6,157.7,149.9$, 137.0, 136.8, 128.1, 127.6, 127.4, 123.4, 123.1, 120.8, 113.7, 66.1, 39.7, 32.7, 25.5

3-(1H-Benzo[d]imidazol-2-yl)-N-methylpropan-1-amine (19a'): To a solution of the amide 19a ($1.40 \mathrm{~g}, 4.10 \mathrm{mmol}$) in toluene (30 mL) was added p-toluenesulfonic acid monohydrate $(1.17 \mathrm{~g}, 6.15 \mathrm{mmol})$ at room temperature. The reaction mixture was treated under reflux condition with a Dean-Stark apparatus. The solvent was removed under reduced pressure. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (EtOAc only) to afford benzimidazole 19a' (0.60 g, 45\%). The spectroscopic data were identical with those reported in the literature ${ }^{13}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~s}$, 2 H), 3.40-3.44 (m, 2H), 2.96 (s, 3H), 2.86-2.90 (m, 2H), 1.99 (m, 2H).

Benzyl (3-(1H-benzo[d]imidazol-2-yl)propyl)carbamate (19b'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide $\mathbf{1 9 b}$ ($798 \mathrm{~g}, 2.44 \mathrm{mmol}$) and p-toluenesulfonic acid monohydrate ($695 \mathrm{mg}, 3.65 \mathrm{mmol}$) in dry benzene (24 ml) gave benzimidazole 19b' ($0.32 \mathrm{~g}, 42 \%$) as a yellow solid after purification by column
chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}=8.1$ Hz, 1H), 7.34 (s, 5H), 7.04 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.28$ (q, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,154.1,138.3,137.0,136.4,131.9,129.1,128.6,128.2,128.0,123.6$, 114.6, 114.2, 66.9, 39.7, 29.0, 25.7, 21.6. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ 323.16, found 323.

Benzyl (3-(5-fluoro-1H-benzo[d]imidazol-2-yl)propyl)carbamate (19c'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide $\mathbf{1 9 c}$ (975 mg , 2.82 mmol) and p-toluenesulfonic acid monohydrate ($591 \mathrm{mg}, 3.11 \mathrm{mmol}$) in dry toluene (25 ml) gave benzimidazole 19c' ($0.69 \mathrm{~g}, 75 \%$) as a white solid after purification by column chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.45-7.41 (m, $1 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H}), 7.21$ (dd, $J=2.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=2.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H})$. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{2} 327.14$, found 327.

Benzyl (3-(5-chloro-1H-benzo[d]imidazol-2-yl)propyl)carbamate (19d'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide $\mathbf{1 9 d}(1.67 \mathrm{~g}$, 4.62 mmol) and p-toluenesulfonic acid monohydrate ($958 \mathrm{mg}, 5.08 \mathrm{mmol}$) in dry toluene (28 ml) gave benzimidazole 19d' ($573 \mathrm{mg}, 36 \%$) as a brown oil after purification by column chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 5 \mathrm{H}), 7.21$ (dd, $J=1.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.50(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (s, 2H), $3.31(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~m}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 157.9,155.5,139.2,136.2,131.0,128.6,128.3,128.0,127.8,122.7$, 115.5, 114.7, 67.1, 39.5, 29.0, 25.5. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2}$ 343.11,
found 343.

Benzyl (3-(5-bromo-1H-benzo[d]imidazol-2-yl)propyl)carbamate (19e'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide $19 \mathrm{e}(1.64 \mathrm{~g}$, 4.04 mmol) and p-toluenesulfonic acid monohydrate ($923 \mathrm{mg}, 4.85 \mathrm{mmol}$) in dry toluene (40 ml) gave benzimidazole 19e' ($651 \mathrm{mg}, 41 \%$) as a brown oil after purification by column chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, MeOD) $\delta 7.58$ (d, $J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13$ (m, 6H), 3.16 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.96 (m, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 157.5,156.0,139.6,136.8$, 136.5, 128.1, 127.6, 127.4, 124.9, 117.2, 115.3, 114.8, 66.2, 39.9, 28.0, 25.8

Benzyl (3-(5,6-dichloro-1H-benzo[d]imidazol-2-yl)propyl)carbamate (19f'): The

 following the same procedure as that used for the synthesis of 19a', the reaction of amide $\mathbf{1 9 f}$ ($2.51 \mathrm{~g}, 6.33 \mathrm{mmol}$) and p-toluenesulfonic acid monohydrate ($1.32 \mathrm{~g}, 6.96 \mathrm{mmol}$) in dry toluene (30 ml) gave benzimidazole $\mathbf{1 9 f}^{\prime}$ ($624 \mathrm{mg}, 26 \%$) as a yellow solid after purification by column chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.43$ (s, 1H), $7.74(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 5 \mathrm{H}), 5.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~m}, J=4.0,2 \mathrm{H})$Benzyl (3-(5-nitro-1H-benzo[d]imidazol-2-yl)propyl)carbamate (19g'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide 19a ($358 \mathrm{mg}, 962$ $\mu \mathrm{mol}$) and p-toluenesulfonic acid monohydrate ($220 \mathrm{mg}, 1.15 \mathrm{mmol}$) in dry benzene (10 ml) gave benzimidazole 19g' ($296 \mathrm{mg}, 87 \%$) as a yellow solid after purification by column chromatography on silica gel (only EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.24$ (d, $J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{~s}$,

3H), $3.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, MeOD) $\delta 159.7,157.6,143.1,141.9,138.2,136.9,128.0,127.6,127.3,117.5$, 113.4, 111.0, 66.1, 39.8, 27.7, 25.9. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ 354.13, found 354.

3-(1H-benzo[d]imidazol-2-yl)propan-1-amine (4a): To a solution of the Cbz-protected amino benzimidazole 19a' ($600 \mathrm{mg}, 1.86 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg}$, $10 \%(\mathrm{w} / \mathrm{w}))$ at room temperature. The reaction mixture was stirred for 3 h under a hydrogen atmosphere (with the aid of a hydrogen balloon). It was filtered through a pad of Celite ${ }^{\circledR}$ and the solvent was removed under reduce pressure. Concentration afforded amine 5 (351 mg , quantitative) as a brown solid, which was used for the next step without further purification; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H})$.

3-(5-Methyl-1H-benzo[d]imidazol-2-yl)propan-1-amine (4b): The following the same procedure as that used for the synthesis of $\mathbf{4 a}$, the reaction of carbamate $\mathbf{1 9 b}$ ($515 \mathrm{~g}, 1.59$ mmol) and $\mathrm{Pd} / \mathrm{C}(51 \mathrm{mg}, 5 \%(\mathrm{w} / \mathrm{w})$ in dry $\mathrm{MeOH}(15 \mathrm{ml})$ gave amine $\mathbf{4 b}(131 \mathrm{mg}, 43 \%)$ as a brown oil after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{Cl}=80: 4: 1: 1\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 1H), 7.28 (s, 1H), 6.97 (d, $J=8.1,1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,138.7$, 137.2, 131.6, 123.3, 114.4, 114.1, 41.3, 30.9, 27.1, 21.6. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}$ 189.13, found 189.

3-(5-Fluoro-1H-benzo[d]imidazol-2-yl)propan-1-amine (4c): The following the same
procedure as that used for the synthesis of 4a, the reaction of carbamate 19c' ($699 \mathrm{mg}, 2.01$ mmol) and Pd / C ($69 \mathrm{mg}, 10 \%(\mathrm{w} / \mathrm{w})$ in dry $\mathrm{MeOH}(21 \mathrm{ml}$) gave amine 4c ($374 \mathrm{mg}, \geq 99 \%$) as a pale pink solid ; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.41(\mathrm{dd}, J=4.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J$ $=2.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=3.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 2.91 ($\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 159.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}=235.0 \mathrm{~Hz}\right), 156.0$, $138.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.0 \mathrm{~Hz}\right), 134.0,114.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10 \mathrm{~Hz}\right), 109.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}=25 \mathrm{~Hz}\right), 100.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}=26\right.$ Hz), 40.3, 30.1, 25.8. LRMS-EI (m / z): [M^{+}calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FN}_{3}$ 193.10, found 193.

3-(5-Chloro-1H-benzo[d]imidazol-2-yl)propan-1-amine (4d): The following the same procedure as that used for the synthesis of 4a, the reaction of carbamate 19d' (573 mg, 1.67 mmol) and $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg}, 10 \%(\mathrm{w} / \mathrm{w})$) in dry MeOH (15 ml) gave amine 4c ($334 \mathrm{mg}, 96 \%$) as a yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, J $=1.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~m}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 156.1,139.2,136.6,127.4,122.2,114.8,114.0,40.0$, 29.0, 25.7. LRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}_{3}$ 209.07, found 209.

3-(5-Bromo-1H-benzo[d]imidazol-2-yl)propan-1-amine (4e): The solution of the N-Cbz protected amine 19e' (221 mg, $569 \mu \mathrm{~mol})$ in $6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was allowed to warm to reflux for 1 h . Concentration afforded isopropylchroman-3-ol $\mathbf{4 e}(175 \mathrm{mg}, \geq 99 \%)$ as a brown solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=$ 8.0 Hz, 2H), 3.17 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~m}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD})$ $\delta 153.7,132.1,130.1,129.3,118.8,116.5,115.1,38.4,24.4,23.6$.

3-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)propan-1-amine (4f): The following the same procedure as that used for the synthesis of $\mathbf{4 a}$, the reaction of carbamate $\mathbf{1 9 f}$ ($601 \mathbf{~ m g}, 1.59$
mmol) and Pd / C ($60 \mathrm{mg}, 10 \%(\mathrm{w} / \mathrm{w})$ in dry $\mathrm{MeOH}(15 \mathrm{ml})$ gave amine $\mathbf{4 f}(354 \mathrm{mg}, 91 \%)$ as a pale red brown solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.45(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.75 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.95(\mathrm{~m}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 157.5$, 137.6, 125.3, 115.3, 40.1, 29.2, 25.8

3-(5-Nitro-1H-benzo[d]imidazol-2-yl)propan-1-amine (4g): The following the same procedure as that used for the synthesis of $\mathbf{4 e}$, the reaction of carbamate $\mathbf{1 9 g}$ ($140 \mathbf{m g}, 396$ $\mu \mathrm{mol})$ in $6 \mathrm{~N} \mathrm{HCl}(4 \mathrm{ml})$ gave amine $\mathbf{4 g}(111 \mathrm{mg}, \geq 99 \%)$ as a pale yellow solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=1.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~m}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, MeOD) δ 157.2, 145.9, 135.0, 131.0, 121.2, 113.5, 110.3, 38.4, 24.3, 24.1.

3-(1-Tosyl-1H-benzo[d]imidazol-2-yl)propan-1-ol (20a'): To a solution of alcohol 20a ($35.7 \mathrm{mg}, 188 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF ($3 \mathrm{ml} / 3 \mathrm{ml}$) was added $p-\mathrm{TsCl}(119 \mathrm{mg}, 624 \mu \mathrm{~mol}$), DMAP ($3.50 \mathrm{mg}, 28.4 \mu \mathrm{~mol}$) and TEA $(57.4 \mathrm{mg}, 568 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 4 h at room temperature. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:n-hexane = 4:1) to afford the protected amine 20a' (106 mg, 57\%); ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.04-8.01 (m, 1H), 7.80-7.78 (m, 2H), 7.64-7.61 (m, 1H), 7.36-7.24 (m, 4H), 3.78 (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ (s, 1H), 3.32 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.35 (s, 3H), 2.21-2.15 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.0, 146.1, 141.5, 135.4, 133.1, 130.3, 126.8, 124.9, 124.7, 119.7, 113.6, 61.9, 30.1, 27.1, 21.7.

3-(1-Tosyl-1H-benzo[d]imidazol-2-yl)propanal (21a): Dess-Martin periodinane (72.9 mg,
$172 \mu \mathrm{~mol}$) was added to a solution of alcohol 20a' ($51.6 \mathrm{mg}, 156 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. After stirring for 2 h , the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. NaHCO_{3}. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:n-hexane $=1: 1$) to afford the aldehyde 21a ($38.4 \mathrm{mg}, 75 \%$) as a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.99$ (m, 1H), 7.85 (dd, $J=1.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2,153.2$, $146.1,141.8,135.3,133.3,130.3,126.9,124.9,124.6,119.9,113.5,40.3,22.7,21.7$.

3-(5-Methyl-1-tosyl-1H-benzo[d]imidazol-2-yl)propan-1-ol (20b'): The following the same procedure as that used for the synthesis of 20a', the reaction of benzimidazole 20b ($35.7 \mathrm{mg}, 188 \mu \mathrm{~mol}$), $\mathrm{p}-\mathrm{TsCl}(39.4 \mathrm{mg}, 206 \mu \mathrm{~mol}$), DMAP ($1.15 \mathrm{mg}, 9.38 \mu \mathrm{~mol}$) and TEA $(19.0 \mathrm{mg}, 188 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF (1:1) gave the N -protected benzimidazole 20b' (34.2 mg, 53\%) after purification by column chromatography on silica gel (EtOAc:n-hexane $=4: 1) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}$, 1H), 7.27-7.24 (m, 2H), 7.16-7.11 (m, 1H), 3.76 (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.49 ($\mathrm{s}, 1 \mathrm{H}$), 2.41 ($\mathrm{s}, 2 \mathrm{H}$), 2.36 (d, $J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.15$ (m, 2H).

3-(1-Tosyl-1H-benzo[d]imidazol-2-yl)propanal (21b): The following the same procedure as that used for the synthesis of 21a, the reaction of alcohol 20b' (34.2 mg, $100 \mu \mathrm{~mol}$) and DessMartin periodinane ($46.3 \mathrm{mg}, 110 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 ml) gave aldehyde 21b (25.4 mg , 75%) as a brown oil after purification by column chromatography on silica gel (EtOAc:nhexane $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}$, 1H), 7.30 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14 (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49-3.44$ (m, 2H), 3.14 (t, $J=6.8 \mathrm{~Hz}$,

2H), 2.49 (s, 1H), $2.42(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.3, 153.2, 152.6, 145.9, 142.0, 139.8, 135.4, 135.3, 135.1, 134.6, 133.5, 131.3, 130.3, 130.3, 126.8, 126.2, 126.0, 119.8, 119.3, 113.5, 113.0, 40.4, 22.7, 22.0, 21.7, 21.3

2-(1H-Benzo[d]imidazol-2-yl)ethanol (23a): o-Phenylenediamine 22 ($3.31 \mathrm{~mL}, 48.5 \mathrm{mmol}$) and 3-hydroxypropionitrile ($4.20 \mathrm{~g}, 38.8 \mathrm{mmol}$) dissolved in conc. $\mathrm{HCl}(18 \mathrm{~mL})$ were refluxed for 14 h . The reaction mixture was neutralized with ammonia solution until pH 8 was reached at ice-bath. Neutralization gave brown powder which was filtered with water to give benzimidazole 23a ${ }^{2}$ ($2.56 \mathrm{~g}, 41 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta$ 7.49-7.50 (m, 2H), 7.17$7.20(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD})$ $\delta 153.0,137.1,122.3,113.9,59.5,31.7$.

2-(5-Methyl-1H-benzo[d]imidazol-2-yl)ethanol (23b): The following the same procedure as that used for the synthesis of 23a, the reaction of 3,4 -diaminotoluene ($2.00 \mathrm{~g}, 16.37 \mathrm{mmol}$) and 3-hydroxypropionitrile ($1.45 \mathrm{~g}, 20.46 \mathrm{mmol}$) dissolved in conc. $\mathrm{HCl}(10 \mathrm{~mL})$ gave benzimidazole $\mathbf{2 3 b}^{3}(0.36 \mathrm{~g}, 13 \%)$ as a white solid after purification by column chromatography on silica gel (EtOAc:MeOH = 10:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.38(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=1.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 152.7,138.0,136.6,131.6$, 123.2, 113.8, 113.6, 59.7, 32.0, 20.3.

2-(5-Fluoro-1H-benzo[d]imidazol-2-yl)ethanol (23c): The following the same procedure as that used for the synthesis of 23a, the reaction of 4-fluoro-1,2-phenylenediamine (2.00 g ,

[^1]15.86 mmol) and 3-hydroxypropionitrile ($1.24 \mathrm{~g}, 17.44 \mathrm{mmol}$) dissolved in conc. HCl (10 mL) gave benzimidazole 23c ($1.70 \mathrm{~g}, 59 \%$) as a brown powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD})$ $\delta 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=1.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=1.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 159.4(\mathrm{~d}, J=236.0 \mathrm{~Hz})$, $154.5,137.6(\mathrm{~d}, ~ J=13.0 \mathrm{~Hz}), 133.7,114.6(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 110.2(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 100.1(\mathrm{~d}$, $J=27.0 \mathrm{~Hz}), 59.4,31.7$.

2-(5-Chloro-1H-benzo[d]imidazol-2-yl)ethanol (23d): The following the same procedure as that used for the synthesis of 23a, the reaction of 4-chloro-1,2-phenylenediamine (5.00 g , 35.08 mmol) and 3-hydroxypropionitrile ($3.12 \mathrm{~g}, 4.85 \mathrm{mmol}$) dissolved in conc. HCl (16 mL) gave benzimidazole $\mathbf{2 3 d}^{3}$ ($1.53 \mathrm{~g}, 22 \%$) as a pale-yellow solid after purification by column chromatography on silica gel (EtOAc:MeOH = 10:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.48(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.5 \mathrm{~Hz}$, 2H), 3.09 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 154.6,139.1,136.6,127.3$, 122.1, 114.8, 114.0, 59.5, 32.0.

2-(2-(1H-Benzo[d]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23a'): To a solution of N hydroxyphthalimide ($700 \mathrm{mg}, 4.29 \mathrm{mmol}$), benzimidazole 23a ($580 \mathrm{mg}, 3.58 \mathrm{mmol}$), and $\mathrm{PPh}_{3}(1.31 \mathrm{~g}, 5.01 \mathrm{mmol})$ in distilled THF (17 mL) was added DIAD ($0.97 \mathrm{~mL}, 5.01 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at room temperature. The solvent of reaction mixture was removed under reduced pressure. The resulting mixture was extracted with EtOAc and washed with brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica-gel (EtOAc:n-hexane $=2: 1$) to give N-alkoxyphtalimide 23a' ($0.21 \mathrm{~g}, 19 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) δ 7.77-7.80 (m, 2H), 7.72-7.73 (m, 2H), 7.56-7.59 (m, 2H), 7.18-
$7.21(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.4151 .5135 .0128 .6123 .9122 .376 .3 28.6.

2-(2-(5-Methyl-1H-benzo[d]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23b'): The following the same procedure as that used for the synthesis of 23a', the reaction of N hydroxyphthalimide ($330 \mathrm{mg}, 2.02 \mathrm{mmol}$), methylbenzimidazole 23b ($356 \mathrm{mg}, 2.02 \mathrm{mmol}$), $\mathrm{PPh}_{3}(583 \mathrm{mg}, 2.22 \mathrm{mmol})$ and DIAD ($0.43 \mathrm{~mL}, 2.22 \mathrm{mmol}$) in distilled THF (12 mL) gave the N-alkoxyphthalimide 23b' ($350 \mathrm{mg}, 54 \%$) as a white solid after purification by column chromatography on silica gel (EtOAc: $\mathrm{CHCl}_{3}=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.81$ (m, 2H), 7.72-7.75 (m, 2H), 7.44 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.34$ (s, 1H), 7.01 (dd, $J=1.1,8.2 \mathrm{~Hz}$, 1H) 4.56 (t, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(2-(5-Fluoro-1H-benzo[d]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23c'): The following the same procedure as that used for the synthesis of 23a', the reaction of N hydroxyphthalimide ($1.53 \mathrm{~g}, 9.38 \mathrm{mmol}$), fluorobenzimidazole 23 c ($1.69 \mathrm{~g}, 9.38 \mathrm{mmol}$), $\mathrm{PPh}_{3}(2.71 \mathrm{~g}, 10.32 \mathrm{mmol})$ and DIAD ($2.00 \mathrm{~mL}, 10.32 \mathrm{mmol}$) in distilled THF (60 mL) gave the N-alkoxyphtalimide $\mathbf{2 3 c}^{\prime}(0.17 \mathrm{~g}, 6 \%)$ as a white solid after purification by column chromatography on silica gel (EtOAc: $\mathrm{CHCl}_{3}=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.84$ (s, 4H), 7.41-7.44 (m, 1H), $7.24(\mathrm{dd}, J=2.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}) \delta 163.7$, [158.8 (d, $J=$ $234.0 \mathrm{~Hz})$ and $158.5(\mathrm{~d}, J=232.0 \mathrm{~Hz})$], [153.6 and 152.6], [144.0 (d, $J=12.0 \mathrm{~Hz})$ and 134.7 (d, $J=14.0 \mathrm{~Hz}$)], [140.2 and 131.3], 135.2, 129.1, 123.6, [119.3 (d, $J=10.0 \mathrm{~Hz}$) and 111.9 (d, $J=1.0 \mathrm{~Hz})],[109.9(\mathrm{~d}, J=25.0 \mathrm{~Hz})$ and $109.3(\mathrm{~d}, J=24.0 \mathrm{~Hz})],[104.1(\mathrm{~d}, J=23.0 \mathrm{~Hz})$ and $97.8(\mathrm{~d}, \mathrm{~J}=27.0 \mathrm{~Hz})$], 75.3, 28.8.

2-(2-(5-Chloro-1H-benzo[d]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23d'): The following the same procedure as that used for the synthesis of 23a', the reaction of N hydroxyphthalimide ($292 \mathrm{mg}, 1.79 \mathrm{mmol}$), chlorobenzimidazole 23d ($352 \mathrm{mg}, 1.79 \mathrm{mmol}$), $\mathrm{PPh}_{3}(516 \mathrm{mg}, 1.97 \mathrm{mmol})$ and DIAD ($0.38 \mathrm{~mL}, 1.97 \mathrm{mmol}$) in distilled THF (10 mL) gave the N-alkoxy phthalimide 23d' ($44 \mathrm{mg}, 7 \%$) as a white solid after purification by column chromatography on silica gel (EtOAc: $\mathrm{CHCl}_{3}=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.84$ (s, 4H), 7.44-7.50 (m, 2H), 7.11-7.16 (m, 1H), $4.64(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}) \delta$ 163.7, [153.6 and 153.1], [144.6 and 142.4], 135.2, [135.4 and 133.5], 129.0, [126.5 and 125.8], 123.6, [122.2 and 121.7], [119.8 and 118.0], [112.6 and 111.2], 75.2, 28.8.

O-(2-(1H-Benzo[d]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5a): To a solution of N-alkoxyphthalimide 23a' ($120 \mathrm{mg}, 0.39 \mathrm{mmol}$) in $\mathrm{EtOH}(3 \mathrm{~mL})$ was added hydrazine monohydrate at room temperature. The reaction mixture was stirred for 3 h at $80^{\circ} \mathrm{C}$. The resulting solution was filtered through a pad of silica gel and washed with EtOAc. The filtrate was solidified by treatment of 1 M solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(0.39 \mathrm{~mL})$ to give N-alkoxyamine 5a ($45 \mathrm{mg}, 54 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.81-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 4.62$ (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$.

O-(2-(5-Methyl-1H-benzo[d]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5b): The following the same procedure as that used for the synthesis of $\mathbf{5 a}$, the reaction of N alkoxyphthalimide 23b' ($350 \mathrm{mg}, 1.09 \mathrm{mmol}$), hydrazine monohydrate in EtOH (4 mL) gave the N-alkoxyamine $5 \mathbf{b}$ ($120 \mathrm{mg}, 48 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H), 7.62 (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=0.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 149.4,137.1,131.2,128.9$,

O-(2-(5-Fluoro-1H-benzo[d]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5c): The following the same procedure as that used for the synthesis of $\mathbf{5 a}$, the reaction of N alkoxyphthalimide 23c' (167 mg, 0.51 mmol), hydrazine monohydrate in EtOH (2 mL) gave the N-alkoxyamine $5 \mathrm{c}\left(101 \mathrm{mg}, 85 \%\right.$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.87$ (dd, $J=4.3$, 9.1 Hz, 1H), $7.63(\mathrm{~d}, ~ J=2.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=2.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.72(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 161.1(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 151.3,131.5$ (d, $J=13.0 \mathrm{~Hz}), 127.5,115.2(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}), 114.8(\mathrm{~d}, ~ J=26.0 \mathrm{~Hz}), 100.2(\mathrm{~d}, J=28.0 \mathrm{~Hz})$, 70.6, 25.7.

O-(2-(5-Chloro-1H-benzo[d]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5d): The following the same procedure as that used for the synthesis of $\mathbf{5 a}$, the reaction of N alkoxyphthalimide 23d' ($140 \mathrm{mg}, 0.41 \mathrm{mmol}$), hydrazine monohydrate in EtOH (3 mL) gave the N-alkoxyamine $5 \mathbf{d}$ ($52 \mathrm{mg}, 51 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.91$ (s, 1H) 7.83-7.85 $(\mathrm{m}, 1 \mathrm{H})$ 7.63-7.67 (m, 1H) 4.62-4.66 (m, 2H), 3.69-3.72 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , MeOD) $\delta 151.3,132.0,131.7,129.7,126.9,114.9,113.6,70.5,25.7$.

II. Experimental Procedures for 2ab-g, 2cb-g, 2db, and 2fb-d in Scheme 5

(\pm)-(3S,4S)-7-Fluoro-4-isopropyl-3-(2-((3-(6-methyl-1H-benzo[d]imidazol-2-

yl)propyl)amino)ethyl)chroman-3-ol (2ab)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4b ($19.7 \mathrm{mg}, 104 \mu \mathrm{~mol}$), sodium cyanoborohydride ($6.53 \mathrm{mg}, 104 \mu \mathrm{~mol}$), aldehyde 3 (26.2 $\mathrm{mg}, 104 \mu \mathrm{~mol}$) and acetic acid in $\mathrm{MeOH}(2 \mathrm{~mL})$ gave amine 2ab ($13.5 \mathrm{mg}, 31 \%$) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=\right.$ 80:20:1:1) as a brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=6.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=2.6,8.3$ Hz, 1H), 6.49 (dd, $J=2.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}) 4.11$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=1.6,10.9 \mathrm{~Hz}$, 1H), 3.00-2.92 (m, 4H), 2.76-2.65 (m, 2H) 2.57 (s, 1H), 2.44 (s, 3H), 2.02 (m, $J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.70(\mathrm{~m}, ~ J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3\left(\mathrm{~d},{ }^{1} J=242 \mathrm{~Hz}\right), 153.8,153.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12 \mathrm{~Hz}\right), 138.0,136.7,132.2$, $131.7\left(\mathrm{~d},{ }^{3} J=10 \mathrm{~Hz}\right), 123.8,118.8\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 114.6,114.1,107.1\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 103.1$ $\left(\mathrm{d},{ }^{2} J=25 \mathrm{~Hz}\right), 71.0,67.8,51.6,47.7,44.8,34.6,27.8,27.0,26.6,25.5,21.6,21.0$. HPLC: 96.4%, RT 17.52 min . HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FN}_{3} \mathrm{O}_{2} 426.2551$, found 426.2555.
(土)-(3S,4S)-7-Fluoro-3-(2-((3-(6-fluoro-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)-4-isopropylchroman-3-ol (2ac)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4c ($53.7 \mathrm{mg}, 278 \mu \mathrm{~mol}$), sodium cyanoborohydride ($8.46 \mathrm{mg}, 139 \mu \mathrm{~mol}$), aldehyde 3 (35.9 $\mathrm{mg}, 139 \mu \mathrm{~mol}$) and acetic acid in $\mathrm{MeOH}(3 \mathrm{~mL})$ gave amine 2ac ($(15.6 \mathrm{mg}, 26 \%$) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=\right.$

80:20:1:1) as a brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=4.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=2.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95-6.89 (m, 2H), 6.57 (td, $J=2.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (dd, $J=2.5$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 4 \mathrm{H})$, $2.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.3\left(\mathrm{~d},{ }^{1} J=243 \mathrm{~Hz}\right), 159.3\left(\mathrm{~d},{ }^{1} J=237 \mathrm{~Hz}\right), 155.3\left(\mathrm{~d},{ }^{4} J=2 \mathrm{~Hz}\right), 153.5\left(\mathrm{~d},{ }^{3} J=\right.$ $11 \mathrm{~Hz}), 138.3\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}\right), 134.5,131.7\left(\mathrm{~d},{ }^{3} J=10 \mathrm{~Hz}\right), 118.7\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d},{ }^{3} J\right.$ $=10 \mathrm{~Hz}), 110.6\left(\mathrm{~d},{ }^{2} J=25 \mathrm{~Hz}\right), 107.2\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 103.2\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 100.9\left(\mathrm{~d},{ }^{2} J=26\right.$ $\mathrm{Hz}), 70.9,67.8,51.4,47.9,44.6,34.8,27.9,26.8,26.2,25.4,21.0$. HPLC: 96.2%, RT 13.38 min. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} 430.2301$, found 430.2303.

(\pm)-(3S,4S)-3-(2-((3-(6-Chloro-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)-7-fluoro-

4-isopropylchroman-3-ol (2ad)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4d ($31.7 \mathrm{mg}, 151 \mu \mathrm{~mol}$), sodium triacetoxyborohydride ($48.0 \mathrm{mg}, 227 \mu \mathrm{~mol}$), aldehyde 3 ($38.1 \mathrm{mg}, 151 \mu \mathrm{~mol}$) and acetic acid in MeOH (3 mL) gave the secondary amine 2ad (17.4 mg, 26\%) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=80: 20: 1: 1\right)$ as a white oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.50 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=1.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=$ $6.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (td, $J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}) 4.10(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{~m}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{~m}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.56(\mathrm{~m}$, 2H), 1.17 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $0.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4$ (d, ${ }^{1} J=242 \mathrm{~Hz}$), 155.2, $153.6\left(\mathrm{~d},{ }^{3} J=11 \mathrm{~Hz}\right.$), 139.2, 137.0, $131.7\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}\right), 127.9,122.8$, $118.8\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 115.3,114.7,107.1\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.2\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 71.3,67.9$,
51.7, 47.5, 45.1, 34.6, 27.9, 27.1, 26.5, 25.5, 21.0. HPLC: 93.0\%, RT 16.65 min. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ClFN}_{3} \mathrm{O}_{2} 446.2005$, found 446.2008.

(土)-(3S,4S)-3-(2-((3-(6-Bromo-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)-7-fluoro-

4-isopropylchroman-3-ol (2ae)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4e ($41.5 \mathrm{mg}, 143 \mu \mathrm{~mol}$), sodium cyanoborohydride ($5.99 \mathrm{mg}, 95.2 \mu \mathrm{~mol}$) and aldehyde 3 ($24.6 \mathrm{mg}, 95.2 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(2 \mathrm{~mL}$) gave amine 2ae ($6.70 \mathrm{mg}, 14 \%$) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=80: 20: 1: 1\right)$ as a brown oil, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $6.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=1.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.92-2.91 (m, 2H), $2.59(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{t}, \mathrm{J}=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=243 \mathrm{~Hz}\right), 154.3$, $153.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12 \mathrm{~Hz}\right), 138.3,136.0,131.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10 \mathrm{~Hz}\right)$, 130.9, 126.0, $118.2\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 117.6,115.9,107.6\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.3\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right)$, 70.2, 67.2, 50.9, 48.1, 43.9, 34.5, 28.1, 26.7, 25.4, 23.4, 21.0. HPLC: 95.2\%, RT 13.72 min . HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BrFN}_{3} \mathrm{O}_{2} 490.1500$, found 490.1501 .

(土)-(3S,4S)-3-(2-((3-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)-7-

fluoro-4-isopropylchroman-3-ol (2af)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4 ($60.4 \mathrm{mg}, 2.47 \mathrm{mmol}$), sodium cyanoborohydride ($20.7 \mathrm{mg}, 333 \mu \mathrm{~mol}$), aldehyde 3 (42.6 $\mathrm{mg}, 165 \mu \mathrm{~mol}$) and acetic acid in $\mathrm{MeOH}(3 \mathrm{~mL})$ gave amine 2af ($36.6 \mathrm{mg}, 46 \%$) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=\right.$

80:20:1:1) as a brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=6.6,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}) 4.08(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, 1H), 3.91 (dd, $J=2.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97-2.93 (m, 4H), 2.71 (m, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (m, J $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3$ (d, $\left.{ }^{1} J=242 \mathrm{~Hz}\right), 156.5,153.5\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}\right), 137.8,131.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10 \mathrm{~Hz}\right), 126.1,118.7$ (d, $\left.{ }^{4} J=3 \mathrm{~Hz}\right), 115.9,107.2\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 103.2\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 71.6,67.9,51.7,47.6,45.2$, 34.6, 27.8, 27.4, 26.5, $25.5,21.0$. HPLC: 91.5%, RT 4.31 min . HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{FN}_{3} \mathrm{O}_{2}$ 480.1615, found 480.1617.

(\pm)-(3S,4S)-7-Fluoro-4-isopropyl-3-(2-((3-(6-nitro-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)chroman-3-ol (2ag)

Acetic acid was added to a solution of amine $\mathbf{4 g}(44.3 \mathrm{mg}, 171 \mu \mathrm{~mol})$ in anhydrous MeOH (3 mL) until pH 6 was reached. To this solution was added sodium cyanoborohydride (10.8 mg , $171 \mu \mathrm{~mol})$, aldehyde 3 ($43.5 \mathrm{mg}, 171 \mu \mathrm{~mol}$). After stirring for 3.5 h at room temperature, the reaction mixture was stirred for an additional 5 h at $45^{\circ} \mathrm{C}$. The reaction was monitored by TLC, quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ after completion of the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL). The organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}=\right.$ 80:20:1:1) to afford amine $\mathbf{2 a g}(17.6 \mathrm{mg}, 24 \%)$ as a yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=2.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J$ $=6.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}) 4.13(\mathrm{~d}, J$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 2 \mathrm{H})$ 2.79-2.73 (m, 1H), 2.70-2.64 (m, 1H), 2.59 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, \mathrm{~J}$
$=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4\left(\mathrm{~d},{ }^{1} J=243 \mathrm{~Hz}\right), 158.57,153.5\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}\right), 143.2$, 142.4, 138.0, $131.7\left(\mathrm{~d},{ }^{3} J=10 \mathrm{~Hz}\right), 118.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}=3 \mathrm{~Hz}\right), 118.2,114.1,111,7,107.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}=\right.$ 21 Hz), 103.3 (d, ${ }^{2} J=24 \mathrm{~Hz}$), 71.4, 67.6, 51.5, 47.7, 44.9, 34.5, 28.0, 26.8, 26.1, 25.5, 21.0. HPLC: 98.2\%, RT 12.66 min . HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{4}$ 457.2246, found 457.2246.
(\pm)-(3S,4S)-7-Fluoro-4-isopropyl-3-(2-(isopropyl(3-(6-methyl-1H-benzo[d]imidazol-2-

yl)propyl)amino)ethyl)chroman-3-ol (2cb)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2ab ($33.3 \mathrm{mg}, 78.3 \mu \mathrm{~mol}$), acetic acid ($8.96 \mu \mathrm{~L}, 156 \mu \mathrm{~mol}$), sodium cyanoborohydride (9.84 $\mathrm{mg}, 156 \mu \mathrm{~mol})$ and acetone ($23.0 \mu \mathrm{~L}, 313 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave amine 2cb (36.6 mg , $46 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a pale brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{td}, J=3.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}$, $J=3.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=2.2,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H})$, 2.96-2.89 (m, 2H), 2.75 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.56-2.45 (m, 2H), 2.45-2.34 (m, 4H), 2.15-2.01 (m, 2H), 1.66-1.60 (m, 2H), 1.16 (d, $J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ (d, $J=8.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.64$ (d, $J=$ $9.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=242 \mathrm{~Hz}\right.$), 154.1, $153.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12\right.$ $\mathrm{Hz})$, 138.1, 136.8, 132.1, $131.6\left(\mathrm{~d},{ }^{3} J=10 \mathrm{~Hz}\right), 123.7,118.8\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 114.5,114.1$, $107.0\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.1\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 71.1,68.4,51.4,49.8,48.7,45.5,32.2,27.7,26.5$, 25.6, 25.5, 21.6, 20.9, 17.3, 16.6. HPLC: 95.9\%, RT 16.91 min . HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{FN}_{3} \mathrm{O}_{2} 468.2021$, found 468.3024.

(\pm)-(3S,4S)-7-Fluoro-3-(2-((3-(6-fluoro-1H-benzo[d]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-4-isopropylchroman-3-ol (2cc)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2ac ($46.7 \mathrm{mg}, 109 \mu \mathrm{~mol}$), acetic acid ($12.5 \mu \mathrm{~L}, 217 \mu \mathrm{~mol}$), sodium cyanoborohydride (13.7 $\mathrm{mg}, 217 \mu \mathrm{~mol}$) and acetone ($31.9 \mu \mathrm{~L}, 435 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave amine 2cc (12.7 mg , $25 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a pale brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.12 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-$ $6.93(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (dd, $J=1.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (t, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60$ (s, 1H), 2.57-2.44 (m, 3H), 2.13-2.00 (m, 2H), 1.66-1.55 (m, 2H), 1.18 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=4.3,6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=242 \mathrm{~Hz}\right), 159.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}=236 \mathrm{~Hz}\right), 155.7,153.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12 \mathrm{~Hz}\right), 138.5$, 135.2, $131.5\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}\right), 118.7\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 114.9,110.3\left(\mathrm{~d},{ }^{2} J=25 \mathrm{~Hz}\right), 107.1\left(\mathrm{~d},{ }^{2} J=\right.$ $22 \mathrm{~Hz}), 103.1\left(\mathrm{~d},{ }^{2} J=25 \mathrm{~Hz}\right), 100.8,71.6,68.5,51.5,49.2,48.2,45.6,32.1,27.7,26.3,26.1$, 25.5, 20.8, 17.4, 16.6. HPLC: 95.5\%, RT 15.93 min . HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ 472.2770, found 472.2771.

(土)-(3S,4S)-3-(2-((3-(6-Chloro-1H-benzo[d]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2cd)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2ad ($29.7 \mathrm{mg}, 66.6 \mu \mathrm{~mol}$), acetic acid ($7.63 \mu \mathrm{~L}, 133 \mu \mathrm{~mol}$), sodium cyanoborohydride (8.37 $\mathrm{mg}, 133 \mu \mathrm{~mol})$ and acetone ($19.6 \mu \mathrm{~L}, 266 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave amine 2cd (4.50 mg , $14 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a pale brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=1.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.95(\mathrm{~d}, J=6.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$
(dd, $J=2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=1.8,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}$, $1 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.00$ (m, 2H), 1.65-1.55(m, 2H), 1.18 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ (dd, $J=4.3,6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.68$ (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=242 \mathrm{~Hz}\right), 155.5,153.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $12 \mathrm{~Hz}), 139.4,137.0,131.5\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}\right), 127.8,122.7,118.6\left(\mathrm{~d},{ }^{4} J=2 \mathrm{~Hz}\right), 115.3,114.7$, $107.1\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.1\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 71.4,68.4,51.4,49.7,48.4,45.6,32.1,27.7,26.3$, 25.7, 25.5, 20.8, 17.4, 16.6. HPLC: 94.8\%, RT 16.74 min . HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{ClFN}_{3} \mathrm{O}_{2} 488.2475$, found 488.2477.

(\pm)-(3S,4S)-3-(2-((3-(6-Bromo-1H-benzo[d]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2ce)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2ae ($63.4 \mathrm{mg}, 129 \mu \mathrm{~mol}$), acetic acid ($14.4 \mu \mathrm{~L}, 259 \mu \mathrm{~mol}$), sodium cyanoborohydride (16.2 $\mathrm{mg}, 259 \mu \mathrm{~mol}$) and acetone ($38.0 \mu \mathrm{~L}, 517 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1.3 \mathrm{~mL})$ gave amine 2ce (20.2 mg , $29 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=$ 6.6, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (td, $J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (dd, $J=2.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{dd}, J=3.9,6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=243 \mathrm{~Hz}\right), 155.6,153.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12 \mathrm{~Hz}\right), 140.4,137.7,131.5$ $\left(\mathrm{d},{ }^{3} J=10 \mathrm{~Hz}\right), 125.3,118.7\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 117.8,115.7,115.1,107.1\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.1$ (d, $\left.{ }^{2} J=24 \mathrm{~Hz}\right), 71.7,68.5,51.5,49.0,48.1,45.6,32.1,27.6,26.2,26.125 .5,20.8,17.5,16.6$. HPLC: 95.5%, RT 16.91 min. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{BrFN}_{3} \mathrm{O}_{2}$ 532.1969, found 532.1971.

(\pm)-(3S,4S)-3-(2-((3-(5,6-Dichloro-1H-benzo[d]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2cf)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2af ($7.20 \mathrm{mg}, 15.0 \mu \mathrm{~mol}$), acetic acid ($1.72 \mu \mathrm{~L}, 30.0 \mu \mathrm{~mol}$), sodium cyanoborohydride (1.88 $\mathrm{mg}, 30.0 \mu \mathrm{~mol})$ and acetone ($4.40 \mu \mathrm{~L}, 60.0 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(150 \mu \mathrm{~L})$ gave amine 2cf (3.70 $\mathrm{mg}, 47 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10\right.$: 1) as a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.94$ (dd, $J=6.5,8.4 \mathrm{~Hz}$, 1H), 6.58 (td, $J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91$ (dd, $J=1.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, J=6.64 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.67$ (m, 1H), 1.18-1.12 (m, 9H), $0.66(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4$ (d, $J=243 \mathrm{~Hz}), 156.8,153.6(\mathrm{~d}, J=12 \mathrm{~Hz}), 138.0,131.5(\mathrm{~d}, J=9 \mathrm{~Hz}), 126.0,118.6(\mathrm{~d}, \mathrm{~J}=3$ $\mathrm{Hz}), 115.9,107.1(\mathrm{~d}, J=22 \mathrm{~Hz}), 103.1(\mathrm{~d}, J=25 \mathrm{~Hz}), 71.6,68.4,51.4,49.2,48.2,45.6,32.1$, 27.7, 26.2, 25.9, 25.4, 20.8, 17.5, 16.5. HPLC: 88.9\%, RT 4.97 min . HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{FN}_{3} \mathrm{O}_{2}$ 522.2085, found 522.2086.

(\pm)-(3S,4S)-7-Fluoro-4-isopropyl-3-(2-(isopropyl(3-(6-nitro-1H-benzo[d]imidazol-2-

yl)propyl)amino)ethyl)chroman-3-ol (2cg)

The following the same procedure as that used for the synthesis of 2ca, the reaction of amine 2ag ($40.2 \mathrm{mg}, 88.0 \mu \mathrm{~mol}$), acetic acid ($10.1 \mu \mathrm{~L}, 176 \mu \mathrm{~mol}$), sodium cyanoborohydride (11.7 $\mathrm{mg}, 176 \mu \mathrm{~mol}$) and acetone ($25.9 \mu \mathrm{~L}, 352 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave amine $\mathbf{2 c g}(17.1 \mathrm{mg}$, $39 \%)$ after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=2.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=6.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=2.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=$
$2.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=1.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H})$, 3.06-2.92 (m, 2H), $2.75(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.02$ (m, 2H), $1.63(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{dd}, J=6.7,9.1 \mathrm{~Hz}, 6 \mathrm{H})$, $0.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} J=243 \mathrm{~Hz}\right), 159.3$, 153.6 (d, ${ }^{3} J=11 \mathrm{~Hz}$), 143.4, 142.9, 138.4, $131.5\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}\right), 118.6\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 118.2,114.0$, 111.9, $107.2\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right.$), $103.2\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right.$), 71.9, 68.6, 51.4, 49.0, 48.1, 45.7, 32.0, 27.7, 26.5, 26.2, 25.5, 20.8, 17.7, 16.4. HPLC: 96.7%, RT 14.98 min . HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{FN}_{4} \mathrm{O}_{4}$ 499.2715, found 499.2716.

(\pm)-(3S,4S)-7-Fluoro-4-isopropyl-3-(2-((2,2,2-trifluoroethyl)amino)ethyl)chroman-3-ol (24b)

To a solution of the aldehyde $3(31.8 \mathrm{mg}, 126 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was sequentially added trifluoroethylamine ($28.5 \mathrm{mg}, 288 \mu \mathrm{~mol}$) and sodium cyanoborohydride ($13.6 \mathrm{mg}, 216$ $\mu \mathrm{mol})$ at room temperature. The reaction was allowed to stir for 18 h at the same temperature. The reaction mixture was quenched with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 15 mL) and washed with brine. The organic layers were dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ to afford amine $\mathbf{2 4 b}(38.8 \mathrm{mg}, 80 \%)$ as a colorless oil.; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92$ (dd, $\left.J=6.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.54(\mathrm{td}, J=2.6,8.4 \mathrm{~Hz}$, 1H), 6.47 (dd, $J=2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (dd, $J=2.2,11.1 \mathrm{~Hz}$, 2H), 3.25-3.12 (m, 2H), 3.05-2.95 (m, 2H), 2.52-2.50 (m, 1H), 2.36-2.27 (m, 1H), 1.68-1.58 (m, 2H), $1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.3\left(\mathrm{~d},{ }^{1} J=242 \mathrm{~Hz}\right), 153.6\left(\mathrm{~d},{ }^{3} J=12 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d},{ }^{3} J=10 \mathrm{~Hz}\right), 125.0\left(\mathrm{q},{ }^{1} J=277 \mathrm{~Hz}\right)$, $119.1\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 107.0\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 103.1\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 70.6,68.0,51.5,50.2\left(\mathrm{q},{ }^{2} J\right.$ $=31 \mathrm{~Hz}$), 45.4, 35.9, 27.9, 25.4, 21.3.

(\pm)-(3S,4S)-3-(2-(Cyclopropyl(3-(5-methyl-1H-benzo[d]imidazol-2-

yl)propyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2db)

The following the same procedure as that used for the synthesis of 2da, the reaction of amine 24a ($22.9 \mathrm{mg}, 78.1 \mu \mathrm{~mol}$), acetic acid ($8.49 \mu \mathrm{~L}, 148 \mu \mathrm{~mol}$), sodium cyanoborohydride (9.32 $\mathrm{mg}, 148 \mu \mathrm{~mol}$) and aldehyde 21b ($25.4 \mathrm{mg}, 74.2 \mu \mathrm{~mol}$) in MeOH (1 mL) gave tertiary amine intermediate; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=6.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{td}, J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=2.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{dd}, J=1.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~m}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.77(\mathrm{~m}$, $3 \mathrm{H}), 2.51(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}$, 2H), 1.83-1.78 (m, 1H), 1.64 (t, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 7H).

The reaction of the above tertiary amine ($37.6 \mathrm{mg}, 61.0 \mu \mathrm{~mol}$) and tetrabutylammonium fluoride ($607 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ solution in THF) in THF (1 mL) gave amine 2db ($16.0 \mathrm{mg}, 57 \%$) after purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ as a brown oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=$ $1.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=6.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=3.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=$ $2.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=2.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}$, $4 H), 2.65-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.57(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.66-0.55(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=242 \mathrm{~Hz}\right), 154.1,153.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}=14 \mathrm{~Hz}\right), 138.2,137.0,132.0,131.6$ $\left(\mathrm{d},{ }^{3} J=10 \mathrm{~Hz}\right), 123.7,118.8\left(\mathrm{~d},{ }^{4} J=3 \mathrm{~Hz}\right), 114.8,114.3,107.0\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 103.1\left(\mathrm{~d},{ }^{2} J=\right.$ 25 Hz), 71.6, 68.3, 54.2, 53.1 51.4, 37.9, 32.2, 27.8, 26.6, 25.5, 25.3, 21.6, 21.0, 6.7, 6.3.

HPLC: 96.1\%, RT 19.07 min . HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{2} 466.2864$, found 466.2868 .
(\pm)-(3S,4S)-2-(7-Fluoro-3-hydroxy-4-isopropylchroman-3-yl)acetaldehyde methyl-1H-benzo[d]imidazol-2-yl)ethyl) oxime (2fb)

The following the same procedure as that used for the synthesis of $\mathbf{2 f a}$, the reaction of aldehyde 3 ($41 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(34 \mathrm{mg}, 0.24 \mathrm{mmol})$ and N-alkoxyamine $5 \mathbf{b}$ (41 mg , 0.18 mmol) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave an inseparable mixture of oximes $\mathbf{2 f b}(17 \mathrm{mg}, 25 \%, E / Z$ $=1: 1)$ after purification by column chromatography on silica gel (EtOAc: n-hexane $=1: 1$); isomer A: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.42(\mathrm{~m}, 2 \mathrm{H})$, $4.06(\mathrm{~d}, ~ J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.63(\mathrm{~m}$, $1 \mathrm{H}), 2.36-2.44(\mathrm{~m}, 6 \mathrm{H}), 1.14$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4(\mathrm{~d}, \mathrm{~J}=243.0 \mathrm{~Hz}$), 153.6, $151.9149 .0,138.0$ (broad), 136.7 (broad), 132.3, 131.7, 123.9, 118.5, 114.6 (broad), 114.2 (broad), 107.5 (d, $J=21.0 \mathrm{~Hz}$), 103.4 (d, $J=$ $24.0 \mathrm{~Hz}), 71.1,70.4,68.2,50.8,38.5,29.3,28.3,25.1,21.0$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}_{3} 426.2188$, found 426.2186 ; isomer B: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.41$7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.93-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.49-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.42(\mathrm{~m}, 2 \mathrm{H})$, $4.13(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.63(\mathrm{~m}$, 2H), 2.36-2.44 (m, 5H), 1.17 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.68 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4(\mathrm{~d}, \mathrm{~J}=243.0 \mathrm{~Hz}$), 153.5, 152.1, 148.8138 .0 (broad), 136.7 (broad), $132.3,131.6,123.9,118.5,114.6$ (broad), 114.2 (broad), 107.5 (d, $J=21.0 \mathrm{~Hz}$), 103.3 (d, $J=$ 24.0 Hz), 71.4, 70.6, 68.7, 51.0, 35.4, 29.3, 28.1, 25.2, 21.0. HPLC (mixture): 88.2%, RT 5.83 min.

fluoro-1H-benzo[d]imidazol-2-yl)ethyl) oxime (2fc)

The following the same procedure as that used for the synthesis of $\mathbf{2 f a}$, the reaction of aldehyde 3 ($48 \mathrm{mg}, 0.19 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(39 \mathrm{mg}, 0.29 \mathrm{mmol})$ and N-alkoxyamine 5 c (52 mg , $0.21 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave an inseparable mixture of oximes $\mathbf{2 f c}(17 \mathrm{mg}, 21 \%, E / Z=$ 2:1) after purification by column chromatography on silica gel (EtOAc:n-hexane = 1:1); major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.53 (m, 2 H), 7.23-7.25 (m, 1 H), 6.93$7.02(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=$ $1.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.13$ (d, $J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4(\mathrm{~d}, J=243.0 \mathrm{~Hz})$, 159.6 (d, $J=237.0 \mathrm{~Hz}$), 153.4 (broad), 149.2, 137.5 (broad), 133.8 (broad), 131.7, 131.6, $118.4,115.2$ (broad), 111.3 (d, $J=25.0 \mathrm{~Hz}$), 107.6 (d, $J=21.0 \mathrm{~Hz}$), $103.4(\mathrm{~d}, J=24.0 \mathrm{~Hz})$, $101.0(\mathrm{~d}, \mathrm{~J}=26.0 \mathrm{~Hz}), 70.8,70.5,68.2,50.8,38.5,29.1,28.3,25.1,21.0$. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ 430.1937, found 430.1933; minor isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.53 (m, 1H), 7.23-7.25 (m, 1H), 6.93-7.02 (m, 3H), 6.51-6.62 (m, 2H), 4.42-4.46 (m, 2H), 4.12 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.93$ (m, 1H), 3.25-3.34 (m, 2H), 2.59-2.63 (m, 3H), 2.31-2.42 (m, 1H), 1.16 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 159.6(\mathrm{~d}, J=237.0 \mathrm{~Hz}), 153.4$ (broad), 148.7, 137.5 (broad), 133.8 (broad), 131.7, 131.6, 118.4, 115.2 (broad), 11123 (d, $J=26.0 \mathrm{~Hz}$), 107.6 (d, J $=19.0 \mathrm{~Hz}), 103.4(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}), 101.0(\mathrm{~d}, \mathrm{~J}=26.0 \mathrm{~Hz}), 71.1,70.9,68.5,51.0,35.4,29.4$, 28.2, 25.2, 21.0. HPLC (mixture): 86.9\%, RT 3.52 min.
(\pm)-(3S,4S)-2-(7-Fluoro-3-hydroxy-4-isopropylchroman-3-yl)acetaldehyde
aldehyde 3 ($48 \mathrm{mg}, 0.19 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ and N-alkoxyamine $5 \mathbf{d}$ ($52 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ gave the inseparable mixture of oximes $\mathbf{2 f d}(18 \mathrm{mg}, 21 \%, E / Z=2: 1)$ after purification by column chromatography on silica gel (EtOAc:n-hexane $=1: 1$); major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}$, 1H), 6.93-6.97 (m, 1H), 6.52-6.63 (m, 2H), 4.40-4.44 (m, 2H), 4.07 (d, J = $11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dd, $J=1.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22-3.32 (m, 2H), 2.58 (s, 1H), 2.04-2.41 (m, 3H), 1.11 (d, $J=$ $5.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4(\mathrm{~d}, J=243.0 \mathrm{~Hz})$, 153.5 (broad), 149.0, 139.0 (broad), 137.0 (broad), 131.7 (d, $J=100.0 \mathrm{~Hz}$), 128.1, 122.0, $118.4,115.6$ (broad), 114.7 (broad), 107.6 (d, $J=21.0 \mathrm{~Hz}$), 103.4 (d, $J=24.0 \mathrm{~Hz}), 70.9,70.6$, 68.2, $50.8,38.5,29.4,28.3,25.1,21.0$. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClFN}_{3} \mathrm{O}_{3}$ 446.1641, found 446.1638; minor isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.43 (m, 1H), 7.16-7.19 (m, 1H), 6.93-6.97 (m, 1H), 6.52-6.63 (m, 2H), 4.40-4.44 (m, $2 \mathrm{H}), 4.12(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=1.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.62$ (m, 3H), 2.04-2.41 (m, 1H), $1.15(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4$ (d, $J=242.0 \mathrm{~Hz}$), 153.5 (broad), 148.6, 139.0 (broad), 137.0 (broad), $131.7(\mathrm{~d}, \mathrm{~J}=100.0 \mathrm{~Hz}), 128.0,122.0,118.4,115.6$ (broad), 114.7 (broad), 107.7 (d, $J=21.0$ $\mathrm{Hz}), 103.4(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}$), 71.2, 70.9, 68.5, 51.0, 35.4, 29.3, 28.2, 25.2, 20.9. HPLC (mixture): 86.3\%, RT 6.40 min .

	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{8}$		－0－0～	
	－				丕号
	－\quad－${ }_{\text {c }}^{\sim}$		～		
			品8安它出		\rightarrow～岛号
	ㅍ 조N 可				

 $\begin{array}{r}135.195 \\ \square \begin{array}{r}131.156 \\ 131.029\end{array} \\ \begin{array}{r}123.885 \\ \\ \hline\end{array} 123.838 \\ \hline\end{array}$
-70.084
-62.172

WJ／ZH	OGILO O2Z	WJZH
w3／wdd	000S ${ }^{\circ} 0$	WJWdd
ZH	90．002－	2」
wdd	OOS 0－	dこ」
	$\angle \varepsilon^{\prime}$ LOC力	If
wdd	OOS ${ }^{\circ}$	dち」
	$00 \cdot 8$	10
шว	00．02	xJ
ssazawesed 子oโd ywn ol		
	00．	วd
	0	89
ZH	OE： 0	87
	0	8S5
	W3	MOM
2 HW	マ6000Et 000	± 5
	89 2 己E	IS
şafawe		
2HW	0Tニちこと「008	10．5
	00°	LT
วasก	OG．if	Id
		โกก
＝＝＝if TJNNHHO		
Jas	00000910．0	Y YM ${ }^{\text {W }}$
Јas	000000000	15383W
Jas	00000000 1	IO
	L＇962	$\exists 1$
Jasn	$00 \cdot 9$	$\exists 0$
Jasn	000°	MO
	$\varepsilon \cdot \mathrm{S}$	9 y
jas		OV
2 H	ャโESて！ 0	S3P0I」
2 H	96I「8L2日	HMS
	0	SO
	91	SN
	003 W	INJA $70 S$
	98Gc9	01
	$00^{6} \mathrm{z}$	90 9d7nd
	／JEL tena ww 9	OHEOUd
	73ads	WhyISNI
	89 记	วแ¢1
	80E0LIO2	－aze0

$\stackrel{\rightharpoonup}{\omega}$

留男男

zHW 86て8ZZ9•00I
 $=======$ LI TGNN甘HD

$$
\square \square_{\square}
$$

$$
\text { دəs } \begin{aligned}
& \tau \\
& 86666668^{\circ} \tau
\end{aligned}
$$

89LZ民
วəs $96 \tau 乙 \varepsilon 9 \varepsilon \cdot \tau$

 PROCNO界

Current Data Parameters
$2011-03-17$ 2

\qquad $\begin{array}{ll}\text { MCREST } & 0.00000000 \mathrm{sec} \\ \text { MCWRK } & 0.01500000 \mathrm{sec}\end{array}$ jas 00000000 I To
 $\begin{array}{ll}\text { 3วsก } 00.9 & \text { ココ } \\ \text { כasn } 000 \cdot 09 & \text { MO }\end{array}$ AQ $\quad 3.9584243 \mathrm{sec}$ $\begin{array}{ll}\text { SWH } & 8278.146 \mathrm{~Hz} \\ \text { FIDRES } & 0.126314 \mathrm{~Hz}\end{array}$ 둗 PROBHD
PULPROG
TD
SOLVENT
 bogolloc
suazawesed voṛfisṭnbov -27 EXPNO
PROCNO
 Current Data Parameters
KTH-m-62

1.9320
<1.9291
<1.6574
1.6552

udd

udd

\qquad

$\begin{array}{r}48.49 \\ H \begin{array}{r}48.27 \\ 48.06 \\ -47.85 \\ -47.42 \\ 47.21 \\ 47.00 \\ 39.97 \\ 29.00 \\ 25.72\end{array} \\ \hline\end{array}$

2HW	8009TIL•00才	ZOES
M	T00000Lて＊0	ε LMTd
M	โ00عとદとを＊0	こIMTd
M	$00000000^{\circ} \mathrm{Z}$ L	ZMTd
วəsn	00.06	このdつd
	HI	乙วกN
	91z7tem	て〇¢オのdつ

2HW	ロレロ6ても9•00さ	LOBS
M	00000000＊2S	LM＇Id
oesn	$00^{\circ} 0$ I	［d
	DET	IDON

[^2]
udd

$\infty=\frac{1.041}{2.029}$
\square

-157.46
1.137 .61
-125.28
-115.25

$1-1 . \quad 157.17$

$========$ II THNNVHD

$\begin{array}{ll} & \tau \\ \text { วəs } & 000000 \varepsilon 0^{\circ} 0 \\ \text { วəs } 00000000^{\circ}\end{array}$
号号罳曾界思药
\qquad 0au

$\begin{array}{ll}\text { Current Data Parameters } \\ \text { NAME } & \text { LJE－2nd－37 }\end{array}$

Ludd 0

 $=======$ โI TaNN*Hว $========$旲号

udd 0
163.53
-161.11
-153.77
-153.63
-153.51

51.60
$-\quad 47.66$
$-\quad 44.83$
-34.60
$\begin{array}{r}27.82 \\ -26.96 \\ 26.56 \\ -25.49 \\ -21.61 \\ -21.02\end{array}$

77.33
$-\quad 77.01$
-76.69
$-\quad 7 \mathbf{7}-34$
$-\quad 67.85$
51.70
$-\quad 47.54$
$-\quad 45.06$
34.60
-27.89
27.14
-26.46
-25.47
-27.01
0 ppm

2 H	Ot．${ }^{\text {I }}$		วa
		0	qэ
	$00^{\circ} \mathrm{T}$		${ }_{\text {q7 }}$
		0	ass
	W：		mam
z Нط	0988289•00T		HS
	89 12 ¢		IS
sxəfaurexed buțssəวoxd－Za			
z HW	8009Itz•00才		20\＃S
M	T00000Lz＇0		ELMTd
	T00£とをとを ${ }^{\circ} 0$		ETMTd
	00000000＊2T		ZMTd
	00＊06		zロสつd
วəsn	HT		zJon
	9 927тем		zפษ

[^3]
F2－Ac
ONDOYA
ONZXI
NWHN

(

udd 0

-6.27
-6.09
$--163.46$
$-\quad-161.04$
-153.75
-153.54
-131.75
-131.65
-119.37
-119.34
-106.87
-100.65
-103.10
-102.86

[^0]: ${ }^{1}$ M. Tegoni, L. Ferretti, F. Sansone, M. Remelli, V. Bertolasi, F. Dallavalle, Chem. E ur. J. 2007, 13, 1300.

[^1]: ${ }^{2}$ G. B. Bachman, L. V. Heisy, J. Am. Chem. Soc. 1949, 71, 1985-8.
 ${ }^{3}$ S. Akihama, M. Okude, K. Sato, S. Iwabauchi, Yakugaku Zasshi 1968, 88, 684-689.

[^2]: NAME
 EXPNO
 PROCNO

[^3]:

