Supporting Information

Efficient synthesis of mibefradil analogues: an insight into in vitro stability

Ji Eun Lee,^{a,b,‡} Tae Hui Kwon,^{a,c,‡} Su Jin Gu,^a Duck-Hyung Lee,^b B. Moon Kim,^c Jae Yeol

Lee,^d Jae Kyun Lee,^a Seon Hee Seo,^a Ae Nim Pae,^{a,e} Gyochang Keum,^{a,e} Yong Seo Cho,^{*,a,e}

Sun-Joon Min^{*,a,e}

^aCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and

Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea

^bDepartment of Chemistry, Sogang University, Seoul, 121-742, South Korea

^cDepartment of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea

^dDepartment of Chemistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, South Korea

^eDepartment of Biological Chemistry, University of Science and Technology (UST), 176 Gajung-dong, 217 Gajungro, Yuseong-gu, Daejeon, 305-333, South Korea

email: ys4049@kist.re.kr;sjmin@kist.re.kr

Table of Contents

I.	Experimental Procedures for Scheme 4	S2
II.	Experimental Procedures for 2ab-g, 2cb-g, 2db, and 2fb-d in Scheme 5	S18
III.	Spectral Data	S31

I. Experimental Procedures for Scheme 4

General Methods

All reactions were carried out under dry nitrogen unless otherwise indicated. Commercially available reagents were used without further purification. Solvents and gases were dried according to standard procedures. Organic solvents were evaporated with reduced pressure using a rotary evaporator. Analytical thin layer chromatography (TLC) was performed using glass plates precoated with silica gel (0.25 mm). TLC plates were visualized by exposure to UV light (UV), and then were visualized with a *p*-anisaldehyde stain followed by brief heating on hot plate. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck) with the indicated solvents. ¹H and ¹³C spectra were recorded on Bruker 300, Bruker 400 or Varian 300 NMR spectrometers. ¹H NMR spectra are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant (J) in Hertz (Hz). ¹H NMR chemical shifts are reported relative to CDCl₃ (7.26 ppm). ¹³C NMR was recorded relative to the central line of CDCl₃ (77.0 ppm). HPLC data were acquired from a Waters Alliance System with UV detector set to at 254 and 280 nm. Samples were injected (10 µL) onto a Waters Sunfire 4.6 x 150 mm, 5.0 µM, C18 column maintained at 25.8 °C. A linear gradient from 30% to 100% B (MeCN) in 20 min was followed by pumping 100% **B** for another 10 minutes with **A** being $H_2O + 0.1$ M NH₄OAc (or NH₄HCO₂). The flow rate was 1.0 mL/min.

Benzyl 4-(2-aminophenylamino)-4-oxobutyl(methyl)carbamate (17) : To a solution of 4-(methylamino)butyric acid hydrochloride (1.00 g, 6.51 mmol) in 4 N NaOH (5 mL) was added benzyl chloroformate (1.02 mL, 7.16 mmol) at 0 °C. The reaction mixture was allowed to stir for 1 h at room temperature. The resulting solution was extracted with diethyl ether (3 x 20 mL). The organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. Concentration afforded the Cbz-protected amine (1.28 g, 78%), which was used for the next step without purification. The spectroscopic data were identical with those reported in the literature¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.26-7.36 (m, 5H), 5.12 (s, 2H), 3.33-3.35 (m, 2H), 2.93 (s, 3H), 2.34-2.37 (m, 2H), 1.85-1.87 (m, 2H).

Benzyl 4-(2-aminophenylamino)-4-oxobutyl(methyl)carbamate (19a): To a solution of the Cbz protected amine **17** (1.28 g, 5.09 mmol) in distilled THF (4 mL) was added TEA (1.07 mL) and a solution of isobutyl chloroformate (0.67 mL, 5.09 mmol) in distilled THF (1 mL) at -15 °C. The reaction mixture was allowed to stir for 3 h at the same temperature. Then, a solution of 1,2-phenylene diamine **18a** (0.61 g, 5.60 mmol) in distilled THF (5 mL) was added to the reaction mixture at the same temperature. The reaction mixture was allowed to stir for 2 h at room temperature. The solvent was partially removed under reduced pressure. The resulting mixture was diluted aq NaHCO₃/ethyl acetate and extracted with ethyl acetate (3 x 30 mL). The organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:*n*-hexane = 4:1) to afford amide **19a** (1.40 g, 86%); ¹H-NMR (300 MHz, CDCl₃) δ 7.34-7.40 (m, 6H), 7.00-7.04 (m, 1H), 6.74-6.79 (m, 2H), 5.13 (s, 2H), 3.41-3.45 (m, 2H), 2.94 (s, 3H), 2.31-2.35 (m, 2H), 1.90-1.97 (m, 2H).

Benzyl (4-((2-amino-4-methylphenyl)amino)-4-oxobutyl)carbamate (19b): The following the same procedure as that used for the synthesis of **19a**, the reaction of amine **17** (0.817 mg, 3.45 mmol), TEA (721 μ l, 5.17 mmol), iso-butyl chloroformate (451 μ l, 3.45 mmol), and 3,4-diaminotoluene **18b** (463 mg, 3.79 mmol) in dry THF gave amide **19b** (0.91 mg, 78%) as a

¹ M. Tegoni, L. Ferretti, F. Sansone, M. Remelli, V. Bertolasi, F. Dallavalle, *Chem. E ur. J.* **2007**, *13*, 1300.

white solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (300 MHz, CDCl₃) δ 7.89 (s, 1H) 7.37-7.31 (m, 5H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.54 (s, 1H), 5.21 (s, 1H), 5.06 (s, 2H), 3.96 (s, 1H), 3.27-3.20 (m, 2H), 2.35 (t, *J* = 6.1Hz, 2H), 2.22 (s, 3H) 1.88-1.81 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.5, 157.2, 140.7, 137.0, 136.4, 128.6, 128.1, 125.4, 121.5, 119.9, 118.2, 66.9, 40.1, 33.7, 26.6, 21.0. LRMS-EI (*m/z*): [M]⁺calcd for C₁₉H₂₃N₃O₃ 341.17, found 341.

Benzyl (4-((2-amino-4-fluorophenyl)amino)-4-oxobutyl)carbamate (19c): The following the same procedure as that used for the synthesis of **19a**, the reaction of amine **17** (799 mg, 3.36 mmol), TEA (702 ml, 5.04 mmol), iso-butyl chloroformate (439 ml, 3.36 mmol), and 4-fluoro-1,2-phenylenediamine **18c** (466 mg, 3.69 mmol) in dry THF gave the carbamate **19c** (899 mg, 78%) as a brown solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (300 MHz, CDCl₃) δ 7.85 (s, 1H), 7.35 (s, 5H), 7.17 (t, *J* = 6.8 Hz, 1H), 6.49-6.43 (m, 2H), 5.10 (s, 2H), 5.06 (s, 1H), 3.32 (m, *J* = 6.1 Hz, 2H), 2.40 (t, *J* = 6.5 Hz, 2H), 1.90 (m, *J* = 6.2 Hz, 2H).¹³C-NMR (100 MHz, MeOD) δ 173.4, 162.1 (d, ¹*J* = 239.6 Hz), 157.7 144.7, 137.0, 128.1, 127.8 (d, ³*J* = 10.5 Hz), 127.5 (d, ³*J* = 13.9 Hz), 118.9, 103.3 (d, ²*J* = 22.9 Hz), 102.2 (d, ²*J* = 25.8 Hz), 66.0, 39.8, 32.7, 25.7. LRMS-EI (*m*/*z*): [M]⁺calcd for C₁₈H₂₀FN₃O₃ 345.15, found 345.

Benzyl (4-((2-amino-4-chlorophenyl)amino)-4-oxobutyl)carbamate (19d): The following the same procedure as that used for the synthesis of 19a, the reaction of amine 17 (1.51 g, 6.38 mmol), TEA (1.33 ml, 9.57 mmol), isobutyl chloroformate (910 μ L, 6.38 mmol), and 4chloro-1,2-phenylenediamine (1.00 g, 7.02 mmol) in dry THF gave amide 19d (1.67 g, 72%) as a yellow solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (300 MHz, CDCl₃) δ 7.95 (s, 1H), 7.34 (s, 5H), 7.20 (d, *J* = 8.2 Hz, 1H), 6.72-6.65 (m, 2H), 5.09 (s, 2H), 4.08 (s, 2H), 3.28 (t, J = 5.7 Hz, 2H), 2.36 (t, J = 6.3 Hz, 2H), 1.88 (m, J = 6.5 Hz, 2H).¹³C-NMR (100 MHz, CDCl₃) δ 172.5, 157.3, 142.5, 136.5, 132.2, 128.6, 128.2, 128.0, 127.2, 122.0, 118.3, 116.6, 66.8, 40.1, 33.5, 26.3.

Benzyl (4-((2-amino-4-bromophenyl)amino)-4-oxobutyl)carbamate (19e): The following the same procedure as that used for the synthesis of **19a**, the reaction of amine **17** (1.43 g, 6.02 mmol), TEA (1.26 ml, 9.02 mmol), isobutyl chloroformate (786 µl, 6.02 mmol), and 4-bromo-1,2-phenylenediamine **18e** (1.24 g, 6.62 mmol) in dry THF gave amide **19e** (1.64 g, 67 %) as a white solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (400 MHz, MeOD) δ 7.33-7.25 (m, 5H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 2.2 Hz, 1H), 6.73 (dd, *J* = 2.2, 8.4 Hz, 1H), 5.05 (s, 2H), 3.19 (m, *J* = 3.7 Hz, 2H), 2.41 (t, *J* = 7.4 Hz, 2H), 1.86 (m, *J* = 6.9 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 173.2, 157.6, 144.0, 136.9, 129.4, 128.2, 127.7, 127.5, 122.2, 120.0, 118.8, 118.0, 66.2, 39.9, 33.0, 25.8.

Benzyl (4-((2-amino-4,5-dichlorophenyl)amino)-4-oxobutyl)carbamate (19f): The following the same procedure as that used for the synthesis of 19a, the reaction of amine 17 (1.62 g, 6.83 mmol), TEA (1.43 ml, 10.6 mmol), isobutyl chloroformate (893 µl, 6.83 mmol), and 4,5-dichloro-1,2-phenylenediamine 18f (1.33 g, 7.52 mmol) in dry THF gave amide 19f (2.51 g, 93%) as a pale orange solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (400 MHz, MeOD) δ 7.33-7.25 (m, 6H), 6.91 (s, 1H), 5.01 (s, 2H), 3.23-3.17 (m, 2H), 2.43 (t, *J* = 7.2 Hz, 2H), 1.87 (m, *J* = 6.96 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 173.1, 157.7, 142.3, 137.0, 129.4, 128.1, 127.6, 127.4, 126.9, 122.8, 118.6, 116.7, 66.1, 39.7, 32.8, 25.6

Benzyl (4-((2-amino-4-nitrophenyl)amino)-4-oxobutyl)carbamate (19g): The following the same procedure as that used for the synthesis of 19a, the reaction of amine 17 (695 mg, 2.93 mmol), TEA (613 ml, 4.40 mmol), isobutyl chloroformate (383 ml, 2.93 mmol), and 4nitro-1,2-phenylenediamine (494 mg, 3.22 mmol) in dry THF gave amide 19g (0.26 g, 24%) as a orange solid after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (300 MHz, MeOD) δ 8.28 (d, *J* = 2.5 Hz, 1H), 8.06 (dd, *J* = 2.6, 9.1 Hz, 1H), 7.50-7.42 (m, 5H), 6.93 (d, *J* = 9.1 Hz, 1H), 5.22 (s, 2H), 3.31 (t, *J* = 7.2 Hz, 2H), 2.63 (t, *J* = 7.2 Hz, 2H), 2.04 (m, *J* = 6.9 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 173.6, 157.7, 149.9, 137.0, 136.8, 128.1, 127.6, 127.4, 123.4, 123.1, 120.8, 113.7, 66.1, 39.7, 32.7, 25.5

3-(1*H***-Benzo[***d***]imidazol-2-yl)-***N***-methylpropan-1-amine (19a'): To a solution of the amide 19a (1.40 g, 4.10 mmol) in toluene (30 mL) was added** *p***-toluenesulfonic acid monohydrate (1.17 g, 6.15 mmol) at room temperature. The reaction mixture was treated under reflux condition with a Dean-Stark apparatus. The solvent was removed under reduced pressure. The resulting mixture was extracted with CH_2Cl_2 (3 x 30 mL). The organic layers were dried over anhydrous MgSO₄ and concentrated** *in vacuo***. The resulting residue was purified by flash column chromatography on silica gel (EtOAc only) to afford benzimidazole 19a'** (0.60 g, 45%). The spectroscopic data were identical with those reported in the literature¹³; ¹H-NMR (300 MHz, CDCl₃) δ 7.57-7.58 (m, 2H), 7.33-7.38 (m, 5H), 7.19-7.22 (m, 2H), 5.23 (s, 2H), 3.40-3.44 (m, 2H), 2.96 (s, 3H), 2.86-2.90 (m, 2H), 1.99 (m, 2H).

Benzyl (3-(1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19b'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide 19b (798 g, 2.44 mmol) and *p*-toluenesulfonic acid monohydrate (695 mg, 3.65 mmol) in dry benzene (24 ml) gave benzimidazole 19b' (0.32 g, 42%) as a yellow solid after purification by column

chromatography on silica gel (only EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 7.46 (d, J = 8.1 Hz, 1H), 7.34 (s, 5H), 7.04 (d, J = 8.1 Hz, 1H), 5.36 (t, J = 6.4 Hz, 1H), 5.13 (s, 2H), 3.28 (q, J = 6.1 Hz, 2H), 2.92 (t, J = 6.5 Hz, 2H), 2.45 (s, 3H), 1.97-1.91 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 157.6, 154.1, 138.3, 137.0, 136.4, 131.9, 129.1, 128.6, 128.2, 128.0, 123.6, 114.6, 114.2, 66.9, 39.7, 29.0, 25.7, 21.6. LRMS-EI (m/z): [M]⁺ calcd for C₁₉H₂₁N₃O₂ 323.16, found 323.

Benzyl (3-(5-fluoro-1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19c'): The following the same procedure as that used for the synthesis of **19a'**, the reaction of amide **19c** (975 mg, 2.82 mmol) and *p*-toluenesulfonic acid monohydrate (591 mg, 3.11 mmol) in dry toluene (25 ml) gave benzimidazole **19c'** (0.69 g, 75%) as a white solid after purification by column chromatography on silica gel (only EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 7.45-7.41 (m, 1H), 7.35 (s, 5H), 7.21 (dd, *J* = 2.2, 9.0 Hz, 1H), 6.94 (td, *J* = 2.3, 9.2 Hz, 1H), 5.60 (t, *J* = 6.2 Hz, 1H), 5.04 (s, 2H), 3.25 (q, *J* = 6.2 Hz, 2H), 2.91 (t, *J* = 6.7 Hz, 2H), 1.97-1.89 (m, 2H). LRMS-EI (*m*/*z*): [M]⁺ calcd for C₁₈H₁₈FN₃O₂ 327.14, found 327.

Benzyl (3-(5-chloro-1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19d'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide 19d (1.67 g, 4.62 mmol) and *p*-toluenesulfonic acid monohydrate (958 mg, 5.08 mmol) in dry toluene (28 ml) gave benzimidazole 19d' (573 mg, 36%) as a brown oil after purification by column chromatography on silica gel (only EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 7.58 (s, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.37 (s, 5H), 7.21 (dd, *J* = 1.8, 8.5 Hz, 1H) 5.50 (t, *J* = 6.2 Hz, 1H), 5.17 (s, 2H), 3.31 (q, *J* = 6.2 Hz, 2H), 2.95 (t, *J* = 6.6 Hz, 2H), 1.97 (m, *J* = 6.2 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 157.9, 155.5, 139.2, 136.2, 131.0, 128.6, 128.3, 128.0, 127.8, 122.7, 115.5, 114.7, 67.1, 39.5, 29.0, 25.5. LRMS-EI (*m/z*): [M]⁺ calcd for C₁₈H₁₈ClN₃O₂ 343.11, found 343.

Benzyl (3-(5-bromo-1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19e'): The following the same procedure as that used for the synthesis of **19a'**, the reaction of amide **19e** (1.64 g, 4.04 mmol) and *p*-toluenesulfonic acid monohydrate (923 mg, 4.85 mmol) in dry toluene (40 ml) gave benzimidazole **19e'** (651 mg, 41%) as a brown oil after purification by column chromatography on silica gel (only EtOAc); ¹H-NMR (400 MHz, MeOD) δ 7.58 (d, *J* = 0.8 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 1H), 7.19-7.13 (m, 6H), 3.16 (t, *J* = 6.4 Hz, 2H), 2.82 (t, *J* = 7.5 Hz, 2H), 1.96 (m, *J* = 7.1 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 157.5, 156.0, 139.6, 136.8, 136.5, 128.1, 127.6, 127.4, 124.9, 117.2, 115.3, 114.8, 66.2, 39.9, 28.0, 25.8

Benzyl (3-(5,6-dichloro-1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19f'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide 19f (2.51 g, 6.33 mmol) and *p*-toluenesulfonic acid monohydrate (1.32 g, 6.96 mmol) in dry toluene (30 ml) gave benzimidazole 19f' (624 mg, 26%) as a yellow solid after purification by column chromatography on silica gel (only EtOAc); ¹H-NMR (400 MHz, CDCl₃) δ 11.43 (s, 1H), 7.74 (s, 1H), 7.57 (s, 1H), 7.36 (s, 5H), 5.20 (t, *J* = 6.3 Hz, 1H), 5.16 (s, 2H), 3.29 (q, *J* = 6.2 Hz, 2H), 2.92 (t, *J* = 6.3 Hz, 2H), 1.92 (m, *J* = 4.0, 2H)

Benzyl (3-(5-nitro-1*H*-benzo[*d*]imidazol-2-yl)propyl)carbamate (19g'): The following the same procedure as that used for the synthesis of 19a', the reaction of amide 19a (358 mg, 962 μ mol) and *p*-toluenesulfonic acid monohydrate (220 mg, 1.15 mmol) in dry benzene (10 ml) gave benzimidazole 19g' (296 mg, 87%) as a yellow solid after purification by column chromatography on silica gel (only EtOAc); ¹H-NMR (400 MHz, MeOD) δ 8.24 (d, *J* = 1.7 Hz, 1H), 7.98 (dd, *J* = 2.2, 8.8 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 1H), 7.26-7.20 (m, 5H), 5.00 (s,

3H), 3.21 (t, J = 6.7 Hz, 2H), 2.93 (t, J = 7.6 Hz, 2H), 2.02 (m, J = 7.2 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 159.7, 157.6, 143.1, 141.9, 138.2, 136.9, 128.0, 127.6, 127.3, 117.5, 113.4, 111.0, 66.1, 39.8, 27.7, 25.9. LRMS-EI (m/z): [M]⁺ calcd for C₁₈H₁₈N₄O₄ 354.13, found 354.

3-(1*H***-benzo[***d***]imidazol-2-yl)propan-1-amine (4a): To a solution of the Cbz-protected amino benzimidazole 19a'** (600 mg, 1.86 mmol) in MeOH (8 mL) was added Pd/C (60 mg, 10 %(w/w)) at room temperature. The reaction mixture was stirred for 3 h under a hydrogen atmosphere (with the aid of a hydrogen balloon). It was filtered through a pad of Celite[®] and the solvent was removed under reduce pressure. Concentration afforded amine **5** (351 mg, quantitative) as a brown solid, which was used for the next step without further purification; ¹H-NMR (300 MHz, CDCl₃) δ 7.51-7.54 (m, 2H), 7.17-7.24 (m, 2H), 3.07 (t, *J* = 6.5 Hz, 2H), 2.78 (t, *J* = 5.9 Hz, 2H), 2.49 (s, 3H), 1.98 (m, 2H).

3-(5-Methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-1-amine (4b): The following the same procedure as that used for the synthesis of 4a, the reaction of carbamate 19b' (515 g, 1.59 mmol) and Pd/C (51 mg, 5 %(w/w) in dry MeOH (15 ml) gave amine 4b (131 mg, 43%) as a brown oil after purification by column chromatography silica on gel $(CH_2Cl_2:MeOH:H_2O:NH_4Cl = 80:4:1:1);$ ¹H-NMR (300 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 1H), 7.28 (s, 1H), 6.97 (d, J = 8.1, 1H), 5.77 (s, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 6.0 Hz, 2H), 2.39 (s, 3H), 1.91 (t, J = 6.6 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 155.0, 138.7, 137.2, 131.6, 123.3, 114.4, 114.1, 41.3, 30.9, 27.1, 21.6. LRMS-EI (*m/z*): [M]⁺ calcd for C₁₁H₁₅N₃ 189.13, found 189.

3-(5-Fluoro-1H-benzo[d]imidazol-2-yl)propan-1-amine (4c): The following the same

procedure as that used for the synthesis of **4a**, the reaction of carbamate **19c'** (699 mg, 2.01 mmol) and Pd/C (69 mg, 10 %(w/w) in dry MeOH (21 ml) gave amine **4c** (374 mg, \ge 99%) as a pale pink solid ;¹H-NMR (300 MHz, MeOD) δ 7.41 (dd, J = 4.7, 8.7 Hz, 1H), 7.16 (dd, J = 2.3, 9.1 Hz, 1H), 6.92 (td, J = 3.4, 6.8 Hz, 1H), 2.91 (t, J = 7.5 Hz, 2H), 2.77 (t, J = 7.2 Hz, 2H), 2.91 (q, J = 7.5 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 159.3 (d, ¹J = 235.0 Hz), 156.0, 138.5 (d, ³J = 13.0 Hz), 134.0, 114.6 (d, ³J = 10 Hz), 109.7 (d, ²J = 25 Hz), 100.1 (d, ²J = 26 Hz), 40.3, 30.1, 25.8. LRMS-EI (m/z): [M]⁺ calcd for C₁₀H₁₂FN₃ 193.10, found 193.

3-(5-Chloro-1*H***-benzo[***d***]imidazol-2-yl)propan-1-amine (4d): The following the same procedure as that used for the synthesis of 4a**, the reaction of carbamate **19d'** (573 mg, 1.67 mmol) and Pd/C (60 mg, 10%(w/w)) in dry MeOH (15 ml) gave amine **4c** (334 mg, 96%) as a yellow oil; ¹H-NMR (400 MHz, MeOD) δ 7.51 (s, 1H), 7.43 (d, *J* = 6.4 Hz, 1H), 7.15 (dd, *J* = 1.2, 6.6 Hz, 1H), 3.08 (t, *J* = 6.5 Hz, 2H), 2.94 (t, *J* = 5.8 Hz, 2H), 1.96 (m, *J* = 6.2 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 156.1, 139.2, 136.6, 127.4, 122.2, 114.8, 114.0, 40.0, 29.0, 25.7. LRMS-EI (*m*/*z*): [M]⁺ calcd for C₁₀H₁₂ClN₃ 209.07, found 209.

3-(5-Bromo-1*H***-benzo[***d***]imidazol-2-yl)propan-1-amine (4e): The solution of the** *N***-Cbz protected amine 19e'** (221 mg, 569 µmol) in 6N HCl (5 mL) was allowed to warm to reflux for 1 h. Concentration afforded isopropylchroman-3-ol **4e** (175 mg, \geq 99%) as a brown solid; ¹H-NMR (400 MHz, MeOD) δ 7.94 (d, *J* = 1.2 Hz, 1H), 7.70-7.65 (m, 2H), 3.39 (t, *J* = 8.0 Hz, 2H), 3.17 (t, *J* = 7.4 Hz, 2H), 2.37 (m, *J* = 7.9 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 153.7, 132.1, 130.1, 129.3, 118.8, 116.5, 115.1, 38.4, 24.4, 23.6.

3-(5,6-Dichloro-1*H***-benzo[***d***]imidazol-2-yl)propan-1-amine (4f): The following the same procedure as that used for the synthesis of 4a, the reaction of carbamate 19f' (601 mg, 1.59**

mmol) and Pd/C (60 mg, 10 %(w/w) in dry MeOH (15 ml) gave amine **4f** (354 mg, 91%) as a pale red brown solid; ¹H-NMR (400 MHz, MeOD) δ 7.45 (s, 2H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.75 (t, *J* = 7.2 Hz, 2H), 1.95 (m, *J* = 7.3 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 157.5, 137.6, 125.3, 115.3, 40.1, 29.2, 25.8

3-(5-Nitro-1*H***-benzo[***d***]imidazol-2-yl)propan-1-amine (4g): The following the same procedure as that used for the synthesis of 4e, the reaction of carbamate 19g' (140 mg, 396 \mumol) in 6 N HCl (4 ml) gave amine 4g (111 mg, \geq 99%) as a pale yellow solid; ¹H-NMR (300 MHz, MeOD) \delta 8.69 (d,** *J* **= 1.9 Hz, 1H), 8.47 (dd,** *J* **= 1.8, 9.0 Hz, 1H), 7.98 (d,** *J* **= 9.0 Hz, 1H), 3.40 (t,** *J* **= 7.0 Hz, 2H), 3.36 (t,** *J* **= 7.5 Hz, 2H), 2.34 (m,** *J* **= 7.7 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) \delta 157.2, 145.9, 135.0, 131.0, 121.2, 113.5, 110.3, 38.4, 24.3, 24.1.**

3-(1-Tosyl-1*H***-benzo[***d***]imidazol-2-yl)propan-1-ol (20a'): To a solution of alcohol 20a (35.7 mg, 188 µmol) in dry CH₂Cl₂, THF (3 ml/3 ml) was added** *p***-TsCl (119 mg, 624 µmol), DMAP (3.50 mg, 28.4 µmol) and TEA(57.4 mg, 568 µmol) at 0 °C. The reaction mixture was allowed to stir for 4 h at room temperature. The resulting mixture was extracted with CH₂Cl₂. The organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated** *in vacuo***. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:***n***-hexane = 4:1) to afford the protected amine 20a'** (106 mg, 57%); ¹H-NMR (400 MHz, CDCl₃) δ 8.04-8.01 (m, 1H), 7.80-7.78 (m, 2H), 7.64-7.61 (m, 1H), 7.36-7.24 (m, 4H), 3.78 (t, *J* = 5.8 Hz, 2H), 3.55 (s, 1H), 3.32 (t, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 2.21-2.15 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ 155.0, 146.1, 141.5, 135.4, 133.1, 130.3, 126.8, 124.9, 124.7, 119.7, 113.6, 61.9, 30.1, 27.1, 21.7.

3-(1-Tosyl-1H-benzo[d]imidazol-2-yl)propanal (21a): Dess-Martin periodinane (72.9 mg,

172 μmol) was added to a solution of alcohol **20a'** (51.6 mg, 156 μmol) in CH₂Cl₂ (2 ml). After stirring for 2 h, the reaction mixture was quenched with Na₂S₂O₃ and sat. NaHCO₃. The resulting mixture was extracted with Et₂O. The organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel (EtOAc:*n*-hexane = 1:1) to afford the aldehyde **21a** (38.4 mg, 75%) as a colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.01-7.99 (m, 1H), 7.85 (dd, J = 1.7, 6.7 Hz, 2H), 7.62-7.60 (m, 1H), 7.33-7.31 (m, 4H), 3.50 (t, J = 6.8 Hz, 2H), 3.15 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 200.2, 153.2, 146.1, 141.8, 135.3, 133.3, 130.3, 126.9, 124.9, 124.6, 119.9, 113.5, 40.3, 22.7, 21.7.

3-(5-Methyl-1-tosyl-1*H***-benzo[***d***]imidazol-2-yl)propan-1-ol (20b'): The following the same procedure as that used for the synthesis of 20a'**, the reaction of benzimidazole **20b** (35.7 mg, 188 µmol), *p*-TsCl (39.4 mg, 206 µmol), DMAP (1.15 mg, 9.38 µmol) and TEA (19.0 mg, 188 µmol) in dry CH₂Cl₂, THF (1:1) gave the N-protected benzimidazole **20b'** (34.2 mg, 53%) after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 4:1); ¹H-NMR (400 MHz, CDCl₃) δ 7.89-7.83 (m, 1H), 7.78-7.56 (m, 2H), 7.50-7.41(m, 1H), 7.27-7.24 (m, 2H), 7.16-7.11 (m, 1H), 3.76 (t, *J* = 5.8 Hz, 2H), 3.28 (q, *J* = 6.6 Hz, 2H), 2.49 (s, 1H), 2.41 (s, 2H), 2.36 (d, *J* = 4.2 Hz, 3H), 2.15 (m, 2H).

3-(1-Tosyl-1*H***-benzo[***d***]imidazol-2-yl)propanal (21b): The following the same procedure as that used for the synthesis of 21a**, the reaction of alcohol **20b'** (34.2 mg, 100 µmol) and Dess-Martin periodinane (46.3 mg, 110 µmol) in dry CH₂Cl₂ (1 ml) gave aldehyde **21b** (25.4 mg, 75%) as a brown oil after purification by column chromatography on silica gel (EtOAc:*n*-hexane = 1:1); ¹H-NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.87-7.81 (m, 3H), 7.45-7.40 (m, 1H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.14 (t, *J* = 9.0 Hz, 1H), 3.49-3.44 (m, 2H), 3.14 (t, *J* = 6.8 Hz,

2H), 2.49 (s, 1H), 2.42 (s, 2H), 2.39 (d, J = 4.4 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 200.3, 153.2, 152.6, 145.9, 142.0, 139.8, 135.4, 135.3, 135.1, 134.6, 133.5, 131.3, 130.3, 130.3, 126.8, 126.2, 126.0, 119.8, 119.3, 113.5, 113.0, 40.4, 22.7, 22.0, 21.7, 21.3

2-(1*H*-Benzo[*d*]imidazol-2-yl)ethanol (23a): *o*-Phenylenediamine 22 (3.31 mL, 48.5 mmol) and 3-hydroxypropionitrile (4.20 g, 38.8 mmol) dissolved in conc. HCl (18 mL) were refluxed for 14h. The reaction mixture was neutralized with ammonia solution until pH 8 was reached at ice-bath. Neutralization gave brown powder which was filtered with water to give benzimidazole $23a^2$ (2.56 g, 41%); ¹H-NMR (400 MHz, MeOD) δ 7.49-7.50 (m, 2H), 7.17-7.20 (m, 2H), 3.99 (t, *J* = 6.6 Hz, 2H), 3.09 (t, *J* = 6.6 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 153.0, 137.1, 122.3, 113.9, 59.5, 31.7.

2-(5-Methyl-1*H***-benzo[***d***]imidazol-2-yl)ethanol (23b): The following the same procedure as that used for the synthesis of 23a**, the reaction of 3,4-diaminotoluene (2.00 g, 16.37 mmol) and 3-hydroxypropionitrile (1.45 g, 20.46 mmol) dissolved in conc. HCl (10 mL) gave benzimidazole **23b**³ (0.36 g, 13%) as a white solid after purification by column chromatography on silica gel (EtOAc:MeOH = 10:1); ¹H-NMR (400 MHz, MeOD) δ 7.38 (d, J = 8.2 Hz, 1H), 7.29 (s, 1H), 7.01 (dd, J = 1.0, 8.2 Hz, 1H), 3.99 (t, J = 6.6 Hz, 2H), 3.07 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H). ¹³C-NMR (100 MHz, MeOD) δ 152.7, 138.0, 136.6, 131.6, 123.2, 113.8, 113.6, 59.7, 32.0, 20.3.

2-(5-Fluoro-1*H***-benzo[***d***]imidazol-2-yl)ethanol (23c): The following the same procedure as that used for the synthesis of 23a**, the reaction of 4-fluoro-1,2-phenylenediamine (2.00 g,

² G. B. Bachman, L. V. Heisy, J. Am. Chem. Soc. **1949**, 71, 1985-8.

³ S. Akihama, M. Okude, K. Sato, S. Iwabauchi, Yakugaku Zasshi 1968, 88, 684-689.

15.86 mmol) and 3-hydroxypropionitrile (1.24 g, 17.44 mmol) dissolved in conc. HCl (10 mL) gave benzimidazole **23c** (1.70 g, 59%) as a brown powder; ¹H-NMR (400 MHz, MeOD) δ 7.49-7.52 (m, 1H), 7.25 (dd, J = 1.7, 6.8 Hz, 1H), 7.01 (td, J = 1.8, 6.9 Hz, 1H), 4.02 (t, J = 4.8 Hz, 2H), 3.14 (t, J = 4.8 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 159.4 (d, J = 236.0 Hz), 154.5, 137.6 (d, J = 13.0 Hz), 133.7, 114.6 (d, J = 11.0 Hz), 110.2 (d, J = 25.0 Hz), 100.1 (d, J = 27.0 Hz), 59.4, 31.7.

2-(5-Chloro-1*H***-benzo[***d***]imidazol-2-yl)ethanol (23d): The following the same procedure as that used for the synthesis of 23a**, the reaction of 4-chloro-1,2-phenylenediamine (5.00 g, 35.08 mmol) and 3-hydroxypropionitrile (3.12 g, 4.85 mmol) dissolved in conc. HCl (16 mL) gave benzimidazole **23d**³ (1.53 g, 22%) as a pale-yellow solid after purification by column chromatography on silica gel (EtOAc:MeOH = 10:1); ¹H-NMR (400 MHz, MeOD) δ 7.48 (d, J = 1.7 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.15 (dd, J = 2.0, 8.6 Hz, 1H), 4.00 (t, J = 6.5 Hz, 2H), 3.09 (t, J = 6.5 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 154.6, 139.1, 136.6, 127.3, 122.1, 114.8, 114.0, 59.5, 32.0.

2-(2-(1*H***-Benzo[***d***]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23a'): To a solution of** *N***-hydroxyphthalimide (700 mg, 4.29 mmol), benzimidazole 23a** (580 mg, 3.58 mmol), and PPh₃ (1.31 g, 5.01 mmol) in distilled THF (17 mL) was added DIAD (0.97 mL, 5.01 mmol) at 0 °C. The reaction mixture was stirred for 1.5h at room temperature. The solvent of reaction mixture was removed under reduced pressure. The resulting mixture was extracted with EtOAc and washed with brine. The organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica-gel (EtOAc:*n*-hexane = 2:1) to give *N*-alkoxyphtalimide **23a'** (0.21 g, 19%); ¹H-NMR (300 MHz, CDCl₃) δ 7.77-7.80 (m, 2H), 7.72-7.73 (m, 2H), 7.56-7.59 (m, 2H), 7.18-

7.21 (m, 2H), 4.59 (t, J = 5.3 Hz, 2H), 3.34 (t, J = 5.4Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 164.4 151.5 135.0 128.6 123.9 122.3 76.3 28.6.

2-(2-(5-Methyl-1*H***-benzo[***d***]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23b'): The following the same procedure as that used for the synthesis of 23a'**, the reaction of *N*-hydroxyphthalimide (330 mg, 2.02 mmol), methylbenzimidazole **23b** (356 mg, 2.02 mmol), PPh₃ (583 mg, 2.22 mmol) and DIAD (0.43 mL, 2.22 mmol) in distilled THF (12 mL) gave the *N*-alkoxyphthalimide **23b'** (350 mg, 54%) as a white solid after purification by column chromatography on silica gel (EtOAc:CHCl₃=1:1);¹H-NMR (400 MHz, CDCl₃) δ 7.80-7.81 (m, 2H), 7.72-7.75 (m, 2H), 7.44 (d, *J* = 8.0 Hz, 1H) 7.34 (s, 1H), 7.01 (dd, *J* = 1.1, 8.2 Hz, 1H) 4.56 (t, *J* = 5.4 Hz, 2H), 3.29 (t, *J* = 5.4 Hz, 2H).

2-(2-(5-Fluoro-1*H***-benzo[***d***]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23c'): The following the same procedure as that used for the synthesis of 23a'**, the reaction of *N*-hydroxyphthalimide (1.53 g, 9.38 mmol), fluorobenzimidazole **23c** (1.69 g, 9.38 mmol), PPh₃ (2.71 g, 10.32 mmol) and DIAD (2.00 mL, 10.32 mmol) in distilled THF (60 mL) gave the *N*-alkoxyphtalimide **23c'** (0.17 g, 6%) as a white solid after purification by column chromatography on silica gel (EtOAc:CHCl₃ = 1:1); ¹H-NMR (400 MHz, DMSO) δ 7.84 (s, 4H), 7.41-7.44 (m, 1H), 7.24 (dd, *J* = 2.2, 9.5 Hz, 1H), 6.96 (t, *J* = 8.5 Hz, 1H), 4.64 (t, *J* = 6.8 Hz, 2H), 3.31 (t, *J* = 6.8 Hz, 2H). ¹³C-NMR (100 MHz, DMSO) δ 163.7, [158.8 (d, *J* = 234.0 Hz) and 158.5 (d, *J* = 232.0 Hz)], [153.6 and 152.6], [144.0 (d, *J* = 12.0 Hz) and 134.7 (d, *J* = 14.0 Hz)], [140.2 and 131.3], 135.2, 129.1, 123.6, [119.3 (d, *J* = 10.0 Hz) and 111.9 (d, *J* = 1.0 Hz)], [109.9 (d, *J* = 25.0 Hz) and 109.3 (d, *J* = 24.0 Hz)], [104.1 (d, *J* = 23.0 Hz) and 97.8 (d, *J* = 27.0 Hz)], 75.3, 28.8.

2-(2-(5-Chloro-1*H***-benzo[***d***]imidazol-2-yl)ethoxy)isoindoline-1,3-dione (23d'): The following the same procedure as that used for the synthesis of 23a'**, the reaction of *N*-hydroxyphthalimide (292 mg, 1.79 mmol), chlorobenzimidazole **23d** (352 mg, 1.79 mmol), PPh₃ (516 mg, 1.97 mmol) and DIAD (0.38 mL, 1.97 mmol) in distilled THF (10 mL) gave the *N*-alkoxy phthalimide **23d'** (44 mg, 7%) as a white solid after purification by column chromatography on silica gel (EtOAc:CHCl₃ = 1:1); ¹H-NMR (400 MHz, DMSO) δ 7.84 (s, 4H), 7.44-7.50 (m, 2H), 7.11-7.16 (m, 1H), 4.64 (t, *J* = 6.6 Hz, 2H), 3.31 (t, *J* = 6.6 Hz, 2H). ¹³C-NMR (100 MHz, DMSO) δ 163.7, [153.6 and 153.1], [144.6 and 142.4], 135.2, [135.4 and 133.5], 129.0, [126.5 and 125.8], 123.6, [122.2 and 121.7], [119.8 and 118.0], [112.6 and 111.2], 75.2, 28.8.

O-(2-(1*H*-Benzo[*d*]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5a): To a solution of *N*-alkoxyphthalimide 23a' (120 mg, 0.39 mmol) in EtOH (3 mL) was added hydrazine monohydrate at room temperature. The reaction mixture was stirred for 3h at 80 °C. The resulting solution was filtered through a pad of silica gel and washed with EtOAc. The filtrate was solidified by treatment of 1M solution of HCl in Et₂O (0.39 mL) to give *N*-alkoxyamine 5a (45 mg, 54%); ¹H-NMR (300 MHz, MeOD) δ 7.81-7.85 (m, 2H), 7.61-7.65 (m, 2H), 4.62 (t, *J* = 5.8 Hz, 2H), 3.69 (t, *J* = 5.9 Hz, 2H).

O-(2-(5-Methyl-1*H*-benzo[*d*]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5b): The following the same procedure as that used for the synthesis of **5a**, the reaction of *N*-alkoxyphthalimide **23b'** (350 mg, 1.09 mmol), hydrazine monohydrate in EtOH (4 mL) gave the *N*-alkoxyamine **5b** (120 mg, 48 %); ¹H-NMR (400 MHz, MeOD) δ 7.70 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 0.6 Hz, 1H), 7.45 (dd, *J* = 0.7, 8.5 Hz, 1H), 4.66 (t, *J* = 5.8 Hz, 2H), 3.70 (t, *J* = 5.8 Hz, 2H), 2.56 (s, 3H). ¹³C-NMR (100 MHz, MeOD) δ 149.4, 137.1, 131.2, 128.9,

127.8, 113.0, 113.0, 70.7, 25.6, 20.3.

O-(2-(5-Fluoro-1*H*-benzo[*d*]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5c): The following the same procedure as that used for the synthesis of **5a**, the reaction of *N*-alkoxyphthalimide **23c'** (167 mg, 0.51 mmol), hydrazine monohydrate in EtOH (2 mL) gave the *N*-alkoxyamine **5c** (101 mg, 85 %); ¹H-NMR (400 MHz, MeOD) δ 7.87 (dd, *J* = 4.3, 9.1 Hz, 1H), 7.63 (d, *J* = 2.2, 8.2 Hz, 1H), 7.44 (td, *J* = 2.4, 9.3 Hz, 1H), 4.67 (t, *J* = 5.8 Hz, 2H), 3.72 (t, *J* = 5.8 Hz, 2H). ¹³C-NMR (100 MHz, MeOD) δ 161.1 (d, *J* = 243.0 Hz), 151.3, 131.5 (d, *J* = 13.0 Hz), 127.5, 115.2 (d, *J* = 10.0 Hz), 114.8 (d, *J* = 26.0 Hz), 100.2 (d, *J* = 28.0 Hz), 70.6, 25.7.

O-(2-(5-Chloro-1*H*-benzo[*d*]imidazol-2-yl)ethyl)hydroxylamine hydrochloride (5d): The following the same procedure as that used for the synthesis of **5a**, the reaction of *N*-alkoxyphthalimide **23d'** (140 mg, 0.41 mmol), hydrazine monohydrate in EtOH (3 mL) gave the *N*-alkoxyamine **5d** (52 mg, 51%); ¹H-NMR (400 MHz, MeOD) δ 7.91 (s, 1H) 7.83-7.85 (m, 1H) 7.63-7.67 (m, 1H) 4.62-4.66 (m, 2H), 3.69-3.72 (m, 2H). ¹³C-NMR (100 MHz, MeOD) δ 151.3, 132.0, 131.7, 129.7, 126.9, 114.9, 113.6, 70.5, 25.7.

II. Experimental Procedures for 2ab-g, 2cb-g, 2db, and 2fb-d in Scheme 5

yl)propyl)amino)ethyl)chroman-3-ol (2ab)

The following the same procedure as that used for the synthesis of **2aa**, the reaction of amine **4b** (19.7 mg, 104 µmol), sodium cyanoborohydride (6.53 mg, 104 µmol), aldehyde **3** (26.2 mg, 104 µmol) and acetic acid in MeOH (2 mL) gave amine **2ab** (13.5 mg, 31%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH:H₂O:NH₄OH = 80:20:1:1) as a brown oil; ¹H-NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 8.2 Hz, 1H), 7.26 (d, *J* = 6.9 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.94 (dd, *J* = 6.7, 8.3 Hz, 1H), 6.57 (td, *J* = 2.6, 8.3 Hz, 1H), 6.49 (dd, *J* = 2.5, 10.2 Hz, 1H) 4.11 (d, *J* = 11.0 Hz, 1H), 3.95 (dd, *J* = 1.6, 10.9 Hz, 1H), 3.00-2.92 (m, 4H), 2.76-2.65 (m, 2H) 2.57 (s, 1H), 2.44 (s, 3H), 2.02 (m, *J* = 6.1 Hz, 2H), 1.70 (m, *J* = 6.1 Hz, 2H), 1.18 (d, *J* = 6.9 Hz, 3H), 0.65 (d, *J* = 6.9 Hz, 3H).¹³C-NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹*J* = 242 Hz), 153.8, 153.6 (d, ³*J* = 12 Hz), 138.0, 136.7, 132.2, 131.7 (d, ³*J* = 10 Hz), 123.8, 118.8 (d, ⁴*J* = 3 Hz), 114.6, 114.1, 107.1 (d, ²*J* = 22 Hz), 103.1 (d, ²*J* = 25 Hz), 71.0, 67.8, 51.6, 47.7, 44.8, 34.6, 27.8, 27.0, 26.6, 25.5, 21.6, 21.0. HPLC: 96.4%, RT 17.52 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₅H₃₃FN₃O₂ 426.2551, found 426.2555.

(±)-(3*S*,4*S*)-7-Fluoro-3-(2-((3-(6-fluoro-1*H*-benzo[*d*]imidazol-2-yl)propyl)amino)ethyl)-4isopropylchroman-3-ol (2ac)

The following the same procedure as that used for the synthesis of **2aa**, the reaction of amine **4c** (53.7 mg, 278 μ mol), sodium cyanoborohydride (8.46 mg, 139 μ mol), aldehyde **3** (35.9 mg, 139 μ mol) and acetic acid in MeOH (3 mL) gave amine **2ac** ((15.6 mg, 26%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH:H₂O:NH₄OH =

80:20:1:1) as a brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 4.6, 8.7 Hz, 1H), 7.16 (dd, J = 2.1, 8.9 Hz, 1H), 6.95-6.89 (m, 2H), 6.57 (td, J = 2.5, 8.3 Hz, 1H), 6.49 (dd, J = 2.5, 10.1 Hz, 1H), 4.10 (d, J = 11.0 Hz, 1H), 3.96 (dd, J = 1.5, 11.0 Hz, 1H), 3.10-3.01 (m, 4H), 2.97 (t, J = 6.4 Hz, 2H), 2.87-2.75 (m, 2H), 2.57 (s, 1H), 2.40-2.33 (m, 1H), 2.04 (t, J = 5.9 Hz, 2H), 1.82 (m, 2H), 1.16 (d, J = 6.9 Hz, 3H), 0.64 (d, J = 5.9 Hz, 3H).¹³C-NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹J = 243 Hz), 159.3 (d, ¹J = 237 Hz), 155.3 (d, ⁴J = 2 Hz), 153.5 (d, ³J = 11 Hz), 138.3 (d, ³J = 12 Hz), 134.5, 131.7 (d, ³J = 10 Hz), 118.7 (d, ⁴J = 3 Hz), 115.1 (d, ³J = 10 Hz), 110.6 (d, ²J = 25 Hz), 107.2 (d, ²J = 22 Hz), 103.2 (d, ²J = 24 Hz), 100.9 (d, ²J = 26 Hz), 70.9, 67.8, 51.4, 47.9, 44.6, 34.8, 27.9, 26.8, 26.2, 25.4, 21.0. HPLC: 96.2%, RT 13.38 min. HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₄H₃₀F₂N₃O₂ 430.2301, found 430.2303.

(±)-(3*S*,4*S*)-3-(2-((3-(6-Chloro-1*H*-benzo[*d*]imidazol-2-yl)propyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2ad)

The following the same procedure as that used for the synthesis of 2aa, the reaction of amine 4d (31.7 mg, 151 µmol), sodium triacetoxyborohydride (48.0 mg, 227 µmol), aldehyde 3 (38.1 mg, 151 µmol) and acetic acid in MeOH (3 mL) gave the secondary amine 2ad (17.4 26%) after purification by column chromatography silica mg, on gel $(CH_2Cl_2:MeOH:H_2O:NH_4OH = 80:20:1:1)$ as a white oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 1.8 Hz, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.16 (dd, J = 1.9, 8.5 Hz, 1H), 6.94 (dd, J = 1.5 Hz, 1H), 7.15 (dd, J = 1.5 6.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.3 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H) 4.10 (d, J = 2.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.3 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H) 4.10 (d, J = 2.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.5 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H) 4.10 (d, J = 2.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.5 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H), 6.56 (td, J = 2.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.5 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H), 6.56 (td, J = 2.6, 8.5 Hz, 1H), 7.5 Hz, 1H, 8.5 Hz, 1H), 8.5 Hz, 1H, 8.5 Hz, 1Hz, 1H, 8.5 Hz, 1H, 8.5 Hz, 1H, 8.5 Hz, 1H, 8.5 Hz, 1H, 11.0 Hz, 1H), 3.94 (dd, J = 2.0, 11.0 Hz, 1H), 2.97-2.94 (m, 4H), 2.73 (m, J = 6.1 Hz, 1H), 2.65 (m, J = 6.1 Hz, 1H), 2.56 (s, 1H), 2.42-2.34 (m, 1H), 2.03-1.99 (m, 2H), 1.74-1.56 (m, 2H), 1.17 (d, J = 7.0 Hz, 3H), 0.66 (d, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 $(d, {}^{1}J = 242 \text{ Hz}), 155.2, 153.6 (d, {}^{3}J = 11 \text{ Hz}), 139.2, 137.0, 131.7 (d, {}^{3}J = 9 \text{ Hz}), 127.9, 122.8,$ 118.8 (d, ${}^{4}J = 3$ Hz), 115.3, 114.7, 107.1 (d, ${}^{2}J = 21$ Hz), 103.2 (d, ${}^{2}J = 24$ Hz), 71.3, 67.9,

51.7, 47.5, 45.1, 34.6, 27.9, 27.1, 26.5, 25.5, 21.0. HPLC: 93.0%, RT 16.65 min. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₄H₃₀ClFN₃O₂ 446.2005, found 446.2008.

(±)-(3*S*,4*S*)-3-(2-((3-(6-Bromo-1*H*-benzo[*d*]imidazol-2-yl)propyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2ae)

The following the same procedure as that used for the synthesis of **2aa**, the reaction of amine **4e** (41.5 mg, 143 µmol), sodium cyanoborohydride (5.99 mg, 95.2 µmol) and aldehyde **3** (24.6 mg, 95.2 µmol) in MeOH (2 mL) gave amine **2ae** (6.70 mg, 14%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH:H₂O:NH₄OH = 80:20:1:1) as a brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 1.5 Hz, 1H), 7.31-7.24 (m, 2H), 6.95 (dd, *J* = 6.5, 8.5 Hz, 1H), 6.58 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50 (dd, *J* = 2.5, 10.1 Hz, 1H), 4.12 (d, *J* = 11.1 Hz, 1H), 3.99 (dd, *J* = 1.8, 11.1 Hz, 1H), 3.15-3.01 (m, 2H), 2.97 (t, *J* = 6.4 Hz, 2H), 2.92-2.91 (m, 2H), 2.59 (s, 1H), 2.41-2.32 (m, 1H), 2.04 (t, *J* = 6.0 Hz, 2H), 1.89 (t, *J* = 5.8 Hz, 2H), 1.18 (d, *J* = 7.0 Hz, 3H), 0.65 (d, *J* = 6.9 Hz, 3H).¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹*J* = 243 Hz), 154.3, 153.4 (d, ³*J* = 12 Hz), 138.3, 136.0, 131.7 (d, ³*J* = 10 Hz), 130.9, 126.0, 118.2 (d, ⁴*J* = 3 Hz), 117.6, 115.9, 107.6 (d, ²*J* = 21 Hz), 103.3(d, ²*J* = 24 Hz), 70.2, 67.2, 50.9, 48.1, 43.9, 34.5, 28.1, 26.7, 25.4, 23.4, 21.0. HPLC: 95.2%, RT 13.72 min. HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₂₄H₃₀BrFN₃O₂ 490.1500, found 490.1501.

(±)-(3*S*,4*S*)-3-(2-((3-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)propyl)amino)ethyl)-7fluoro-4-isopropylchroman-3-ol (2af)

The following the same procedure as that used for the synthesis of **2aa**, the reaction of amine **4f** (60.4 mg, 2.47 mmol), sodium cyanoborohydride (20.7 mg, 333 µmol), aldehyde **3** (42.6 mg, 165 µmol) and acetic acid in MeOH (3 mL) gave amine **2af** (36.6 mg, 46%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH:H₂O:NH₄OH =

80:20:1:1) as a brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 6.94 (dd, J = 6.6, 8.5 Hz, 1H), 6.56 (td, J = 2.6, 8.3 Hz, 1H), 6.48 (dd, J = 2.6, 10.2 Hz, 1H) 4.08 (d, J = 10.9 Hz, 1H), 3.91 (dd, J = 2.0, 11.0 Hz, 1H), 2.97-2.93 (m, 4H), 2.71 (m, J = 6.1 Hz, 1H), 2.63 (m, J = 6.1 Hz, 1H), 2.54 (s, 1H), 2.38-2.29 (m, 1H), 2.00 (m, J = 6.5 Hz, 2H), 1.68-1.51 (m, 2H), 1.16 (d, J = 7.0 Hz, 3H), 0.64 (d, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹J = 242 Hz), 156.5, 153.5 (d, ³J = 12 Hz), 137.8, 131.7 (d, ³J = 10 Hz), 126.1, 118.7 (d, ⁴J = 3 Hz), 115.9, 107.2 (d, ²J = 22 Hz), 103.2 (d, ²J = 24 Hz), 71.6, 67.9, 51.7, 47.6, 45.2, 34.6, 27.8, 27.4, 26.5, 25.5, 21.0. HPLC: 91.5%, RT 4.31 min. HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₄H₂₉Cl₂FN₃O₂ 480.1615, found 480.1617.

(±)-(3*S*,4*S*)-7-Fluoro-4-isopropyl-3-(2-((3-(6-nitro-1*H*-benzo[*d*]imidazol-2-

yl)propyl)amino)ethyl)chroman-3-ol (2ag)

Acetic acid was added to a solution of amine **4g** (44.3 mg, 171 µmol) in anhydrous MeOH (3 mL) until pH 6 was reached. To this solution was added sodium cyanoborohydride (10.8 mg, 171 µmol), aldehyde **3** (43.5 mg, 171 µmol). After stirring for 3.5 h at room temperature, the reaction mixture was stirred for an additional 5 h at 45 °C. The reaction was monitored by TLC, quenched with saturated aqueous NaHCO₃ (15 mL) after completion of the reaction and extracted with CH₂Cl₂ (3 x 20 mL). The organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (CH₂Cl₂:MeOH:H₂O:NH₄OH = 80:20:1:1) to afford amine **2ag** (17.6 mg, 24%) as a yellow oil; ¹H-NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 2.1 Hz, 1H), 8.13 (dd, *J* = 2.2, 8.9 Hz, 1H), 7.55 (d, *J* = 8.9 Hz, 1H), 6.96 (dd, *J* = 6.5, 8.5 Hz, 1H), 6.57 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50 (dd, *J* = 2.6, 10.1 Hz, 1H) 4.13 (d, *J* = 11.0 Hz, 1H), 3.96 (dd, *J* = 2.0, 11.0 Hz, 1H), 3.06 (t, *J* = 6.7 Hz, 2H), 3.03-2.95 (m, 2H) 2.79-2.73 (m, 1H), 2.70-2.64 (m, 1H), 2.59 (d, *J* = 2.1 Hz, 1H), 2.45-2.37 (m, 1H), 2.09 (m, *J*

= 6.3 Hz, 2H), 1.70-1.63 (m, 2H), 1.21 (d, J = 7.0 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹J = 243 Hz), 158.57, 153.5 (d, ³J = 12 Hz), 143.2, 142.4, 138.0, 131.7 (d, ³J = 10 Hz), 118.5 (d, ⁴J = 3 Hz), 118.2, 114.1, 111,7, 107.4 (d, ²J = 21 Hz), 103.3 (d, ²J = 24 Hz), 71.4, 67.6, 51.5, 47.7, 44.9, 34.5, 28.0, 26.8, 26.1, 25.5, 21.0. HPLC: 98.2%, RT 12.66 min. HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₄H₃₀FN₄O₄ 457.2246, found 457.2246.

(±)-(3*S*,4*S*)-7-Fluoro-4-isopropyl-3-(2-(isopropyl(3-(6-methyl-1*H*-benzo[*d*]imidazol-2yl)propyl)amino)ethyl)chroman-3-ol (2cb)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2ab** (33.3 mg, 78.3 µmol), acetic acid (8.96 µL, 156 µmol), sodium cyanoborohydride (9.84 mg, 156 µmol) and acetone (23.0 µL, 313 µmol) in MeOH (1 mL) gave amine **2cb** (36.6 mg, 46%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a pale brown oil; ¹H-NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 10.9 Hz, 1H), 7.30 (s, 1H), 7.03 (d, *J* = 10.9 Hz, 1H), 6.92 (dd, *J* = 8.9, 11.0 Hz, 1H), 6.55 (td, *J* = 3.4, 11.1 Hz, 1H), 6.48 (dd, *J* = 3.3, 13.6 Hz, 1H), 4.12 (d, *J* = 14.5 Hz, 1H), 3.93 (dd, *J* = 2.2, 14.6 Hz, 1H), 3.20 (m, 1H), 2.96-2.89 (m, 2H), 2.75 (t, *J* = 7.6 Hz, 2H), 2.56-2.45 (m, 2H), 2.45-2.34 (m, 4H), 2.15-2.01 (m, 2H), 1.66-1.60 (m, 2H), 1.16 (d, *J* = 9.3 Hz, 3H), 1.07 (d, *J* = 8.8 Hz, 6H), 0.64 (d, *J* = 9.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹*J* = 242 Hz), 154.1, 153.6 (d, ³*J* = 12 Hz), 138.1, 136.8, 132.1, 131.6 (d, ³*J* = 10 Hz), 123.7, 118.8 (d, ⁴*J* = 3 Hz), 114.5, 114.1, 107.0 (d, ²*J* = 21 Hz), 103.1 (d, ²*J* = 24 Hz), 71.1, 68.4, 51.4, 49.8, 48.7, 45.5, 32.2, 27.7, 26.5, 25.6, 25.5, 21.6, 20.9, 17.3, 16.6. HPLC: 95.9%, RT 16.91 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₈H₃₉FN₃O₂ 468.2021, found 468.3024.

(±)-(3S,4S)-7-Fluoro-3-(2-((3-(6-fluoro-1*H*-benzo[*d*]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-4-isopropylchroman-3-ol (2cc)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2ac** (46.7 mg, 109 µmol), acetic acid (12.5 µL, 217 µmol), sodium cyanoborohydride (13.7 mg, 217 µmol) and acetone (31.9 µL, 435 µmol) in MeOH (1 mL) gave amine **2cc** (12.7 mg, 25%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a pale brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.22 (d, *J* = 8.12 Hz, 2H), 7.00-6.93 (m, 2H), 6.57 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50 (dd, *J* = 2.5, 10.2 Hz, 1H), 4.15 (d, *J* = 10.9 Hz, 1H), 3.95 (dd, *J* = 1.9, 10.8 Hz, 1H), 3.20 (m, 1H), 2.99-2.85 (m, 2H), 2.72 (t, *J* = 5.6 Hz, 2H), 2.60 (s, 1H), 2.57-2.44 (m, 3H), 2.13-2.00 (m, 2H), 1.66-1.55 (m, 2H), 1.18 (d, *J* = 7.0 Hz, 3H), 1.07 (dd, *J* = 4.3, 6.5 Hz, 6H), 0.67 (d, *J* = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹*J* = 242 Hz), 159.3 (d, ¹*J* = 236 Hz), 155.7, 153.6 (d, ³*J* = 12 Hz), 138.5, 135.2, 131.5 (d, ³*J* = 9 Hz), 118.7 (d, ⁴*J* = 3 Hz), 114.9, 110.3 (d, ²*J* = 25 Hz), 107.1 (d, ²*J* = 22 Hz), 103.1 (d, ²*J* = 25 Hz), 100.8, 71.6, 68.5, 51.5, 49.2, 48.2, 45.6, 32.1, 27.7, 26.3, 26.1, 25.5, 20.8, 17.4, 16.6. HPLC: 95.5%, RT 15.93 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₃₆F₂N₃O₂ 472.2770, found 472.2771.

(±)-(3S,4S)-3-(2-((3-(6-Chloro-1*H*-benzo[*d*]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2cd)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2ad** (29.7 mg, 66.6 µmol), acetic acid (7.63 µL, 133 µmol), sodium cyanoborohydride (8.37 mg, 133 µmol) and acetone (19.6 µL, 266 µmol) in MeOH (1 mL) gave amine **2cd** (4.50 mg, 14%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a pale brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.45 (dd, *J* = 7.2 Hz, 1H), 7.19 (dd, *J* = 1.8, 8.5 Hz, 1H), 6.95 (d, *J* = 6.6, 8.3 Hz, 1H), 6.57 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50

(dd, J = 2.6, 10.2 Hz, 1H), 4.15 (d, J = 10.8 Hz, 1H), 3.95 (dd, J = 1.8, 10.9 Hz, 1H), 3.21 (m, 1H), 2.99-2.86 (m, 2H), 2.73 (t, J = 5.5 Hz, 2H), 2.60 (s, 1H), 2.57-2.40 (m, 3H), 2.15-2.00 (m, 2H), 1.65-1.55(m, 2H), 1.18 (d, J = 7.0 Hz, 3H), 1.07 (dd, J = 4.3, 6.5 Hz, 6H), 0.68 (d, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹J = 242 Hz), 155.5, 153.6 (d, ³J = 12 Hz), 139.4, 137.0, 131.5 (d, ³J = 9 Hz), 127.8, 122.7, 118.6 (d, ⁴J = 2 Hz), 115.3, 114.7, 107.1 (d, ²J = 21 Hz), 103.1 (d, ²J = 24 Hz), 71.4, 68.4, 51.4, 49.7, 48.4, 45.6, 32.1, 27.7, 26.3, 25.7, 25.5, 20.8, 17.4, 16.6. HPLC: 94.8%, RT 16.74 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₃₆CIFN₃O₂ 488.2475, found 488.2477.

(±)-(3S,4S)-3-(2-((3-(6-Bromo-1H-benzo[d]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2ce)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2ae** (63.4 mg, 129 µmol), acetic acid (14.4 µL, 259 µmol), sodium cyanoborohydride (16.2 mg, 259 µmol) and acetone (38.0 µL, 517 µmol) in MeOH (1.3 mL) gave amine **2ce** (20.2 mg, 29%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.39 (d, *J* = 8.6 Hz, 1H), 6.94 (dd, *J* = 6.6, 8.5 Hz, 1H), 6.56 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50 (dd, *J* = 2.6, 10.2 Hz, 1H), 4.13 (d, *J* = 10.8 Hz, 1H), 3.93 (dd, *J* = 2.0, 10.9 Hz, 1H), 3.22-3.14 (m, 1H), 2.99-2.86 (m, 2H), 2.72 (t, *J* = 5.6 Hz, 2H), 2.58-2.48 (m, 3H), 2.45-2.38 (m, 1H), 2.13-1.99 (m, 2H), 1.62-1.58 (m, 2H), 1.16 (d, *J* = 7.0 Hz, 3H), 1.06 (dd, *J* = 3.9, 6.6 Hz, 6H), 0.66 (d, *J* = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹*J* = 243 Hz), 155.6, 153.6 (d, ³*J* = 12 Hz), 140.4, 137.7, 131.5 (d, ³*J* = 10 Hz), 125.3, 118.7 (d, ⁴*J* = 3 Hz), 117.8, 115.7, 115.1, 107.1 (d, ²*J* = 21 Hz), 103.1 (d, ²*J* = 24 Hz), 71.7, 68.5, 51.5, 49.0, 48.1, 45.6, 32.1, 27.6, 26.2, 26.1 25.5, 20.8, 17.5, 16.6. HPLC: 95.5%, RT 16.91 min. HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₂₇H₃₆BrFN₃O₂ 532.1969, found 532.1971.

(±)-(3S,4S)-3-(2-((3-(5,6-Dichloro-1*H*-benzo[*d*]imidazol-2-

yl)propyl)(isopropyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2cf)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2af** (7.20 mg, 15.0 µmol), acetic acid (1.72 µL, 30.0 µmol), sodium cyanoborohydride (1.88 mg, 30.0 µmol) and acetone (4.40 µL, 60.0 µmol) in MeOH (150 µL) gave amine **2cf** (3.70 mg, 47%) after purification by column chromatography on silica gel (CH₂Cl₂ : MeOH = 10 : 1) as a colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 6.94 (dd, *J* = 6.5, 8.4 Hz, 1H), 6.58 (td, *J* = 2.6, 8.3 Hz, 1H), 6.50 (dd, *J* = 2.5, 10.1 Hz, 1H), 4.12 (d, *J* = 10.9 Hz, 1H), 3.91 (dd, *J* = 1.9, 10.9 Hz, 1H), 3.30 (m, *J* = 6.64 Hz, 1H), 3.04-2.92 (m, 2H), 2.84 (t, *J* = 5.7 Hz, 2H), 2.66 (m, 2H), 2.47 (s, 1H), 2.43-2.35 (m, 1H), 2.22-2.07 (m, 2H), 1.70-1.67 (m, 1H), 1.18-1.12 (m, 9H), 0.66 (d, *J* = 6.9 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 162.4 (d, *J* = 243 Hz), 156.8, 153.6 (d, *J* = 12 Hz), 138.0, 131.5 (d, *J* = 9 Hz), 126.0, 118.6 (d, *J* = 3 Hz), 115.9, 107.1 (d, *J* = 22 Hz), 103.1 (d, *J* = 25 Hz), 71.6, 68.4, 51.4, 49.2, 48.2, 45.6, 32.1, 27.7, 26.2, 25.9, 25.4, 20.8, 17.5, 16.5. HPLC: 88.9%, RT 4.97 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₃₅Cl₂FN₃O₂ 522.2085, found 522.2086.

(±)-(3*S*,4*S*)-7-Fluoro-4-isopropyl-3-(2-(isopropyl(3-(6-nitro-1*H*-benzo[*d*]imidazol-2yl)propyl)amino)ethyl)chroman-3-ol (2cg)

The following the same procedure as that used for the synthesis of **2ca**, the reaction of amine **2ag** (40.2 mg, 88.0 µmol), acetic acid (10.1 µL, 176 µmol), sodium cyanoborohydride (11.7 mg, 176 µmol) and acetone (25.9 µL, 352 µmol) in MeOH (1 mL) gave amine **2cg** (17.1 mg, 39%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a yellow oil; ¹H-NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.17 (dd, *J* = 2.1, 8.8 Hz, 1H), 7.56 (d, *J* = 8.76 Hz, 1H), 6.96 (d, *J* = 6.7, 8.3 Hz, 1H), 6.57 (td, *J* = 2.5, 8.3 Hz, 1H), 6.51 (dd, *J* =

2.5, 10.1 Hz, 1H), 4.17 (d, J = 10.8 Hz, 1H), 3.95 (dd, J = 1.5, 10.8 Hz, 1H), 3.22 (m, 1H), 3.06-2.92 (m, 2H), 2.75 (t, J = 5.3 Hz, 2H), 2.62-2.49 (m, 3H), 2.47-2.40 (m, 1H), 2.19-2.02 (m, 2H), 1.63 (t, J = 4.9 Hz, 2H), 1.18 (d, J = 7.0 Hz, 3H), 1.08 (dd, J = 6.7, 9.1 Hz, 6H), 0.69 (d, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹J = 243 Hz), 159.3, 153.6 (d, ³J = 11 Hz), 143.4, 142.9, 138.4, 131.5 (d, ³J = 9 Hz), 118.6 (d, ⁴J = 3 Hz), 118.2, 114.0, 111.9, 107.2 (d, ²J = 21 Hz), 103.2 (d, ²J = 24 Hz), 71.9, 68.6, 51.4, 49.0, 48.1, 45.7, 32.0, 27.7, 26.5, 26.2, 25.5, 20.8, 17.7, 16.4. HPLC: 96.7%, RT 14.98 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₃₆FN₄O₄ 499.2715, found 499.2716.

(±)-(3*S*,4*S*)-7-Fluoro-4-isopropyl-3-(2-((2,2,2-trifluoroethyl)amino)ethyl)chroman-3-ol (24b)

To a solution of the aldehyde **3** (31.8 mg, 126 µmol) in dry MeOH (1.5 mL) was sequentially added trifluoroethylamine (28.5 mg, 288 µmol) and sodium cyanoborohydride (13.6 mg, 216 µmol) at room temperature. The reaction was allowed to stir for 18 h at the same temperature. The reaction mixture was quenched with NaHCO₃ (10 mL), extracted with CH₂Cl₂ (3 x 15 mL) and washed with brine. The organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) to afford amine **24b** (38.8 mg, 80%) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ 6.92 (dd, *J* = 6.6, 8.5 Hz, 1H), 6.54 (td, *J* = 2.6, 8.4 Hz, 1H), 6.47 (dd, *J* = 2.6, 10.2 Hz, 1H), 4.04 (d, *J* = 11.0 Hz, 1H), 3.87 (dd, *J* = 2.2, 11.1 Hz, 2H), 3.25-3.12 (m, 2H), 3.05-2.95 (m, 2H), 2.52-2.50 (m, 1H), 2.36-2.27 (m, 1H), 1.68-1.58 (m, 2H), 1.13 (d, *J* = 6.9 Hz, 3H), 0.61 (d, *J* = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹*J* = 242 Hz), 153.6 (d, ³*J* = 12 Hz), 131.7 (d, ³*J* = 10 Hz), 125.0 (q, ¹*J* = 277 Hz), 119.1 (d, ⁴*J* = 3 Hz), 107.0 (d, ²*J* = 21 Hz), 103.1 (d, ²*J* = 24 Hz), 70.6, 68.0, 51.5, 50.2 (q, ²*J* = 31 Hz), 45.4, 35.9, 27.9, 25.4, 21.3.

(±)-(3S,4S)-3-(2-(Cyclopropyl(3-(5-methyl-1*H*-benzo[*d*]imidazol-2-

yl)propyl)amino)ethyl)-7-fluoro-4-isopropylchroman-3-ol (2db)

The following the same procedure as that used for the synthesis of **2da**, the reaction of amine **24a** (22.9 mg, 78.1 µmol), acetic acid (8.49 µL, 148 µmol), sodium cyanoborohydride (9.32 mg, 148 µmol) and aldehyde **21b** (25.4 mg, 74.2 µmol) in MeOH (1 mL) gave tertiary amine intermediate; ¹H-NMR (400 MHz, CDCl₃) δ 7.80-7.77 (m, 2H), 7.51 (d, *J* = 8.2 Hz, 1H), 7.43 (t, *J* = 0.8 Hz, 1H), 7.29-7.25 (m, 2H), 7.17-7.13 (m, 1H), 6.92 (dd, *J* = 6.6, 8.4 Hz, 1H), 6.54 (td, *J* = 2.6, 8.3 Hz, 1H), 6.48 (dd, *J* = 2.6, 10.3 Hz, 1H), 4.00 (d, *J* = 11.0 Hz, 1H), 3.90 (dd, *J* = 1.8, 11.0 Hz, 1H), 3.12(m, *J* = 7.0 Hz, 1H), 3.00-2.94 (m, 1H), 2.91-2.77 (m, 2H), 2.51 (s, 2H), 2.50 (s, 2H), 2.38 (d, *J* = 4.4 Hz, 3H), 2.35-2.26 (m, 1H), 2.22-2.12 (m, 2H), 1.83-1.78 (m, 1H), 1.64 (t, *J* = 4.9 Hz, 2H), 1.11 (d, *J* = 7.0 Hz, 3H), 0.59 (d, *J* = 7.0 Hz, 7H).

The reaction of the above tertiary amine (37.6 mg, 61.0 µmol) and tetrabutylammonium fluoride (607 µmol, 1.0 M solution in THF) in THF (1 mL) gave amine **2db** (16.0 mg, 57%) after purification by column chromatography on silica gel (CH₂Cl₂:MeOH = 10:1) as a brown oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.2 Hz, 1H), 7.33 (s, 1H), 7.02 (dd, J = 1.0, 8.2 Hz, 1H), 6.94 (dd, J = 6.6, 8.5 Hz, 1H), 6.57 (td, J = 3.6, 6.9 Hz, 1H), 6.49 (dd, J = 2.6, 10.2 Hz, 1H), 4.11 (d, J = 10.8 Hz, 1H), 3.93 (dd, J = 2.1, 10.8 Hz, 1H), 2.93-2.83 (m, 4H), 2.65-2.58 (m, 3H), 2.47 (s, 3H), 2.43-2.34 (m, 1H), 2.24-2.11 (m, 2H), 1.68 (m, 1H), 1.57 (t, J = 5.7 Hz, 2H), 1.19 (d, J = 7.0 Hz, 3H), 0.66-0.55 (m, 7H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, ¹J = 242 Hz), 154.1, 153.5 (d, ³J = 14 Hz), 138.2, 137.0, 132.0, 131.6 (d, ³J = 10 Hz), 123.7, 118.8 (d, ⁴J = 3 Hz), 114.8, 114.3, 107.0 (d, ²J = 22 Hz), 103.1 (d, ²J = 25 Hz), 71.6, 68.3, 54.2, 53.1 51.4, 37.9, 32.2, 27.8, 26.6, 25.5, 25.3, 21.6, 21.0, 6.7, 6.3.

HPLC: 96.1%, RT 19.07 min. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₈H₃₇FN₃O₂ 466.2864, found 466.2868.

(±)-(3*S*,4*S*)-2-(7-Fluoro-3-hydroxy-4-isopropylchroman-3-yl)acetaldehyde *O*-(2-(6methyl-1*H*-benzo[*d*]imidazol-2-yl)ethyl) oxime (2fb)

The following the same procedure as that used for the synthesis of 2fa, the reaction of aldehyde 3 (41 mg, 0.16 mmol), K₂CO₃ (34 mg, 0.24 mmol) and N-alkoxyamine 5b (41 mg, 0.18 mmol) in MeOH (1 mL) gave an inseparable mixture of oximes **2fb** (17 mg, 25%, *E/Z*) = 1:1) after purification by column chromatography on silica gel (EtOAc:n-hexane = 1:1); *isomer A*: ¹H-NMR (400 MHz, CDCl₃) δ 7.48 (t, J = 6.0 Hz, 1H), 7.41-7.45 (m, 1H), 7.30-7.32 (m, 1H), 7.02-7.08 (m, 1H), 6.93-6.98 (m, 1H), 6.49-6.62 (m, 2H), 4.38-4.42 (m, 2H), 4.06 (d, J = 11.0 Hz, 1H), 3.87 (dd, J = 2.0, 11.0 Hz, 1H), 3.18-3.30 (m, 2H), 2.58-2.63 (m, 1H), 2.36-2.44 (m, 6H), 1.14 (d, J = 7.0 Hz, 3H), 0.66 (d, J = 6.6 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 243.0 Hz), 153.6, 151.9 149.0, 138.0 (broad), 136.7 (broad), 132.3, 131.7, 123.9, 118.5, 114.6 (broad), 114.2 (broad), 107.5 (d, J = 21.0 Hz), 103.4 (d, J = 24.0 Hz), 71.1, 70.4, 68.2, 50.8, 38.5, 29.3, 28.3, 25.1, 21.0. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₄H₂₉FN₃O₃ 426.2188, found 426.2186; *isomer B*: ¹H-NMR (400 MHz, CDCl₃) δ 7.41-7.45 (m, 1H), 7.30-7.32 (m, 1H), 6.93-7.08 (m, 3H), 6.49-6.62 (m, 2H), 4.38-4.42 (m, 2H), 4.13 (d, J = 11.2 Hz, 1H), 3.92 (dd, J = 2.0, 11.0 Hz, 1H), 3.18-3.30 (m, 2H), 2.58-2.63 (m, 2H), 2.36-2.44 (m, 5H), 1.17 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 6.4 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 243.0 Hz), 153.5, 152.1, 148.8 138.0 (broad), 136.7 (broad), 132.3, 131.6, 123.9, 118.5, 114.6 (broad), 114.2 (broad), 107.5 (d, J = 21.0 Hz), 103.3 (d, J = 24.0 Hz), 71.4, 70.6, 68.7, 51.0, 35.4, 29.3, 28.1, 25.2, 21.0. HPLC (mixture): 88.2%, RT 5.83 min.

(±)-(3*S*,4*S*)-2-(7-Fluoro-3-hydroxy-4-isopropylchroman-3-yl)acetaldehyde *O*-(2-(6fluoro-1*H*-benzo[*d*]imidazol-2-yl)ethyl) oxime (2fc)

The following the same procedure as that used for the synthesis of 2fa, the reaction of aldehyde 3 (48 mg, 0.19 mmol), K_2CO_3 (39 mg, 0.29 mmol) and N-alkoxyamine 5c (52 mg, 0.21 mmol) in MeOH (1 mL) gave an inseparable mixture of oximes 2fc (17 mg, 21%, E/Z =2:1) after purification by column chromatography on silica gel (EtOAc:n-hexane = 1:1); maior isomer: ¹H-NMR (400 MHz, CDCl₃) & 7.46-7.53 (m, 2H), 7.23-7.25 (m, 1H), 6.93-7.02 (m, 2H), 6.51-6.62 (m, 2H), 4.42-4.46 (m, 2H), 4.05 (d, J = 11.0 Hz, 1H), 3.88 (dd, J = 10.0 Hz, 1.9, 11.0 Hz, 1H), 3.25-3.34 (m, 2H), 2.59-2.63 (m, 1H), 2.31-2.42 (m, 3H), 1.13 (d, J = 7.0 Hz, 3H), 0.66 (d, J = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 243.0 Hz), 159.6 (d, J = 237.0 Hz), 153.4 (broad), 149.2, 137.5 (broad), 133.8 (broad), 131.7, 131.6, 118.4, 115.2 (broad), 111.3 (d, J = 25.0 Hz), 107.6 (d, J = 21.0 Hz), 103.4 (d, J = 24.0 Hz), 101.0 (d, *J* = 26.0 Hz), 70.8, 70.5, 68.2, 50.8, 38.5, 29.1, 28.3, 25.1, 21.0. HRMS-ESI (*m/z*): $[M+H]^+$ calcd for C₂₃H₂₆F₂N₃O₃ 430.1937, found 430.1933; *minor isomer*: ¹H-NMR (400) MHz, CDCl₃) δ 7.46-7.53 (m, 1H), 7.23-7.25 (m, 1H), 6.93-7.02 (m, 3H), 6.51-6.62 (m, 2H), 4.42-4.46 (m, 2H), 4.12 (d, J = 9.8 Hz, 1H), 3.90-3.93 (m, 1H), 3.25-3.34 (m, 2H), 2.59-2.63 (m, 3H), 2.31-2.42 (m, 1H), 1.16 (d, J = 7.0 Hz, 3H), 0.67 (d, J = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 163.5 (d, J = 243.0 Hz), 159.6 (d, J = 237.0 Hz), 153.4 (broad), 148.7, 137.5 (broad), 133.8 (broad), 131.7, 131.6, 118.4, 115.2 (broad), 11123 (d, J = 26.0 Hz), 107.6 (d, J = 19.0 Hz), 103.4 (d, J = 24.0 Hz), 101.0 (d, J = 26.0 Hz), 71.1, 70.9, 68.5, 51.0, 35.4, 29.4, 28.2, 25.2, 21.0. HPLC (mixture): 86.9%, RT 3.52 min.

(±)-(3*S*,4*S*)-2-(7-Fluoro-3-hydroxy-4-isopropylchroman-3-yl)acetaldehyde *O*-(2-(6chloro-1*H*-benzo[*d*]imidazol-2-yl)ethyl) oxime (2fd)

The following the same procedure as that used for the synthesis of 2fa, the reaction of

aldehyde 3 (48 mg, 0.19 mmol), K₂CO₃ and N-alkoxyamine 5d (52 mg, 0.21 mmol) in MeOH (1 mL) gave the inseparable mixture of oximes **2fd** (18 mg, 21%, E/Z = 2:1) after purification by column chromatography on silica gel (EtOAc:n-hexane = 1:1); major *isomer*: ¹H-NMR (400 MHz, CDCl₃) δ 7.4-7.53 (m, 2H), 7.41-7.43 (m, 1H), 7.16-7.19 (m, 1H), 6.93-6.97 (m, 1H), 6.52-6.63 (m, 2H), 4.40-4.44 (m, 2H), 4.07 (d, J = 11.4 Hz, 1H), 3.86 (dd, J = 1.9, 10.9 Hz, 1H), 3.22-3.32 (m, 2H), 2.58 (s, 1H), 2.04-2.41 (m, 3H), 1.11 (d, J = 1.1)5.0 Hz, 3H), 0.66 (d, J = 6.5 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 243.0 Hz), 153.5 (broad), 149.0, 139.0 (broad), 137.0 (broad), 131.7 (d, J = 100.0 Hz), 128.1, 122.0, 118.4, 115.6 (broad), 114.7 (broad), 107.6 (d, J = 21.0 Hz), 103.4 (d, J = 24.0 Hz), 70.9, 70.6, 68.2, 50.8, 38.5, 29.4, 28.3, 25.1, 21.0. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₃H₂₆ClFN₃O₃ 446.1641, found 446.1638; *minor isomer*: ¹H-NMR (400 MHz, CDCl₃) δ 7.4-7.53 (m, 2H), 7.41-7.43 (m, 1H), 7.16-7.19 (m, 1H), 6.93-6.97 (m, 1H), 6.52-6.63 (m, 2H), 4.40-4.44 (m, 2H), 4.12 (d, J = 9.9 Hz, 1H), 3.91 (dd, J = 1.9, 10.9 Hz, 1H), 3.22-3.32 (m, 2H), 2.60-2.62 (m, 3H), 2.04-2.41 (m, 1H), 1.15 (d, J = 5.9 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 242.0 Hz), 153.5 (broad), 148.6, 139.0 (broad), 137.0 (broad), 131.7(d, J = 100.0 Hz), 128.0, 122.0, 118.4, 115.6 (broad), 114.7 (broad), 107.7 (d, J = 21.0 Hz), 103.4 (d, J = 24.0 Hz), 71.2, 70.9, 68.5, 51.0, 35.4, 29.3, 28.2, 25.2, 20.9. HPLC (mixture): 86.3%, RT 6.40 min.

t Data Parameters LJE-201 2 1

л

mm

usec K Sec sec

um PABBO BB/ zgpg30 cDC13 24038.461 24038.461 1.3631988 1.3631988 1.3631988 1.3631988 2.0000000 0.03000000 1

Hz Hz Sec

Processing parameters 32768 100.6328860 MHz EM

0 0

1.40 1.00

Ηz

= CHANNEL f2 -------Waltz16 1H 90.00 usec 12.0000000 W 0.33333001 W 0.27000001 W 400.2116008 MHz

= CHANNEL fl ====== 13C 10.00 usec 52.00000000 W 100.6429474 MHz

ļ

y w y w 4 MHz

1.40 1.00 Hz

J

1.40

λ

ş

L J

S58

Ηz

λ

1.40 1.00 Hz

Data a Parameters LJE-diol 1 1

λ

Ζ

Hz Hz Sec

usec K Sec Sec

1.40 1.00

Ηz

MHz

usec W W MHz

zgpg30 65536 MeOD 89

<pre>LJE-2nd-44 2 1 sition Parameters 20120518 20.47 spect mm PABBO BB/ 24038.461 Hz 0.366798 Hz 1.3631988 sec 2.00000000 sec 0.03000000 sec 1.361988 sec 2.00000000 sec 1.361988 sec 52.00000000 sec 52.00000000 sec 100.6429474 MHz 100.642860 MHz 100.632860 MHz 100.632860 MHz 1.00 Hz 1.00 Hz </pre>	AME CHAN AME Data AME Da
---	--

Current NAME EXPNO PROCNO 11 Acquisition Parameters 20120531 20.35 Data Parameters LJE-182 spect PABBO BB/ L J

ഗ

mm

NNEL fl ====	1	1.00000000	298.4	6.50	60.800	33.2	3.9846387	0.125483	8223.685	2	16	CDC13	65536	zg30
		sec	ĸ	usec	usec		sec	Hz	Ηz					

Processing

sing parameters 65536 400.2100130 MHz EM

MHz

0

1.00 0

. ω

Ηz

0

CHANNEL

Ę1

1H 15.00 12.00000000 400.2124715

usec W MHz

usec W MHz

MHz

J

٩/	Ē\/
X	Χ
Ĭ	

F2 - Pr SI SF WDW SSB LB	NUC1 P1 PLW1 SF01	F2 - Ac Date Time INSTRUM PROSTRUM PROSTRUM PULPROG TD PULPROG TD SOLVENT NS SOLVENT NS SWH SWH FIDRES AQ RG RG RG RG RG DU TD TD TD TD	Current NAME EXPNO PROCNO
ocessing parameters 65536 400.2100130 MHz EM 0 0.30 Hz	= CHANNEL fl ===================================	quisition Parameters 20120623 17.06 Spect 5 mm PABBO BB/ Zg30 65536 CDC13 16 2 2 8223.685 Hz 0.125483 Hz 3.9846387 sec 119.61 6.50 usec 6.50 usec 300.4 K 1.00000000 sec	Data Parameters LJE-161 4 1

0

<u>ب</u>

. 8

XXX	

Data

Parameters LJE-175

ഗ

ллп

spect PABBO BB/

16.54

zg30 65536 CDC13 16

usec K

2223.685 0.125485 3.98463887 91.91 60.800 6.50 6.50

sec Hz

li

CHANNEL

£1

1.00000000 1

sec

1H 15.00 12.00000000 400.2124715

usec W MHz

0

0

1.00 0

30

Ηz

MHz

λ

Hz Hz Sec

usec K Sec Sec

usec W MHz

1.40 1.00

Ηz

usec K Sec sec

f2 ===

w W MHz

1.00 1.40

Ηz

MHz

£1

usec W MHz

zgpg30 65536 CDC13 1024

ھ

Hz Hz Sec

Ц

J

rrrent Data Parameters rrent Data Parameters e Acquisition Parameters spect 202N0 1 1 CCN0 2 PACQUISITION Parameters e 2012121 page 3 EVENT 220230 EVENT C52 19.51 19.52 1.366799 Hz 1.366799 Hz 1.366799 Hz 1.366799 Hz 1.366799 Hz 1.366798 Hz 1.36600 usec 6.50 usec 2.0000000 sec 1.00 usec 1.00.6429474 HHz DERG2 12.0000000 W 0.100.6429474 HHz 0.27000001 W 0.27000001 W 0.230000 WHz - Processing parameters 100.6328660 HHz 0 1.00 Hz

λ

1.40

MHz MHz

MHz MHz

1.40

MHz

ז

λ

υ μ	0000 2	010 2	0.0	
0 0	O • • • m	O H	•• 🗃 N	H O Q
	- NWO H	in H	00 00	NĂ NĂ Ê
		· •		
റെ	NJWO 2	<u> </u>	ωο ωιο	
ພິໝ	носо он	40 H	00 NH6666	20 94 80
NY GY H				റെ സ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ
co Ν μ	00000 m	600	0000,000,	NOUNO 10000 IT
00 - J H	0000 N N	40· HI		000000000000000000000000000000000000000
m o o o	33330 <u>4</u> 01	DOCUL		7 C C C C C C C C C C C C C C C C C C C
101010	00000000	2000		
2001	œнноодо!	10004	44000000004	00000000000000000000000000000000000000
·	H I	0		rt -
N 10	79999 I	17 1 1 1		à
· ·	14444 P	Pa <1 P ‼	M M M M M M M M M M	10
a a	E G	EE 60 1	00 00 000	R
N	N 0 I	N 10 1		ró
	0 1	0	0.0	
	ng parameters 32768 D0.6328860 MHz EM	<pre>WEL £2</pre>	YEL f1 13.2 10.00 Usec 10.00 Watch 20.6429474 MHZ MHZ Watch	24038.461 Hz 0.36798 Hz 1.0331988 sec 20.800 usec 2.0000000 sec 0.0000000 sec 0.0000000 sec 1.00 usec 1.00 usec 2.0000000 Wsec 2.0000000 Wsec 0.6429474 MHz 0.6429474 MHz 0.6429474 MHz 0.6429474 MHz 0.2100000 Wsec 2.0000000 Wsec 2.0000000 Wsec 2.3333001 W 0.231608 MHz 0.211608 MHz 0.211608 MHz 0.6328660 MHz

λ

PROF
CHANNEL f1
12

1
22.12
22.12

1280G
20120708
587

280G
20120708
587

280G
20120708
587

280G
20120708
587

2180G
22.12
22.12

2180G
22.12
22.12

1800
3989
587

102.4
102.4
102.4

103.631988
386
130.62

100.63300000
365
100

100.629.9
K
2.0000000 sec

100.6429474
MHz
132

112
0.20000000 wec
114

12
0.3333001 W
32768

100.6328660 MHz
2
90.01

100.6328660 MHz
100.6328660 MHz

100.6328660 MHz
2
100.6328660 MHz

100.6328660 MHz
2
100.6328660 MHz

100.6328660 MHz
100.6328660 MHz
2

100.6328660 MHz
100

100.6328660 MHz
<td

J

1.40

Processing Data CHANNEL CHANNEL ssing parameters 32768 100.6328860 MHz EM tion Parameters 2012.0709 21.34 spect am PABBO BB/ 259930 65530 (DC13 12170 ...4 ANNEL f2 _____ Waltz16 11 90.00 12.00000000 0.33333001 0.27000001 400.2116008 ANNEL fl ==== 13C 10.00 52.00000000 100.6429474 24038.461 0.366798 1.363198 20.800 6.50 298.9 2.00000000 0.03000000 1 , Parameters KTH-m-165 5 1 1.00 l w MHz MHz Hz Hz Sec Sec Sec Ηz MH2 MHz usec W i i

Z

1.40

Ì