Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Rhodium(III)-Catalyzed Formal Oxidative [4+1] Cycloaddition of Benzohydroxamic acids and α-Diazoesters. A Facile Synthesis of Functionalized Benzolactams

Hon-Wah Lam, Ka-Yi Man, Wai-Wing Chan, Zhongyan Zhou, and Wing-Yiu Yu*

State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Email: wing-yiu.yu@polyu.edu.hk

Table of Content

2Experimental Procedures and Physical CharacterizationsS2-133X-ray Crystallographic Data for 4S14-204ReferencesS205 ¹ H and ¹³ C NMR SpectraS21-42	1	General Experimental Section	S2
3X-ray Crystallographic Data for 4S14-204ReferencesS205 ¹ H and ¹³ C NMR SpectraS21-42	2	Experimental Procedures and Physical Characterizations	S2-13
4ReferencesS205 ¹ H and ¹³ C NMR SpectraS21-42	3	X-ray Crystallographic Data for 4	S14-20
5 ¹ H and ¹³ C NMR Spectra S21-42	4	References	S20
	5	¹ H and ¹³ C NMR Spectra	S21-42

1. <u>General Experimental Section:</u>

All the solvents and reagents were obtained from commercial sources and used without purification. All catalytic reactions were carried out under a nitrogen atmosphere. Benzohydroxamic acids were prepared from benzoic acids and benzoyl chlorides following the literature procedures. *O*-Acetyl benzohydroxamic acids, *O*-pivaloyl benzohydroxamic acids, *O*-benzoyl benzohydroxamic acid and *O*-methoxy benzohydroxamic acid were synthesized according to the literature.¹ [Cp*Rh(OAc)₂]^{2a} and [Rh(cod)Cl]₂^{2b}, and diazo compounds³ were synthesized following the literature procedures.

Thin layer chromatography was performed on silica gel plates. Silica gel (Merck, 230-400 mesh) was used for flash column chromatography. ¹H and ¹³C NMR spectra were recorded on a Brüker (400 MHz) NMR spectrometer. The chemical shift (δ) values are given in parts per million (ppm) with multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and are referenced to residual solvent peaks. Coupling constants (J) were reported in Hertz (Hz). Melting points were measured on a Büchi Melting Point B - 545 machine. Mass spectra and high resolution mass spectra (HRMS) were obtained on a VG MICROMASS Fison VG platform, a Finnigan Model Mat 95 ST instrument, or a Brüker APEX 47e FT - ICR mass spectrometer. X-ray crystal structure was obtained by a Brüker CCD area detector diffractometer.

2. Experimental Procedures and Physical Characterizations:

2.1 General procedure A for the synthesis of benzohydroxamic acids from benzoyl chloride:

Hydroxylamine hydrochloride (2.78g, 40 mmol) and NaOH pellets (2g, 50 mmol) was dissolved in water (20 mL) and then stirred for 5 min in a 100 mL-rounded bottom flask equipped with a magnetic stirrer. Benzoyl chloride (10 mmol) THF (20 mL) was then added via a syringe. Hydrochloride solution (2 M) was added to acidify the solution to pH 1 after stirring the reaction mixture at room temperature overnight. The

organic layer was collected and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were then washed with water and brine and were dried over MgSO₄ and concentrated under reduced pressure to afford the crude N-hydroxy benzamide as a white solid.

A 100 mL-rounded bottom flask equipped with a magnetic stirrer was charged with the freshly prepared *N*-hydroxybenzamide, acetyl acetate (1.3 equiv) and THF (15 mL). Triethylamine (1.3 equiv) was then added in dropwise manner. The reaction was stirred at room temperature. Upon complete consumption of the starting materials, the organic layer was collected and washed with water and brine. The combined organic extract was dried over MgSO₄ and concentrated under reduced pressure. Recrystallization of the crude residue from hexanes/EtOAc gave pure benzohydroxamic acid as a white solid.

2.2 General procedure B for the synthesis of benzohydroxamic acids from benzoyl chloride:

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) was dissolved in water (20 mL) and then stirred for 5 min in a 100 mL-rounded bottom flask equipped with a magnetic stirrer. Benzoyl chloride (10 mmol) THF (20 mL) was then added via a syringe. Hydrochloride solution (2 M) was added to acidify the solution to pH 1 after stirring the reaction mixture at room temperature overnight. The organic layer was collected and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were then washed with water and brine and were dried over MgSO₄ and concentrated under reduced pressure to afford the crude *N*-hydroxy benzamide as a white solid.

NaOH pellets (1 equiv) in water (0.5 M) and *N*-hydroxybenzamide in DCM (15 mL) were stirred for 5 minutes in a 100 mL rounded bottom flask equipped with a magnetic stirrer. Acetyl acetate in THF (5 mL) was added in dropwise manner over 30 min. Upon complete consumption of the starting material, the organic layer was collected and washed with water and brine. The combined organic extract was dried over MgSO₄ and concentrated under reduced pressure to afford crude

benzohydroxamic acids solid. Recrystallization of the crude residue from hexanes/EtOAc gave pure benzohydroxamic acid as a white solid

2.3 General procedure for Rh(III)-catalyzed [4+1] cycloaddition of benzohydroxamic acids with diazo compounds:

A 8 mL-vial equipped with a magnetic stirrer was charged with *O*-acetyl benzohydroxamic acid **1** (0.2 mmol) and Cp*Rh(OAc)₂ (5 mol %). THF (0.5 mL) was then added via a syringe. Diazo compound **2** (0.2 mmol) in THF (1.5 mL) was added in one pot. The reaction vial was allowed to stir for 4 h at 60 °C. Upon complete reaction, the crude mixture was filtered through Celite® and concentrated under reduced pressure. The residue was then purified by flash column chromatography to give the desired product **3**.

Dimethyl 3-oxoisoindoline-1,1-dicarboxylate (3a)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as an off-white solid (89% isolated yield), ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.86 - 7.82 (t, 2H, *J* = 8.0 Hz), 7.67 - 7.63 (t, 1H, *J* = 7.2 Hz), 7.59 - 7.55 (t, 1H, *J* = 7.6 Hz), 6.87 (s, 1H), 3.83 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.9, 167.0, 140.1, 133.1, 131.0, 130.5, 125.7, 124.3, 70.7, 54.3. HRMS (ESI): calcd. for C12H12NO5: 250.0715 , found: 250.0712.

Dimethyl 6-methoxy-3-oxoisoindoline-1,1-dicarboxylate (3b)

Eluent: 40% *n*-hexane / 60% ethyl acetate. The product was obtained as a white solid (90% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.75 - 7.72(d, 1H, *J* = 8.8 Hz), 7.312 - 7.307 (d, 1H, *J* = 2.0 Hz), 7.08 - 7.06 (dd, 1H), 6.60(s, 1H), 3.91 (s, 3H), 3.83(s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.7, 167.0, 163.9, 142.4, 125.7, 123.3, 117.1, 110.6, 56.35, 54.35. HRMS (ESI): calcd. for C₁₃H₁₃NO₆Na : 302.0641 , found:

302.0630.

Dimethyl 6-methyl-3-oxoisoindoline-1,1-dicarboxylate (3c)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (82% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.72-7.70 (d, 1H, *J* = 8 Hz), 7.63 (s, 1H), 7.37 - 7.35 (d, 1H, *J* = 7.6 Hz), 7.04 (s, 1H) 3.82 (s, 6H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.9, 166.9, 143.9, 140.3, 131.4, 128.2, 125.8, 123.9, 70.4, 54.1, 22.2. HRMS (ESI): calcd. for C₁₃H₁₄NO₅: 264.0872, found: 264.0861.

Dimethyl 6-nitro-3-oxoisoindoline-1,1-dicarboxylate (3d)

Eluent: 40% *n*-hexane / 60% ethyl acetate. The product was obtained as a white solid (93% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H} 8.692 - 8.688$ (d, 1H, J = 1.6 Hz), 8.46 - 8.43 (dd, 1H), 8.008 - 7.988 (d, 1H, J = 8.0 Hz), 7.80 (s, 1H), 3.88(s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 167.6, 165.9, 151.2, 141.2, 136.2, 126.1, 125.5, 121.7, 70.7, 54.9. HRMS (ESI): calcd. for C₁₂H₁₀N₂O₇Na: 317.0386, found: 317.0374.

Dimethyl 6-(trifluoromethyl)-3-oxoisoindoline-1,1-dicarboxylate (3e)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (93% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.12 (s, 1H), 8.00 – 7.95 (d, 1H, J = 8.0 Hz), 7.85 – 7.83 (d, 1H, J = 8.0 Hz), 3.86 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 168.6, 166.2, 140.3, 134.9, 134.3, 127.9, 125.0, 123.2, 123.1, 70.8, 54.7. HRMS (ESI): calcd. for C₁₃H₁₁NO₅F₃: 318.0589, found: 318.0594.

Dimethyl 6-chloro-3-oxoisoindoline-1,1-dicarboxylate (3f)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (82% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.84 - 7.83 (d, 1H, *J* = 1.6 Hz), 7.76 - 7.74 (d, 1H, *J* = 8.0 Hz), 7.55 - 7.53 (dd, 1H), 7.22(s, 1H), 3.85 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 168.8, 166.4, 141.6, 139.5, 131.2, 129.5, 126.2, 125.5, 70.4, 54.5. HRMS (ESI): calcd. for C₁₂H₁₁NO₅Cl: 284.0326, found: 284.0327. HRMS (ESI): calcd. for C₁₂H₁₁NO₅Cl: 284.0327.

Dimethyl 6-bromo-3-oxoisoindoline-1,1-dicarboxylate (3g)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (77% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.00 (s, 1H), 7.70 - 7.67 (dd, 2H), 7.32 (s, 1H), 3.85 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.0, 166.4, 141.7, 134.1, 130.0, 129.1, 127.8, 125.6, 70.4, 54.6. HRMS (ESI): calcd. for C₁₂H₁₁NO₅Br: 327.9821, found: 327.9805.

Methyl 3-oxo-1-phenyl-2,3-dihydro-1H-benzo[f]isoindole-1-carboxylate (3h)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (73% isolated yield). 1H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.34 - 8.31(d, 2H, *J* = 24.4 Hz), 8.04 - 8.00 (t, 2H, *J* = 7.6 Hz), 7.66 - 7.59 (m, 2H), 6.97 (s, 1H), 3.86(s, 6H). 13C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.6, 167.3, 139.8, 134.7, 134.1, 130.0, 129.2, 128.7, 128.0, 127.8, 125.5, 125.1, 70.5, 54.4. HRMS (ESI): calcd. for C₁₆H₁₄N₂O₅: 300.0872, found: 300.0870.

Dimethyl 5-methoxy-3-oxoisoindoline-1,1-dicarboxylate (3i)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃): 7.73 – 7.71 (d, 1H, J = 8.4 Hz), 7.30 – 7.29 (d, 1H, J = 2.4 Hz), 7.19 – 7.17 (q, 1H, J = 2.4 Hz), 6.82 (s, 1H), 3.87 (s, 3H), 3.82 (d, 3H). 13C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.6, 167.0, 161.7, 132.3, 132.1, 126.4, 121.0, 106.9, 70.1, 56.0, 54.0. HRMS (ESI): calcd. for C₁₃H₁₄NO₆: 280.0821, found: 280.0830.

Dimethyl 7-methoxy-3-oxoisoindoline-1,1-dicarboxylate (3i')

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid.¹H NMR (400 MHz, CDCl₃): 7.55 – 7.51 (t, 1H, J = 7.6 Hz), 7.45 – 7.43 (d, 1H, J = 7.6 Hz), 7.15 – 7.13 (d, 1H, J = 8.0 Hz), 6.91 (s, 1H), 3.92 (s, 3H), 3.79 (d, 3H). 13C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.3, 167.0, 156.3, 133.0, 132.4, 128.5, 116.5, 116.1, 70.1, 56.5, 53.9. HRMS (ESI): calcd. for C₁₃H₁₄NO₆: 280.0821, found: 280.0830.

Dimethyl 5, 6-dihydro-6-oxothieno[3,2-c]pyrrole-4,4-dicarboxylate (3j)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (63% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.72 – 7.71 (q, 1H, J = 0.8 Hz), 7.28 – 7.27 (d, 1H, J = 4.8 Hz), 6.96 (s, 1H), 3.83(s, 6H). 13C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.0, 165.0, 150.6, 136.7, 135.3, 122.8, 69.7, 54.2. HRMS (ESI): calcd. for C₁₀H₉NO₅NaS: 278.0099, found: 278.0108.

Methyl 3-oxo-1-(phenylsulfonyl)isoindoline-1-carboxylate (3k)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as an off-white solid (84% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.17 - 8.15(d, 1H, *J* = 8 Hz), 7.71 - 7.67 (m, 1H), 7.57 - 7.48 (m, 5H), 7.35 - 7.31 (t, 2H, *J* = 7.6 Hz), 7.20 (s, 1H), 3.99(s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 168.6, 163.4, 136.8, 135.3, 133.3, 132.6, 131.6, 131.4, 130.8, 129.1, 126.6, 124.3, 85.0, 54.9. HRMS (ESI): calcd. for C₁₆H₁₃NO₅Na⁺: 354.0412, found: 354.0405.

Methyl 1-cyano-3-oxoisoindoline-1-carboxylate (3l)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (72% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.93 - 7.90 (d, 1H, *J* = 7.6 Hz), 7.84 - 7.83 (d, 1H, *J* = 7.6 Hz), 7.76 - 7.72 (td, 1H), 7.70 - 7.66 (td, 1H), 7.46 (s, 1H), 3.93(s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.7, 164.7, 139.4, 134.3, 131.8, 129.9, 125.3, 123.9, 115.2, 59.7, 55.5. HRMS (ESI): calcd. for C₁₁H₉N₂O₃: 217.0613, found 217.0618.

Methyl 1-(ethoxyphosphono)-3-oxoisoindoline-1-carboxylate (3m)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a light yellow solid (30% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.97 (d, 1H, *J* = 7.6 Hz), 7.86 – 7.84 (d, 1H, *J* = 7.2 Hz), 7.66 – 7.63 (t, 1H, *J* = 7.4 Hz), 7.58 – 7.54 (t, 1H, *J* = 7.6 Hz), 6.86 (s, 1H), 4.33 – 4.28 (q, 2H, *J* = 6.8 Hz), 4.15 – 4.10 (q, 2H, *J* = 7.2Hz), 4.08 – 3.99 (m, 1H), 3.89 – 3.79 (m, 1H), 1.34 – 1.31 (t, 3H, *J* = 7Hz), 1.25 – 1.21 (t, 3H, *J* = 7 Hz), 1.14 – 1.11 (t, 3H, 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.5, 165.8, 139.4, 139.3, 132.64, 132.62, 131.23, 131.19, 129.9, 125.62, 125.59,

124.1, 68.4, 66.9, 65.1, 65.09, 65.02, 64.8, 64.7, 63.4, 16.47, 16.41, 16.35, 16.29, 14.12. 31 P NMR (100 MHz, H₃PO₄): 13.6, 13.52, 13.46, 13.42, 13.37. HRMS (ESI): calcd. for C₁₅H₂₁NO₆P: 342.1107, found: 342.1100.

1-methyl 1-(E)-pent-3-enyl 3-oxoisoindoline-1,1-dicarboxylate (3n)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (86% isolated yield), ¹H NMR (400 MHz, CDCl₃): 7.86 – 7.84 (d, 1H, J = 7.6 Hz), 7.84 – 7.82 (d, 1H, J = 7.6 Hz), 7.67 – 7.63 (m, 1H), 7.58 – 7.55 (m, 1H), 6.85 (s, 1H), 5.85 – 5.76 (m, 1H), 5.57 – 5.50 (m, 1H), 4.64 – 4.62 (m, 2H), 3.83 (s, 1H), 1.72-1.70 (d, 3H, J = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ_{C} 169.6, 166.8, 166.0, 140.0, 133.3, 132.8, 130.8, 130.3, 125.6, 124.1, 123.7, 70.6, 68.0, 54.0, 17.9. HRMS (ESI): calcd. for C₁₅H₁₅NO₅Na: 312.0848, found: 312.0838.

Diethyl 3-oxoisoindoline-1,1-dicarboxylate (30)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (80% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.85 - 7.81(t, 2H, J = 8.0 Hz), 7.65 - 7.61 (t, 1H, J = 7.6 Hz), 7.57 - 7.53 (t, 1H, J = 7.6 Hz), 7.23 (s, 1H), 4.30 - 4.25 (dd, 4H, J = 7.2 Hz), 1.30 - 1.26 (t, 6H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.1, 166.5, 140.3, 133.0, 131.1, 130.4, 125.7, 124.3, 70.9, 63.6, 14.3. HRMS (ESI): calcd. for C₁₄H₁₆NO₅: 278.1028, found: 278.1021.

Methyl 3-oxo-1-phenylisoindoline-1-carboxylate (3p)

Eluent: 50% n-hexane / 50% ethyl acetate. The product was obtained as a white solid

(83% isolated yield), mp 168 – 169 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.86 - 7.84 (d, 1H, J = 7.2 Hz), 7.71 - 7.69 (d, 1H, J = 7.6 Hz), 7.61 - 7.57 (td, 1H), 7.54 - 7.50 (t, 1H, J = 7.6 Hz), 7.37 - 7.33 (m, 5H), 7.02 (s, 1H), 3.84(s, 3H) ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.4, 170.2, 145.6, 138.7, 132.9, 131.0, 129.7, 129.5, 129.1, 125.8, 125.7, 124.2, 71.1, 53.8 . HRMS (ESI): calcd. for C₁₆H₁₄NO₃: 268.0974, found: 268.0971.

Methyl 1-(4-bromophenyl)-3-oxoisoindoline-1-carboxylate (3q)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as an off-white solid (90% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.06 (s, 1H), 7.85 - 7.83 (d, 1H, *J* = 7.6 Hz), 7.70 - 7.68 (d, 1H, *J* = 7.6 Hz), 7.61 - 7.57 (t, 1H, *J* = 7.2 Hz), 7.54 - 7.50 (t, 1H, *J* = 7.6 Hz), 7.47 - 7.44 (d, 2H, *J* = 8.6 Hz), 7.30 - 7.28 (d, 2H, *J* = 8.8 Hz), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 169.95, 169.87, 145.3, 137.8, 133.1, 132.6, 130.7, 129.9, 127.6, 125.5, 124.4, 123.4, 70.5, 53.9. HRMS (ESI): calcd. for C₁₆H₁₃NO₃Br: 346.0079, found: 346.0085.

Spiro[indoline-3,1'-isoindoline]-2,3'-dione (3r)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (75% isolated yield). ¹H NMR (400 MHz, *d*₆-DMSO): $\delta_{\rm H}$ 10.9 (s, 1H), 9.03 (s, 1H), 7.75 - 7.73 (m, 1H), 7.55 - 7.49 (m, 2H), 7.33 - 7.29 (m, 1H), 7.02 - 6.90 (m, 4H). ¹³C NMR (100 MHz, *d*₆-DMSO): $\delta_{\rm C}$ 175.8, 170.9, 146.2, 143.2, 133.2, 132.3, 130.7, 129.7, 128.5, 124.7, 123.9, 123.2, 111.1, 67.7. HRMS (ESI): calcd. for C15H10N2O2Na : 273.0640, found: 273.0627.

Ethyl 1-methyl-3-oxoisoindoline-1-carboxylate (3s)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as an orange solid (32% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.82 - 7.80(d, 1H, *J* = 7.2 Hz), 7.68 - 7.66 (d, 1H, *J* = 7.6 Hz), 7.61 - 7.57 (t, 1H, *J* = 7.6 Hz), 7.52 - 7.48 (t, 1H, *J* = 7.6 Hz), 7.03 (s, 1H), 4.21 - 4.16 (q, 2H), 1.80 (s, 3H), 1.26 - 1.23 (t, 3H, *J* = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 13C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.5, 170.2, 136.8, 135.3, 133.3, 132.6, 131.6, 131.4, 64.9, 62.7, 25.7, 14.3. HRMS (ESI): calcd. for C₁₂H₁₄NO₃: 220.0974, found: 220.0967.

Methyl 1-((naphthalen-2-yl)methyl)-3-oxoisoindoline-1-carboxylate (3t)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (62% isolated yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.89 – 7.87 (m, 1H), 7.78 – 7.76 (m, 4H), 7.69 - 7.64 (m, 2H), 7.56 – 7.50 (m, 1H), 7.49 – 7.46 (m, 2H), 7.27 - 7.25 (m, 1H), 6.42 (s, 1H), 3.97 – 3.93 (d, 1H, J = 13.6 Hz), 3.69 (s, 3H), 3.10 – 3.06 (d, 1H, J = 13.2 Hz), ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.8, 169.6, 145.2, 133.5, 132.9, 132.7, 132.3, 131.0, 129.7, 129.0, 128.6, 127.9, 127.8, 127.6, 126.4, 126.3, 124.2, 123.5, 69.0, 53.2, 45.5. HRMS (ESI): calcd. for C₂₁H₁₈NO₃: 332.1287, found: 332.1284.

3,3-diphenylisoindolin-1-one (3u)

Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as a white solid (82% isolated yield), mp 216 – 217 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7. 89 - 7.87(d, 1H, *J* = 7.6 Hz), 7.58 - 7.54(td, 1H), 7.50 - 7.43 (m, 2H), 7.32 - 7.26 (m, 10H), 7.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.3, 150.5, 143.1, 132.6, 131.1, 129.0, 128.8, 128.3, 127.5, 124.9, 124.7, 71.4. HRMS (ESI): calcd. for C₂₀H₁₆NO: 286.1232, found: 286.1226.

2.4 Synthesis of Rhodacyclic Complex 4:

A 10 mL-Schlenk flask was charged with $[Cp*Rh(OAc)_2]$ (0.1 mmol) and sealed with a rubber septum. The flask was evacuated and refilled with N₂. THF (2 mL) was then added to dissolve the Rh complex. *O*-Acetyl benzohydroxamic acid **1a** in THF (1 mL) was then added via a syringe and the septum was replaced with a glass stopper. The reaction mixture was stirred at 60 °C for 2 h under a N₂ atmosphere. The solution was then concentrated under vacuum and the resulting residue was purified through a short pad of alumina gel using CH₂Cl₂ as eluent. An orange band was collected and the organic collection was concentrated to yield the complex **4** as a orange-red solid. To obtain the single crystal for X-ray crystallography, complex **4** was dissolved in a minimum amount of CH₂Cl₂ and then layered with diethyl ether. The solution was left standing for 3 days to obtain a quality single crystal for X-ray diffraction study.

2.5 Kinetic Isotope Effect Study:

A 8 mL-vial equipped with a magnetic stirrer was charged with $[Cp*Rh(OAc)_2]$ (5 mol%) substrate (**1a** or **1a**-*d*₅, 0.2 mmol) and THF (0.5 mL). A solution of **2a** (0.2 mmol) in THF (1.5 mL) was then added in one-pot and the mixture was stirred and heated at 40 °C for 20 min. The reaction was then cooled down quickly in ice bath. The solvent was removed under reduced pressure. The residue was then purified by flash column chromatography to give the product. The KIE experiment was repeated three times and the average value ($k_{\rm H}/k_{\rm D} = 1.03$) was obtained based on the product formation.

	%yield of 3a	%yield of 3a- <i>d</i> ₅	KIE value
run 1	13	13	1.00
run 2	11	10	1.10
run 3	11	11	1.00
		Average	1.03

3. <u>X-ray Crystallographic Data of 4</u>

Figure S1. Molecular Structure of 4

 Table S1. Crystal data and structure refinement for 4.

lhw16	
$[Rh(C_{19}H_{21}NO_3)]_2$	
828.56	
296(2) K	
0.71073 Å	
Rhombohedral	
R-3	
$a = 34.5934(6) \text{ Å} = 90^{\circ}.$	
$b = 34.5934(6) \text{ Å} = 90^{\circ}.$	
$c = 8.2566(3) \text{ Å} = 120^{\circ}.$	
8556.9(4) Å ³	
9	
1.447 Mg/m ³	
0.913 mm ⁻¹	
3798	

Crystal size	0.42 x 0.24 x 0.24 mm ³
Theta range for data collection	2.04 to 27.48°.
Index ranges	-44<=h<=44, -44<=k<=44, -10<=l<=10
Reflections collected	30007
Independent reflections	4313 [R(int) = 0.0472]
Completeness to theta = 27.48°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6128
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4313 / 3 / 212
Goodness-of-fit on F ²	1.004
Final R indices [I>2sigma(I)]	R1 = 0.0649, wR2 = 0.1959
R indices (all data)	R1 = 0.0885, $wR2 = 0.2312$
Extinction coefficient	0.00012(4)
Largest diff. peak and hole	1.250 and -1.203 e.Å ⁻³

 Table S2. Bond length [Å] and angles [°] for 4.

Rh(1)-C(19)	2.024(3)
Rh(1)-N(1)	2.111(3)
Rh(1)-C(5)	2.142(4)
Rh(1)-N(1)#1	2.169(3)
Rh(1)-C(4)	2.176(4)
Rh(1)-C(3)	2.190(4)
Rh(1)-C(1)	2.251(4)
Rh(1)-C(2)	2.297(4)
O(1)-C(13)	1.224(5)
O(2)-C(11)	1.337(6)
O(2)-C(10)	1.397(8)
N(1)-C(13)	1.383(4)
N(1)-Rh(1)#1	2.169(3)
C(1)-C(2)	1.416(6)
C(1)-C(5)	1.447(5)
C(1)-C(10)	1.503(7)
C(2)-C(3)	1.451(5)
C(2)-C(6)	1.493(6)
C(3)-C(4)	1.416(6)
C(3)-C(7)	1.491(6)

C(4)-C(5)	1.408(6)
C(4)-C(8)	1.496(6)
C(5)-C(9)	1.519(6)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(13)-C(14)	1.490(6)
C(14)-C(19)	1.385(6)
C(14)-C(15)	1.395(5)
C(15)-C(16)	1.381(8)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.381(9)
C(16)-H(16A)	0.9300
C(17)-C(18)	1.386(6)
C(17)-H(17A)	0.9300
C(18)-C(19)	1.405(6)
C(18)-H(18A)	0.9300
O(3)-C(11)	1.113(7)
C(11)-C(12)	1.632(8)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(19)-Rh(1)-N(1)	78.11(13)
C(19)-Rh(1)-C(5)	111.52(15)
N(1)-Rh(1)-C(5)	100.26(15)
C(19)-Rh(1)-N(1)#1	85.48(13)

81.24(13)
162.93(11)
92.05(14)
129.57(15)
38.06(16)
147.90(14)
108.40(15)
164.07(15)
63.90(16)
113.32(14)
37.85(16)
149.88(16)
104.00(14)
38.37(14)
124.63(12)
63.04(14)
62.90(15)
145.94(16)
135.11(13)
62.49(15)
104.41(14)
62.20(14)
37.65(14)
36.26(16)
110.7(6)
110.4(2)
111.4(3)
98.76(13)
107.3(3)
126.6(4)
126.0(4)
73.6(2)
66.7(2)
124.3(3)
107.9(3)
126.6(4)
125.5(4)
70.1(2)

C(3)-C(2)-Rh(1)	67.2(2)
C(6)-C(2)-Rh(1)	131.0(4)
C(4)-C(3)-C(2)	107.5(4)
C(4)-C(3)-C(7)	127.5(4)
C(2)-C(3)-C(7)	124.1(4)
C(4)-C(3)-Rh(1)	70.5(2)
C(2)-C(3)-Rh(1)	75.2(2)
C(7)-C(3)-Rh(1)	128.1(4)
C(5)-C(4)-C(3)	108.5(3)
C(5)-C(4)-C(8)	126.1(4)
C(3)-C(4)-C(8)	125.3(4)
C(5)-C(4)-Rh(1)	69.7(3)
C(3)-C(4)-Rh(1)	71.6(2)
C(8)-C(4)-Rh(1)	127.7(3)
C(4)-C(5)-C(1)	108.3(3)
C(4)-C(5)-C(9)	126.1(4)
C(1)-C(5)-C(9)	125.1(4)
C(4)-C(5)-Rh(1)	72.3(3)
C(1)-C(5)-Rh(1)	74.9(3)
C(9)-C(5)-Rh(1)	124.7(3)
C(2)-C(6)-H(6A)	109.5
C(2)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(2)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(3)-C(7)-H(7A)	109.5
C(3)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(3)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5
C(4)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5

C(5)-C(9)-H(9A)	109.5
C(5)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(5)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(2)-C(10)-C(1)	108.3(5)
O(2)-C(10)-H(10A)	110.0
С(1)-С(10)-Н(10А)	110.0
O(2)-C(10)-H(10B)	110.0
C(1)-C(10)-H(10B)	110.0
H(10A)-C(10)-H(10B)	108.4
O(1)-C(13)-N(1)	123.9(4)
O(1)-C(13)-C(14)	124.8(3)
N(1)-C(13)-C(14)	111.4(3)
C(19)-C(14)-C(15)	122.1(4)
C(19)-C(14)-C(13)	115.0(3)
C(15)-C(14)-C(13)	122.9(4)
C(16)-C(15)-C(14)	119.2(5)
C(16)-C(15)-H(15A)	120.4
C(14)-C(15)-H(15A)	120.4
C(15)-C(16)-C(17)	120.0(4)
C(15)-C(16)-H(16A)	120.0
C(17)-C(16)-H(16A)	120.0
C(16)-C(17)-C(18)	120.4(5)
C(16)-C(17)-H(17A)	119.8
C(18)-C(17)-H(17A)	119.8
C(17)-C(18)-C(19)	120.9(4)
C(17)-C(18)-H(18A)	119.6
C(19)-C(18)-H(18A)	119.6
C(14)-C(19)-C(18)	117.3(3)
C(14)-C(19)-Rh(1)	114.3(3)
C(18)-C(19)-Rh(1)	128.2(3)
O(3)-C(11)-O(2)	130.5(7)
O(3)-C(11)-C(12)	127.5(7)
O(2)-C(11)-C(12)	101.4(6)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5

H(12A)-C(12)-H(12B)109.5C(11)-C(12)-H(12C)109.5H(12A)-C(12)-H(12C)109.5H(12B)-C(12)-H(12C)109.5

4. <u>References</u>

- a) N. Guimond, C. Gouliara, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6902; b)
 S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2350; c) C. Grohmann, H. Wang, F. Glorius, Org. Lett. 2012, 14, 656.
- a) P. M. Boyer, C. P. Roy, J. M. Bielski, J. S. Merola, *Inorganica Chimica Acta*, 1996, 245, 7; b) M. L. Cooke, K. Xu, B. Breit, *Angew. Chem. Int. Ed.* 2012, 51, 10876.
- M. P. Doyle, M. McKervey, T. Ye, *Modern Catalytic Methods for Organic* Synthesis with Diazo Compounds, John Wiley & Sons Inc: New York, 1998, Ch. 1, p.10.

5. ¹H and ¹³C NMR Spectra:

Figure S1. ¹H NMR spectrum of 3a

AM048-pdt

Figure S2. ¹³C NMR spectrum of 3a

Figure S4. ¹³C NMR spectrum of 3b

Figure S6. ¹³C NMR spectrum of 3c

Figure S11. ¹H NMR spectrum of 3f

Figure S15. ¹H NMR spectrum of 3h

AM068-pdt recry 3.859 37 AM063-pdt 2013032 I IME INSTRUM PROBHD spect PABBO BB-PROBHD 9 PROBHD 9 PULPROG TD SOLVENT NS DS SWH FIDRES AQ 2 RG DW DE TE D1 1. TD0 zg30 32768 CDCl3 0 , 33 use NH 1.00000000 se COOMe ANNEL MeOOC NUC P1 PL1 PL1V SFO SI SF WDV SSB LB GB PC 1H 14.70 usec 0.00 dB 88122272 100 MHz EM 0 0.30 Hz 0 1.00 LL.L 2.19 2.19 1.12 8 1.12 8 13 12 11 10 4 15 14 9 5 3 2 0 ppm 6 1

Figure S18. ¹³C NMR spectrum of 3i

Figure S19. ¹H NMR spectrum of 3i'

AM031-pdt lower pt n

Figure S20. ¹³C NMR spectrum of 3i'

Figure S21. ¹H NMR spectrum of 3j

c1t003

Figure S22. ¹³C NMR spectrum of 3j

Figure S23. ¹H NMR spectrum of **3**k

Figure S24. ¹³C NMR spectrum of 3k

Figure S25. ¹H NMR spectrum of 31

Figure S27. ¹H NMR spectrum of **3m**

Figure S28. ¹³C NMR spectrum of 3m

Figure S30. ¹H NMR spectrum of 3n

Figure S31. ¹³C NMR spectrum of **3n**

Figure S32. ¹H NMR spectrum of 30

Figure S33. ¹³C NMR spectrum of 30

Figure S37. ¹³C NMR spectrum of 3q

Figure S38. ¹H NMR spectrum of 3r

cyclic diazo product dmso

Figure S39. ¹³C NMR spectrum of 3r

Figure S40. ¹H NMR spectrum of 3s

0 ppm

tly706

0 ppm