Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

for

The syntheses of α-ketoamides via "Bu₄NI-catalyzed multiple sp³ C-

H bonds oxidation of ethylarenes and sequential coupling with

dialkylformamides

Bingnan Du,^a Bo Jin,^a and Peipei Sun*^{a,b}

^a Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China

^b Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023,

China

Tel: 86-25-85891767 Fax: 86-25-85891767

E-mail: sunpeipei@njnu.edu.cn,

List of Contents

1. General considerations	2
2. General experimental procedures	
3. Characterization data for all products	
4. NMR spectra for all products	

1. General considerations

All reactions were run in a sealed tube with a Teflon lined cap under air atmosphere. All reagents were commercially available and were used without purification. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance 400 spectrometers in CDCl₃ [using (CH₃)₄Si (for ¹H, δ = 0.00; for ¹³C, δ = 77.00) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra were obtained with a Waters Q-TOF mass spectrometer.

2. General experimental procedures

Ethylarene 1 (1.0 mmol), "Bu₄NI (0.2 mmol) and TBHP (3 mmol) were added in a 25 mL sealed tube with a Teflon lined cap. The mixture was stirred in an oil bath at 80 °C. Then dialkylformamide 2 (6.0 mmol) and TBHP (9 mmol) were added in batches. After 18 h, the reaction mixture was cooled to room temperature, and diluted with water, then extracted with ethyl acetate (15 mL \times 3). The combined organic layer was washed with water and dried with anhydrous Na₂SO₄, the solvent was then removed under vacuum. The residue was purified by a flash column chromatography on silica gel using hexane/ethyl acetate as eluent to give the corresponding product.

3. Characterization data for all products

N,N-dimethyl-2-oxo-2-phenylacetamide

3aa:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.67-7.63 (m, 1H), 7.54-7.50 (m, 2H), 3.13 (s, 3H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.78, 167.05, 134.71, 133.08, 129.65, 129.01, 37.04, 34.00.

2-(4-chlorophenyl)-N,N-dimethyl-2-oxoacetamide

3ba:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.91-7.89 (m, 2H), 7.50-7.48 (m, 2H), 3.12 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.31, 166.48, 141.32, 131.51, 131.03, 129.39, 37.05, 34.09.

2-(4-iodophenyl)-N,N-dimethyl-2-oxoacetamide

3ca:^[2] Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.90-7.87 (m, 2H), 7.66-7.63 (m, 2H), 3.11 (s, 3H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.86, 166.42, 138.38, 132.40, 130.82, 103.31, 37.05, 34.09.

2-(2-bromophenyl)-N,N-dimethyl-2-oxoacetamide

3da:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (m, 1H), 7.67-7.64 (m, 1H), 7.48-7.40 (m, 2H), 3.11 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.88, 166.34, 135.46, 134.14, 134.09, 132.67, 127.77, 121.56, 37.27, 34.69.

2-(3-bromophenyl)-N,N-dimethyl-2-oxoacetamide

Br

3ea:[1] Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 3.12 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.09, 166.20, 137.51, 134.87, 132.34, 130.58, 128.29, 123.24, 37.05, 34.12.

2-(4-bromophenyl)-N,N-dimethyl-2-oxoacetamide

3fa:[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.84-7.81 (m, 2H), 7.68-7.65 (m, 2H), 3.12 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.51, 166.44, 132.39, 131.90, 131.06, 130.20, 37.05, 34.10.

methyl 4-(aminoformyl-N,N-dimethylform)benzoate

3ga: Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 8.15-8.12 (m, 2H), 8.00-7.98 (m, 2H), 3.94 (s, 3H), 3.11 (s, 3H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.84, 166.38, 165.89, 136.19, 135.16, 130.06, 129.53, 52.56, 37.00, 34.08; HRMS (ESI): calcd. for C₁₂H₁₄NO₄(MH⁺) 236.0923, found 236.0936. **4-(2-(dimethylamino)-2-oxoacetyl)phenyl benzenesulfonate**

3ha: Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.94-7.89 (m, 2H), 7.88-7.84 (m, 2H), 7.73-7.66 (m, 1H), 7.59-7.52 (m, 2H), 7.17-7.13 (m, 2H), 3.11(s, 3H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.94, 166.36, 153.95, 134.67, 131.75, 131.55, 129.40, 128.46, 126.65, 122.90, 37.07, 34.12; HRMS (ESI): calcd. for C₁₆H₁₆NO₅S (MH⁺) 334.0749, found 334.0770.

N,N-dimethyl-2-(4-nitrophenyl)-2-oxoacetamide

3ia:[1] Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 8.37-8.34 (m, 2H), 8.17-8.14 (m, 2H), 3.16 (s, 3H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.25, 165.59, 151.08, 137.56, 130.79, 124.08, 37.08, 34.31.

2-(4-ethylphenyl)-*N*,*N*-dimethyl-2-oxoacetamide

3ja: Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.89-7.86 (m, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 3.13 (s, 3H), 2.91 (s,

3H), 2.74 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.55, 167.28, 152.07, 130.89, 129.90, 128.56, 37.07, 33.97, 29.16, 15.08; HRMS (ESI): calcd. for C₁₂H₁₅NO₂Na (MNa⁺) 228.1000, found 228.1016.

2-(3,5-diethylphenyl)-N,N-dimethyl-2-oxoacetamide

3ka: Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.59 (s, 2H), 7.33 (s, 1H), 3.13 (s, 3H), 2.97 (s, 3H), 2.69 (q, *J* = 7.6 Hz, 4H), 1.26 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 192.31, 167.36, 145.24, 134.27, 133.27, 126.48, 37.09, 33.98, 28.62, 15.44; HRMS (ESI): calcd. for C₁₄H₁₉NO₂Na (MNa⁺) 256.1313, found 256.1326.

N,*N*-diethyl-2-oxo-2-phenylacetamide

3ab:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.67-7.63 (m, 1H), 7.54-7.50 (m, 2H), 3.59 (q, J = 7.2 Hz, 2H), 3.26 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.58, 166.74, 134.55, 133.30, 129.63, 128.95, 42.11, 38.80, 14.11, 12.84.

1-phenyl-2-(piperidin-1-yl)ethane-1,2-dione

3ac:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.95 (dd, *J* = 8.0, 2.4 Hz, 2H), 7.66-7.61 (m, 1H), 7.53-7.49 (m, 2H), 3.70-3.68 (m, 2H), 3.29 (t, *J* = 5.6 Hz, 2H), 1.70-1.68 (m, 4H), 1.56-1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 191.95, 165.44, 134.64, 133.27, 129.54, 128.99, 47.02, 42.13, 26.19, 25.44, 24.36.

1-(4-bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione

3fc:^[3] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 6.8, 2.0 Hz, 2H), 7.67 (dd, J = 6.8, 2.0 Hz, 2H), 3.71 (d, 2H), 3.29 (t, J = 5.2 Hz, 2H), 1.71-1.70 (m, 4H), 1.57-1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.74, 164.88, 132.40, 132.07, 130.97, 130.12, 47.06, 42.26, 26.26, 25.45, 24.35.

1-morpholino-2-phenylethane-1,2-dione

3ad:^[1] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.98 (dd, *J* = 8.0, 2.4 Hz, 2H), 7.70-7.65 (m, 1H), 7.56-7.52 (m, 2H), 3.81 (s, 4H), 3.68-3.66 (m, 2H), 3.41-3.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 191.16, 165.46, 134.94, 133.07, 129.68, 129.10, 66.74, 66.67, 46.27, 41.63.

1-(4-chlorophenyl)-2-morpholinoethane-1,2-dione

3bd:^[4] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.91 (dd, *J* = 8.0, 2.0 Hz, 2H), 7.51 (dd, *J* = 8.0, 2.0 Hz, 2H), 3.82-3.77 (m, 4H), 3.68-3.66 (m, 2H), 3.40-3.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 189.69, 164.90, 141.60, 131.48, 131.04, 129.50, 66.74, 66.64, 46.29, 41.71.

1-(2-bromophenyl)-2-morpholinoethane-1,2-dione

3dd:^[5] Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.76 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.50-7.42 (m, 2H), 3.84-3.79 (m, 4H), 3.77-3.74 (m, 2H), 3.60-3.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.43, 164.84, 135.47, 134.29, 134.04, 132.68, 127.66,121.48,66.30, 66.25, 46.30, 42.05.

1-(4-bromophenyl)-2-morpholinoethane-1,2-dione

3fd:^[4] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, *J* = 8.0, 2.0 Hz, 2H), 7.68 (dd, *J* = 8.0, 2.0 Hz, 2H), 3.82-3.78 (m, 4H), 3.68-3.66 (m, 2H), 3.40-3.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 189.89, 164.87, 132.50, 131.87, 131.06, 130.50, 66.73, 66.64, 46.29, 41.73.

1-(4-ethylphenyl)-2-morpholinoethane-1,2-dione

3jd:^[4] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 3.82-3.78 (m, 4H), 3.68-3.65 (m, 2H), 3.41-3.38 (m, 2H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.91, 165.70, 152.38, 130.86, 129.92, 128.66, 66.77, 66.69, 46.28, 41.58, 29.18, 15.05.

methyl 4-(2-morpholino-2-oxoacetyl)benzoate

3gd: Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 3.98 (s, 3H), 3.83 (s, 4H), 3.70-3.68 (m, 2H), 3.43-3.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.25, 165.85, 164.82, 136.17, 135.40, 130.17, 129.60, 66.73, 66.66, 52.64, 46.30, 41.77; HRMS (ESI): calcd. for C₁₄H₁₆NO₅ (MH⁺) 278.1028, found 278.1049.

1-morpholino-2-(4-nitrophenyl)ethane-1,2-dione

3id:^[4] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 8.37 (dd, J = 7.2, 2.0 Hz, 2H), 8.18 (dd, J = 7.2, 2.0 Hz, 2H), 3.84-3.82 (m, 4H), 3.73-3.70 (m, 2H), 3.46-3.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 188.67, 164.03, 151.20, 137.49, 130.84, 124.16, 66.74, 66.63, 46.35, 41.95.

N-isopropyl-2-oxo-2-phenylacetamide

3ae:^[6] Yellow oil

¹H NMR (400 MHz, CDCl₃): δ 8.36-8.33 (m, 2H), 7.65-7.61 (m, 1H), 7.50-7.46 (m, 2H), 6.96 (s, 1H), 4.20-4.15 (m, 1H), 1.27 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 188.05, 160.95, 134.29, 133.43, 131.19, 128.44, 41.71, 22.42.

methyl 4-(aminoformyl-N-isopropylform)benzoate

3ge: Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 6.8 Hz, 2H), 8.13 (d, *J* = 6.8 Hz, 2H), 6.96 (s, 1H), 4.22-4.14 (m, 1H), 3.97 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 187.49, 166.16, 160.29, 136.70, 134.66, 131.10, 129.47, 52.51, 41.85, 22.40; HRMS (ESI): calcd. for C₁₃H₁₆NO₄ (MH⁺) 250.1079, found 250.1093.

References

- 1 D. K. Li, M. Wang, J. Liu, Q. Zhao and L. Wang, Chem. Commun., 2013, 49, 3640.
- 2 H. Wang, L. N. Guo and X. H. Duan, Org. Biomol. Chem., 2013, 11, 4573.
- 3 X. B, Zhang and L. Wang, Green Chem., 2012, 14, 2141.
- 4 J. M. Liu, R. Z. Zhang, S. F. Wang, W. Sun and C. G. Xia, Org. Lett., 2009, 11, 1321.
- 5 V. N. Lisitsyn and S. V. Komissarova, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. T.,* 1985, **28**, 37. (in Russian)
- 6 W. Wei, Y. Shao, H. Y. Hu, F. Zhang, C. Zhang, Y. Xu and X. B. Wan, J. Org. Chem., 2012, 77, 7157.

4. NMR spectra for all products

1H CDCl3(SPP-3) BRUKER AV400 09,13,2013

1H CDC13(130930-2) BRUKER AV400

