Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

Supporting Information

For

'Clickable' 2,5-diketopiperazines as scaffolds for ligation of biomolecules: use in Aβ inhibitor's assembly

E. Dufour, L. Moni, L. Bonnat, S. Chierici*, and J. Garcia

*Corresponding Author: Dr. S. Chierici, Département de Chimie Moléculaire, CNRS UMR 5250, ICMG FR 2607, Equipe I2BM, Université Joseph Fourier, 570 rue de la Chimie, BP 53, 38041 Grenoble cedex 09, France; **Email**: sabine.chierici@ujf-grenoble.fr

Table of Contents

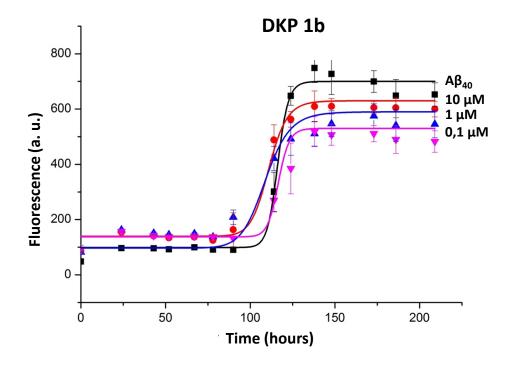
- S1. Kinetic studies of $A\beta_{40}$ fibril formation in presence of DKPs
- S2. Copies of NMR spectra

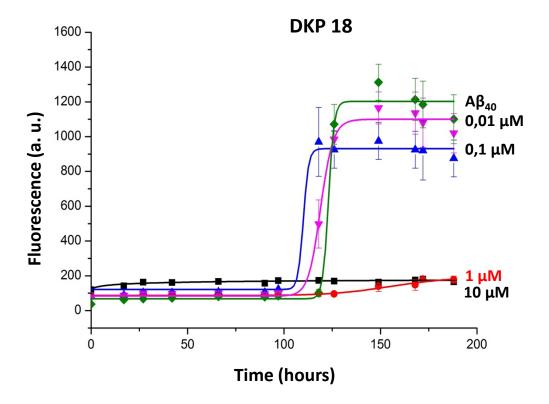
5

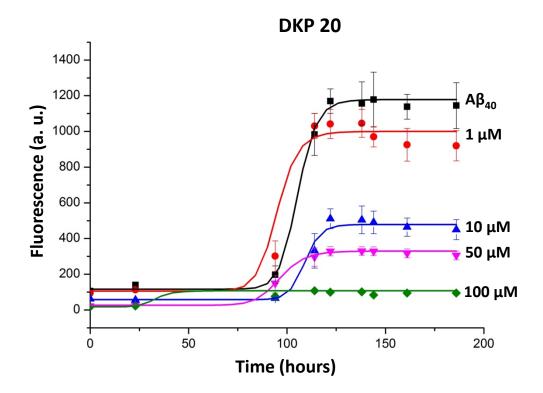
S3. Copies of MS and HRMS spectra

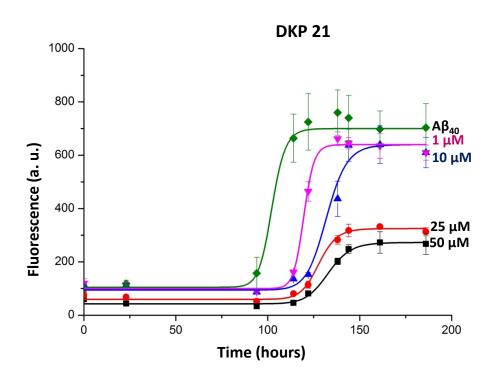
15

S1. Kinetic studies of $A\beta_{40}$ fibril formation in presence of DKPs

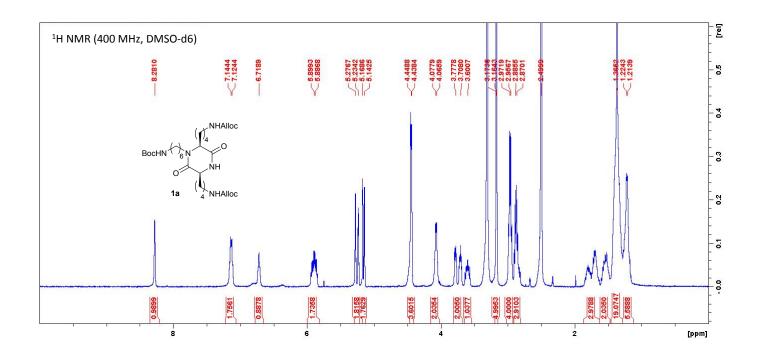

Materials and methods

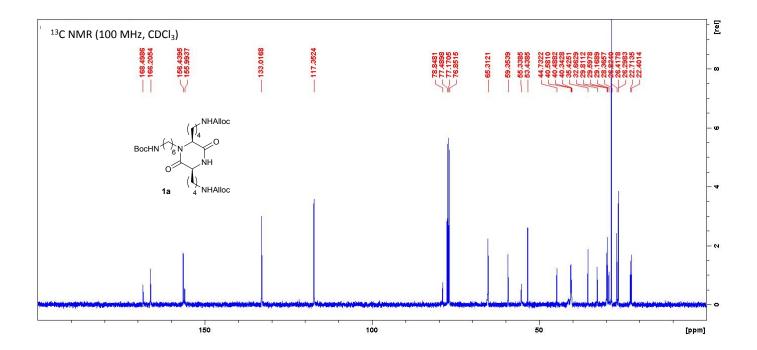

We used for the kinetic assays the same materials and conditions as we have previously described (G. T. Dolphin, S. Chierici, M. Ouberai, P. Dumy and J. Garcia, *ChemBioChem*, 2008, **9**, 952. These conditions are mentioned below.

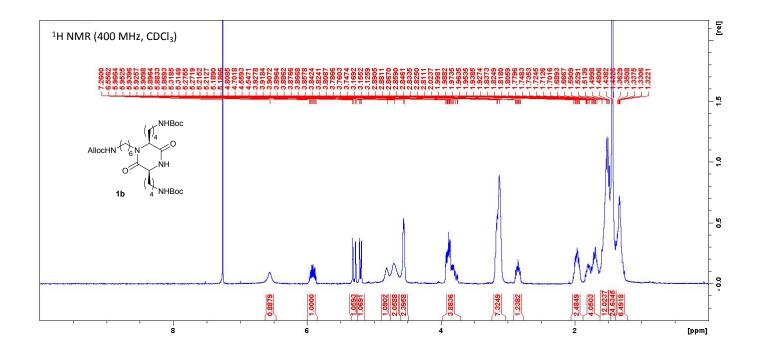

*Preparation of synthetic Aβ*₄₀ *peptide:* Aβ₄₀ was synthesized on an Applied Biosystems 433A peptide synthesizer using Fmoc-Val-Novasyn-TGA resin (loading 0.24 mmol/g). The peptide was assembled using standard solid phase methods but coupling reaction times of 60 min were used and difficult residues were coupled twice. Removal of protecting groups and cleavage from the resin were carried out with a mixture of TFA/TIS/H₂O/EDT (94:2:2:2), with swirling for 2 h. After filtration, TFA was removed under *vacuum* and the peptide was precipitated in Et₂O. Aβ₄₀ peptide was obtained after purification by RP-HPLC (C5, 214 nm, 10-90% B in 30 min) and lyophilization, and was stored at -20 °C. RP-HPLC (C18, 214 nm, 5-100% solvent B in 20 min) t_R = 12 min. ESI-MS calcd 4328, found 4329.7.

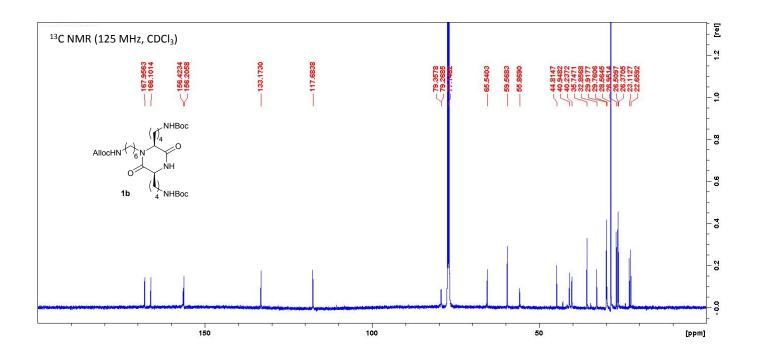

Preparation of inhibitor stock solutions: Inhibitors were dissolved in DMSO/ H_2O (1/1). Stock solutions at 5 mM were first prepared, thereafter they were diluted with DMSO/ H_2O (1/1) to afford a concentration range of 2.5 mM to 0.5 μ M. Final concentrations of DMSO in inhibition studies were less than 2%.

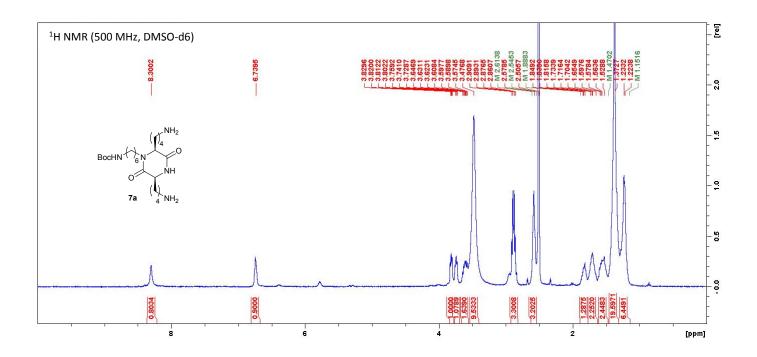
Aggregation measurement of $A\beta40$: A solution of $A\beta_{40}$ was prepared as follows: 2.7 mg were dissolved in 200 μL of 1,1,1,3,3,3-hexafluoro-2-propanol to disassemble preformed aggregates, thereafter it was lyophilized. One mL of pure water was added to the lyophilized peptide and the solution was centrifuged at 12 000 g to remove eventual aggregates. The concentration of $A\beta_{40}$ was 500 μM. Aggregation of $A\beta_{40}$ was performed in 96-well black polypropylene microplates (Sterilin). To each well an aliquot of the $A\beta_{40}$ peptide solution was mixed into the aggregation buffer giving a final composition of $A\beta_{40}$ (50 μM) and ThT (10 μM) in sodium phosphate (50 mM) and NaCl (100 mM) pH 7.4. Aliquots of 2 μL of the inhibitor compounds were added, giving the aggregation mixture a total volume of 100 μL. The microplates were sealed with a plastic sheet and incubated at 37 °C. The ThT fluorescence intensity was recorded once or twice daily using bandpass filters of 445 nm for excitation and 485 nm for emission, and a cutoff filter of 475 nm, using a Molecular Devices Spectra MAX Gemini XS microplate reader. The data are the result of three experiments. Kinetic data were fitted with the stretched exponential function: $F(t)=F(\infty)-\Delta F\exp(-(kt)^n)$, where F(t) is the fluorescence at time t, $F(\infty)$ is the fluorescence after complete fibril formation, ΔF is the difference in fluorescence between t(0) and t(∞), k is the rate constant, and values larger than 1 for the parameter n indicate a sigmoidal transition with an initial lag-phase.

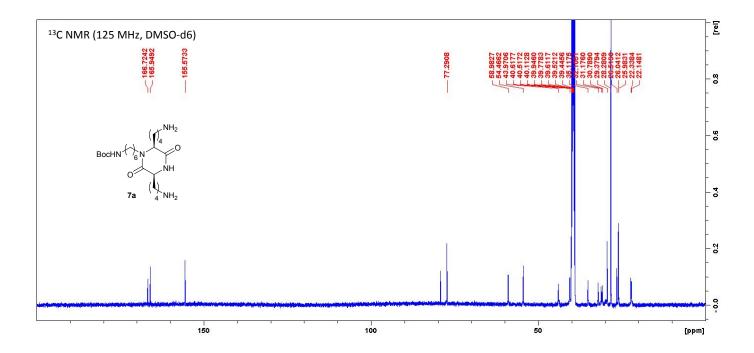


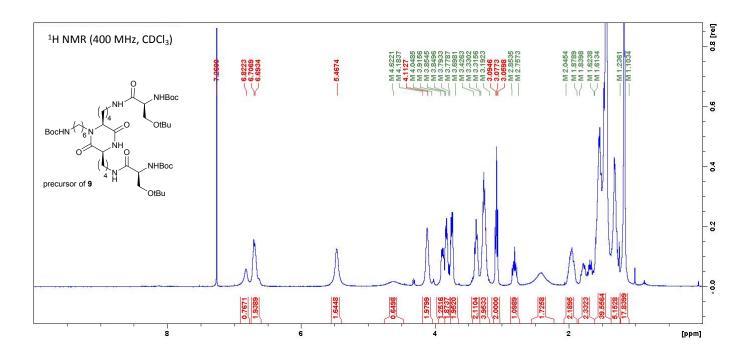


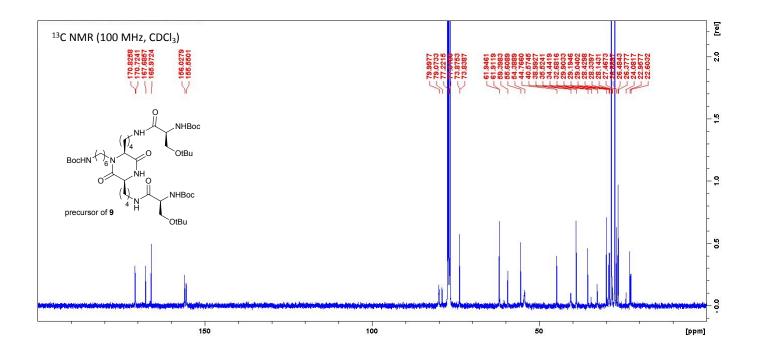


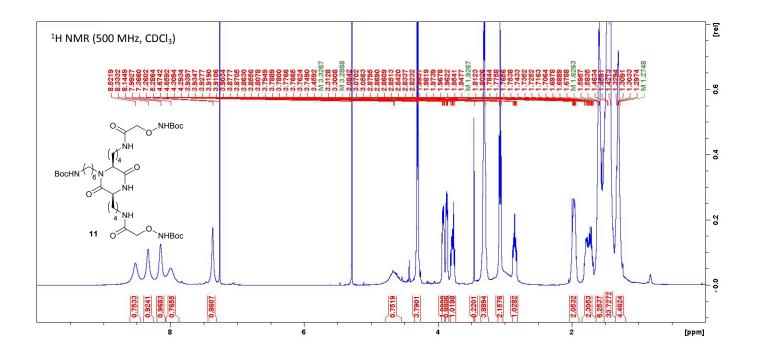


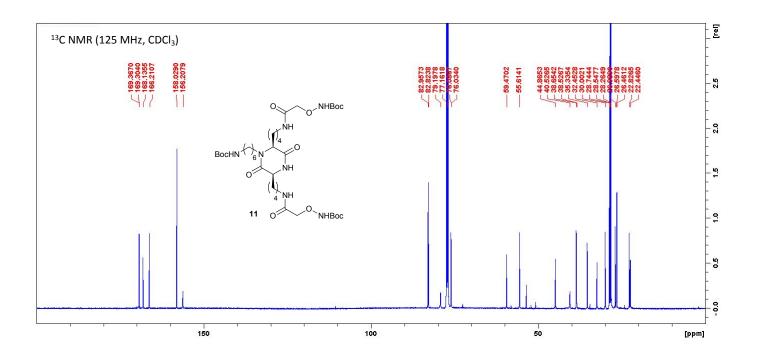

S2. Copies of NMR spectra

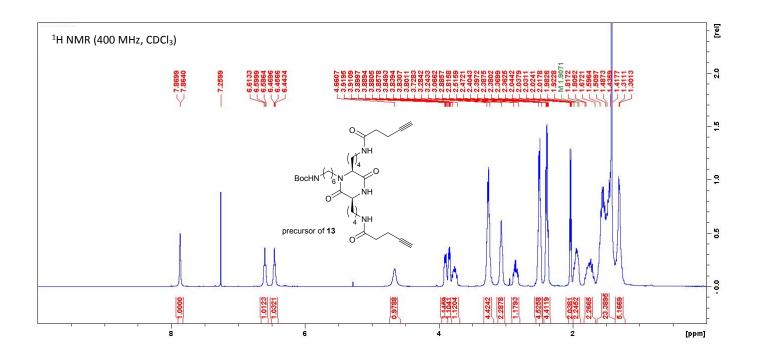


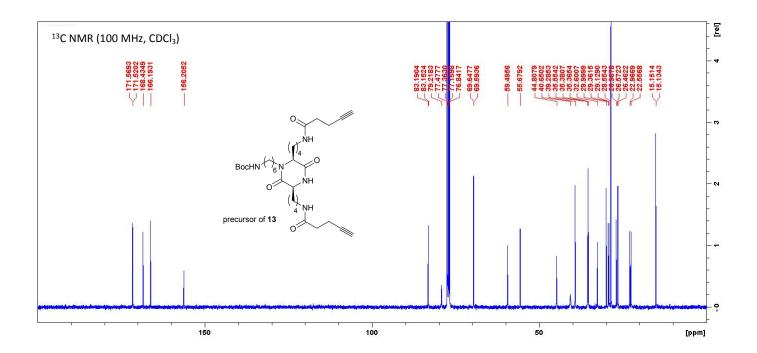


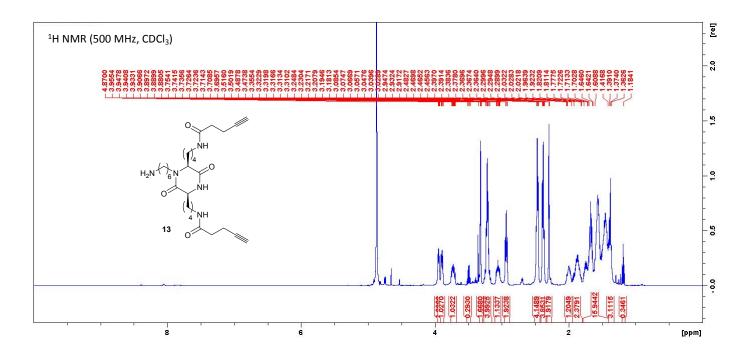


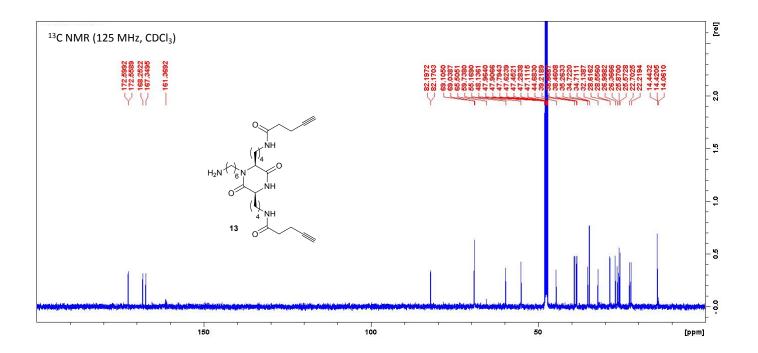


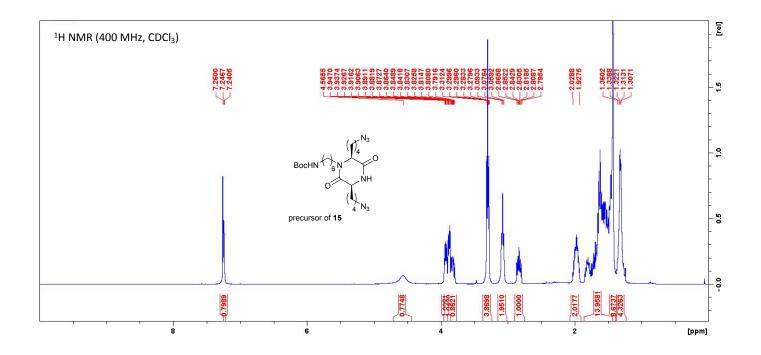


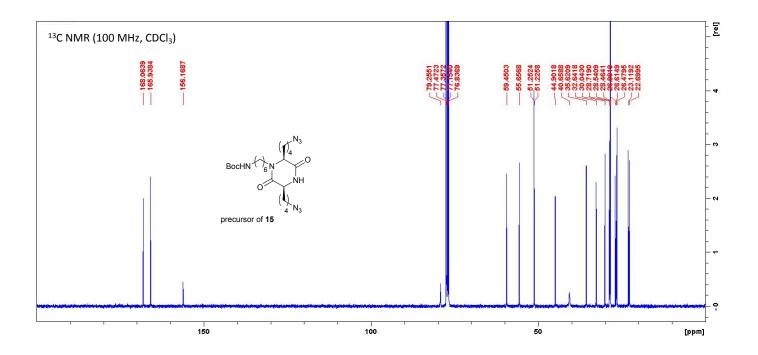


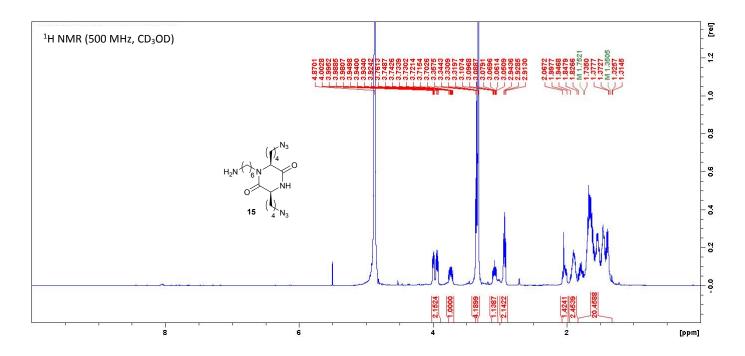


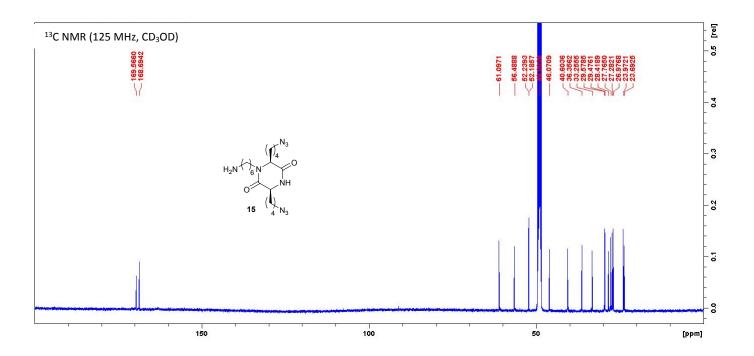


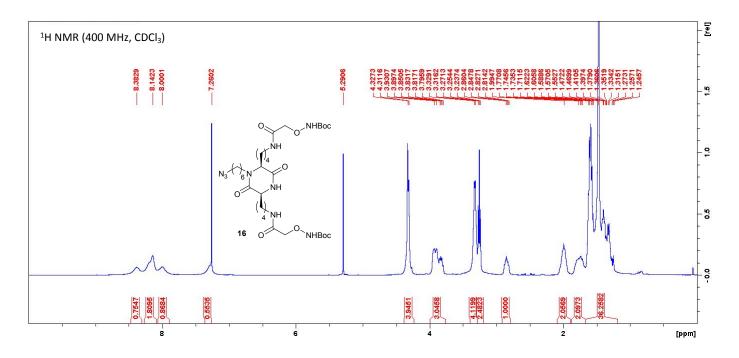


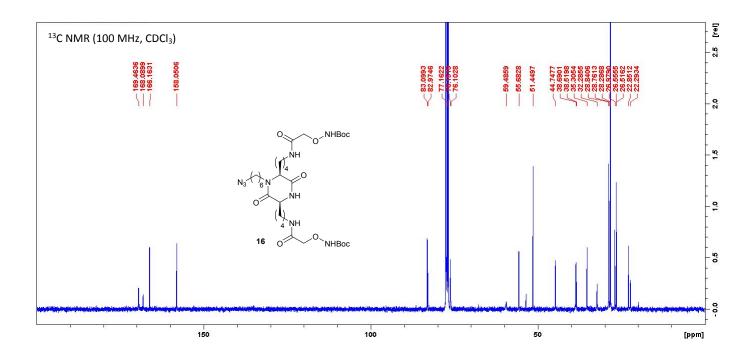


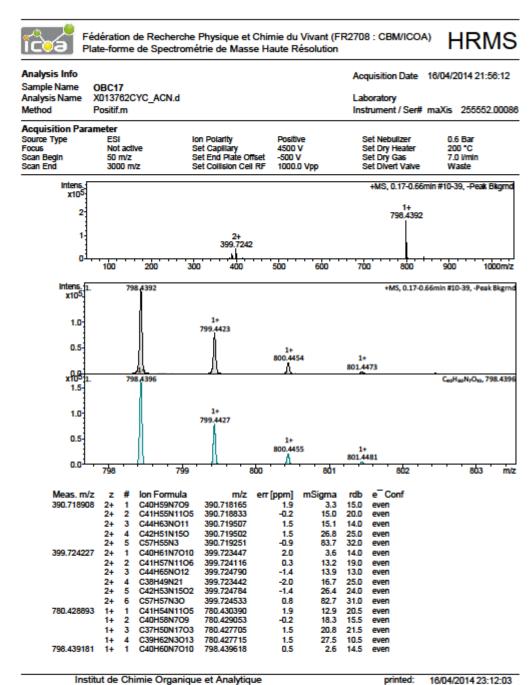












S3. Copies of MS and HRMS spectra

Compound 17, HRMS (ESI)

Institut de Chimie Organique et Analytique UMR 7311 - Universite d'Orleans - CNRS BP 6759 - rue de Chartres - F-45067 ORLEANS Cedex 2

> cyril.colas@univ-orleans.fr +33 (0)2 38 49 46 61

Page 1 of 2

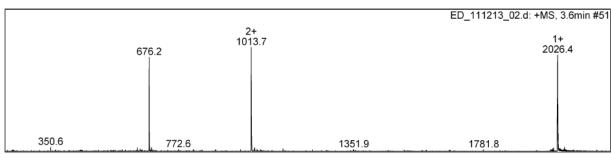
Compound 17, Mass spectra (ESI)

nalysis Info				Acquisition Date	4/15/2014 4:54:23 PI	М
nalysis Name Method Sample Name Comment	D:\Data\l2BM\E_14 peptide_mw_1800_ chierici OBC17(779) dilue 1/100 eau/aci	_2500.m		Operator Instrument	Rodolphe esquire3000 plus	IVI
acquisition Para on Source Type Mass Range Mode apillary Exit ccumulation Time	ESI Std/Enhanced 136.0 Volt	lon Polarity Scan Begin Skim 1 Averages	Positive 150 m/z 40.0 Volt 20 Spectra	Alternating Ion F Scan End Trap Drive Auto MS/MS	Polarity off 1000 m/z 83.1 off	
ntens.				_1+	+MS, 0.2-0.8min #	#(3-12
1.50				798.4		
1.25						
1.00-						
0.75						
0.50						
0.25-						
0.00		408.3		724.4	839.5	
200	300	400	500 600	700 800	900	'n

Compound 18, HRMS (ESI)

	édération de Re ate-forme de S					08 : CBM/	ICOA)	HRN	ЛS
Analysis Info Sample Name Analysis Name Method	OBC18 X013759CYC.d Positif.m				La	boratory		04/2014 15:5 Xis 255552	
Acquisition Para Source Type Focus Scan Begin Scan End	meter ESI Not active 50 m/z 3000 m/z	Set E	plarity apiliary nd Plate Offset oilision Cell RF	Positive 4500 V -500 V 1000.0 Vpp		Set Nebuliz Set Dry Hea Set Dry Gas Set Divert V	iter	0.6 Bar 200 °C 7.0 Vmin Waste	
Intens_ x10 ⁶ . 0.8- 0.6- 0.4- 0.2-	250	3+ 676.0	101	2+ 3.5845 00 12	50 1	+MS, 0.1	5-0.83min	#8-48, -Peak I	Bkgmd m/z
Intens.[1. x10 ⁴ 4-		1013-5845	2+ 1014.0861	2+ 14.5874	2+ 015.0890			2500 nin #8-48, -Peak	
x10-1 5 4 3 2 1	1013.0822			Λ	2+ 015.0880	2+ 1015.5894 1015.5	c.	uH ₁₅₈ N ₂₁ O ₂₂ , 10:	
Meas. m 675.72562 1013.08314	28 3+ 1 C100 3+ 2 C100 3+ 3 C100 3+ 4 C100 40 2+ 1 C100 2+ 2 C100 2+ 3 C100	Formula 2H156N21O22 7H156N19O20 0H160N19O25 3H152N25O18 3H151N25O18 2H155N21O22 1H159N17O26 7H155N19O20	m/z 675.723912 675.725253 675.727210 675.724357 1013.082898 1013.082229 1013.081561 1013.084241	err [ppm] -2.5 0.6 -2.3 -1.9 0.2 -0.9 -1.6 -1.1	mSigma 26.4 27.0 27.5 28.3 6.2 6.8 11.6 12.3	rdb e 35.5 ew 39.5 ew 40.5 ew 41.0 ew 36.0 ew 40.0 ew	en en en en en en		

Institut de Chimie Organique et Analytique UMR 7311 - Universite d'Orleans - CNRS BP 6759 - rue de Chartres - F-45067 ORLEANS Cedex 2


> cyril.colas@univ-orleans.fr +33 (0)2 38 49 46 61

printed: 16/04/2014 22:58:45

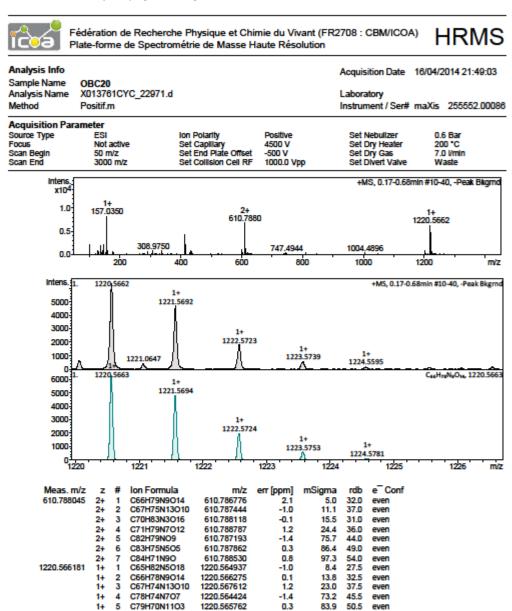
Page 1 of 1

Compound 18, Mass spectra (ESI)

	Mas	s Spectrum	Deconvolu	ution Report		
Analysis Info				Acquisition Date	12/13/	/2011 7:14:50 PM
Analysis Name Method Sample Name Comment	D:\Data\I2BM\ED_1 Standby.m emilie dufour edufB39 tr=15.9	11213_02.d		Operator Instrument	Rodol _l esquir	phe e3000 plus
Acquisition Para	ameter					
Ion Source Type	ESI	Ion Polarity	Positive	Alternating Ion F	olarity	off
Mass Range Mode	Std/Normal	Scan Begin	200 m/z	Scan End	-	2200 m/z
Capillary Exit	151.0 Volt	Skim 1	40.0 Volt	Trap Drive		101.1
Accumulation Time	42 µs	Averages	20 Spectra	Auto MS/MS		off

Component Molecular Molecule Absolute Relative Abundance Abundance

A 2025.4 2026.7 [M + H] + 5242157 100.00


Component A Detail

Actual	Charge	Isotopic	Predicted
Peak		Mass([M + H]	+) Peak
1013.3	2+	2025.5	1013.2
1013.7	2+	2026.4	1013.7
1014.2	2+	2027.3	1014.2
1014.7	2+	2028.3	1014.7
1015.2	2+	2029.4	1015.2
1015.6	2+	2030.3	1015.7
1016.2	2+	2031.4	1016.2
1016.6	2+	2032.2	1016.7
2025.5	1+	2025.5	2025.4
2026.4	1+	2026.4	2026.4
2027.3	1+	2027.3	2027.4
2028.3	1+	2028.3	2028.4
2029.4	1+	2029.4	2029.4

Molecular Mass ([M + H]+): 2025.4 Std. Deviation: 0.0918918 Average Mass ([M + H]+): 2026.7

Compound 20, HRMS (ESI)

For this analysis, an available solution of 20 at 500 μM in a water/DMSO mixture has been used justifying the background at low mass

Institut de Chimie Organique et Analytique UMR 7311 - Universite d'Orleans - CNRS BP 6759 - rue de Chartres - F-45067 ORLEANS Cedex 2

C82H78NO9

C83H74N5O5

cyril.colas@univ-orleans.fr +33 (0)2 38 49 46 61

1220.567110

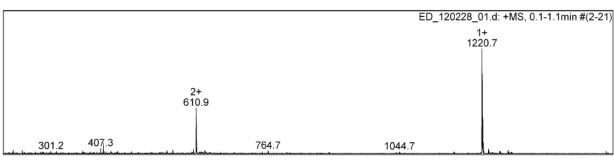
1220.568447

0.8

-1.9

87.4 44.5

98.1 49.5


printed:

16/04/2014 23:08:21

Page 1 of 1

Compound 20, Mass spectra (ESI)

	Mas	s Spectrum	Deconvolu	ution Report		
Analysis Info				Acquisition Date	2/28/2	012 9:27:47 AM
Analysis Name Method Sample Name Comment	D:\Data\I2BM\ED_1 Standby.m emilie dufour edufB70 tr=20.4	20228_01.d		Operator Instrument	Laure esquire	F e3000 plus
Acquisition Para	ameter					
Ion Source Type	ESI	Ion Polarity	Positive	Alternating Ion F	olarity	off
Mass Range Mode	Std/Normal	Scan Begin	200 m/z	Scan End		1500 m/z
Capillary Exit	163.0 Volt	Skim 1	40.0 Volt	Trap Drive		117.0
Accumulation Time	860 µs	Averages	20 Spectra	Auto MS/MS		off

Component	Molecular Mass	Molecule	Absolute Abundance	Relative Abundance	
A	1220.7	1221.6	[M + H]+	955211	100.00
В	413.4	413.8	[M + H] +	67748	7.09

Component A Detail

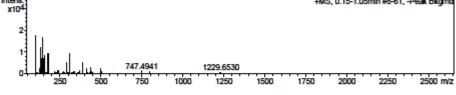
Actual	Charge	Isotopic Pre	dicted
Peak		Mass([M + H]+)	
610.9	2+	1220.8	610.9
611.4	2+	1221.8	611.4
611.9	2+	1222.8	611.9
612.4	2+	1223.8	612.4
612.8	2+	1224.7	612.9
613.4	2+	1225.8	613.4
1220.7	1+	1220.7	1220.7
1221.7	1+	1221.7	1221.7
1222.7	1+	1222.7	1222.7
1223.7	1+	1223.7	1223.7
1224.7	1+	1224.7	1224.8
1225.7	1+	1225.7	1225.8
1227.0	1+	1227.0	1226.8

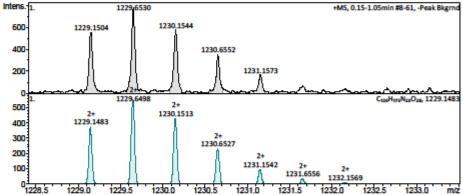
Molecular Mass ([M + H]+): 1220.7 Std. Deviation: 0.0968051 Average Mass ([M + H]+): 1221.6

Compound 21, HRMS (ESI)

For this analysis, an available solution of 21 at 500 μM in a water/DMSO mixture has been used justifying the background at low mass

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) Plate-forme de Spectrométrie de Masse Haute Résolution


HRMS


16/04/2014 23:15:14

Page 1 of 1

printed:

ratory ument / Ser# maXi:	is 255552.00086
t Nebulizer (0.6 Bar
t Dry Heater :	200 °C
t Dry Gas	7.0 Vmln
t Divert Valve 1	Waste
	t Dry Gas t Divert Valve

Meas. m/z	z	#	Ion Formula	m/z	err [ppm]	mSigma	rdb	e Conf
1229.150439	2+	1	C126H175N23O28	1229.148297	-1.7	35.0	51.0	even
	2+	2	C127H171N27O24	1229.148966	-1.2	36.6	56.0	even
	2+	3	C131H175N21O26	1229.150309	-0.1	38.5	55.0	even

Institut de Chimie Organique et Analytique UMR 7311 - Universite d'Orleans - CNRS BP 6759 - rue de Chartres - F-45087 ORLEANS Cedex 2

> cyril.colas@univ-orleans.fr +33 (0)2 38 49 46 61

Compound 21, Mass spectra (ESI)

	IVI	ass Spec	trum	Decor	nvoluti	on R	eport			
Analysis Info						Acquisit	ion Date	6/14/20	12 11:2	28:30 AM
Analysis Name	D:\Data\i2bm\[Oufour Emilie 2	1 01 13	559.d						
Method	13559.m	_				Operato	or	LF		
Sample Name	Dufour Emilie					Instrum	ent	esquire3	3000 p	lus
Comment	edufB98 pic2(2 conc hplc	2459)								
Acquisition Para	ameter									
Ion Source Type	ESI		olarity	Positive			nating Ion P	olarity	off	,
Mass Range Mode Capillary Exit	Std/Normal 163.0 Volt	Scan Skim	Begin 1	400 m/z 40.0 Vo		Scan Trap			2500 m 122.4	1/Z
Accumulation Time		Avera		20 Spec			MS/MS		off	
Intens.					Dufour	Emilie 21	01 13559	d·+MS	0 9-2 2r	nin #(13-31
x10 ⁶			2+		24.04.		_0		0.0 2.2.	
1.00			1229.7							
0.75										
1										
0.50	3+ 820.6									
0.05	3+ 820.6									
0.25 483.5		940.3 1119	4	1438.8			1924.0	2175	_{5.8} 23°	16.1
0.25 483.5 0.00 Hallanda	820.6		4 1200	1438.8 1400	1600	1800	1924.0 2000		5.8 ²³	16.1 1 1.1. 2400 m/z
0.25 483.5 0.00 400 6	820.6 711.8 44444444444444444444444444444444444	940.3 1119. 1000	1200	1400	1600		سنج حاصطا مرجد		,,,,,,	
0.25 483.5 0.00 4400 6	820.6 711.8 711.8	940.3 1119.	1200 Ab	بمسلطنية أسسم	1600 Relativ	e	سنج حاصطا مرجد		,,,,,,	
0.25 483.5 0.00 4400 6	820.6 711.8 500 800	940.3 1119. 1000	1200 Ab	1400 solute	1600 Relativ	e ce	سنج حاصطا مرجد) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo	820.6 711.8 800 800 Decular ass	940.3 1119 1000 Molecule	1200 Ab	1400 solute undance	1600 Relativ Abundan	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo	820.6 711.8 800 800 Decular ass 2457.4	940.3 1119 1000 Molecule 2458.	1200 Ab Ab 9 [M	1400 solute undance + H]+	1600 Relativ Abundan	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo	820.6 711.8 800 800 Decular ass 2457.4	940.3 1119 1000 Molecule 2458.	1200 Ab Ab 9 [M	1400 solute undance + H]+	1600 Relativ Abundan	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo	711.8 711.8 Plecular ass 2457.4 Detail Charge	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M	1400 solute undance + H]+ dicted Peak	1600 Relativ Abundan	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2	711.8 711.8 800 800 Dlecular ass 2457.4 Detail Charge	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M Pre- H]+) 68.0	1400 solute undance + H]+ dicted Peak 82 82	1600 Relative Abundan 1311	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2 820.6	711.8 711.8 800 800 Decular ass 2457.4 Detail Charge	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M Pre- H]+) 68.0 68.6 69.7	1400 solute undance + H]+ dicted Peak	1600 Relative Abundan 1311 0.2 0.2 0.2 0.5	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2 820.6 1229.2	711.8 711.8 800 800 Decular ass 2457.4 Detail Charge	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M Pre- H]+) 68.0 68.6 69.7 67.4	1400 solute undance + H]+ dicted Peak	1600 Relative Abundan 1311 0.2 0.2 0.5 9.2	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2 820.6 1229.2 1229.7	820.6 711.8 000 800 plecular ass 2457.4 Detail Charge 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 7 + 2	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M Pre- H]+) 68.0 68.6 69.7 67.4	1400 solute undance + H]+ dicted Peak 82 82 82 122 122	1600 Relative Abundan 1311 0.2 0.2 0.5 9.2 9.7	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2 820.6 1229.2 1229.7 1230.2	820.6 711.8 800 800 plecular ass 2457.4 Detail Charge 3 + 2 3 + 3 + 5 3 + 2 2 + 7 2 + 2 2 +	940.3 1119 1000 Molecule 2458. Isotopic Mass([M +	1200 Ab Ab 9 [M Pre- H]+) 68.0 68.6 69.7 67.4 68.4 69.5	1400 solute undance + H]+ dicted Peak 82 82 122 122 123	1600 Relative Abundan 1311 0.2 0.2 0.5 9.2 9.7 0.2	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.0 820.0 820.0 1229.2 1230.2 1230.7	820.6 711.8 800 800 plecular ass 2457.4 Detail Charge 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	940.3 1119 1000 Molecule 2458. Isotopic Mass([M + 245 245 245 245 245 245 245 245	1200 Ab Ab 9 [M Pre- H]+) 68.0 68.6 69.7 67.4 68.4 69.5	1400 solute undance + H]+ dicted Peak 82 82 122 122 123 123	1600 Relative Abundan 1311 0.2 0.2 0.5 9.2 9.7 0.2 0.7	e ce	2000) 22	,,,,,,	
0.25 483.5 0.00 400 6 Component Mo Ma A Component A I Actual Peak 820.0 820.2 820.6 1229.7 1230.2 1231.1	711.8 711.8 2457.4 Detail Charge 3+ 3+ 3+ 5- 3+ 5- 3+ 5- 2- 2+ 7- 2+ 7- 2+ 1- 2- 2- 1- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2	940.3 1119 1000 Molecule 2458. Isotopic Mass([M + 245 245 245 245 245 245 245 245	1200 Ab. Ab. 9 [M Pre- H]+) 68.0 68.6 69.7 67.4 68.4 69.5 60.5 61.3	1400 solute undance + H]+ dicted Peak 82 82 122 122 123 123	1600 Relative Abundan 1311 0.2 0.2 0.5 9.2 9.7 0.2	e ce 460	2000) 22	,,,,,,	