Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Marine Natural Products-Inspired Phenylmethylene Hydantoins with Potent *in Vitro* and *in Vivo* Antitumor Activities via Suppression of Brk and FAK Signaling

Asmaa A. Sallam^a, Mohamed M. Mohyeldin^a, Ahmed I. Foudah^a, Mohamed R. Akl^a, Sami Nazzal^a, Sharon A. Meyer^b, Yong-Yu Liu^a, Khalid A. El Sayed^a*

^aDepartment of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at

Monroe, USA.

^bDepartment of Toxicology, College of Pharmacy, University of Louisiana at Monroe, USA.

* To whom Correspondence should be addressed. Telephone 318-342-1725.

Fax: 318-342-1737.

E-mail: <u>elsayed@ulm.edu</u>

Table of Contents

	Page number
Table S1. ¹ H NMR data of compounds 3-7	
Table S2. ¹ H NMR data of compounds 8-11	4
Table S3. ¹ H NMR data of compounds 12-13	5
Table S4. ¹³ C NMR data of compounds 3-8	6
Table S5. ¹³ C NMR data of compounds 9-13	7
Fig. SI1. ¹ H NMR Spectrum of 3	
Fig. SI2. ¹³ C NMR (PENDANT) Spectrum of 3	9
Fig. SI3. ¹ H NMR Spectrum of 4	
Fig. SI4. ¹³ C NMR (PENDANT) Spectrum of 4	
Fig. SI5. ¹ H NMR Spectrum of 5	
Fig. SI6. ¹³ C NMR (PENDANT) Spectrum of 5	
Fig. SI7. ¹ H NMR Spectrum of 6	14
Fig. SI8. ¹³ C NMR (PENDANT) Spectrum of 6	15
Fig. SI9. ¹ H NMR Spectrum of 7	
Fig. SI10. ¹³ C NMR (PENDANT) Spectrum of 7	17
Fig. SI11. ¹ H NMR Spectrum of 8	
Fig. SI12. ¹³ C NMR (PENDANT) Spectrum of 8	
Fig. SI13. ¹ H NMR Spectrum of 9	
Fig. SI14. ¹³ C NMR (PENDANT) Spectrum of 9	
Fig. SI15. ¹ H NMR Spectrum of 10	
Fig. SI16. ¹³ C NMR (PENDANT) Spectrum of 10	
Fig. SI17. ¹ H NMR Spectrum of 11	
Fig. SI18. ¹³ C NMR (PENDANT) Spectrum of 11	
Fig. SI19. ¹ H NMR Spectrum of 12	
Fig. SI20. ¹³ C NMR (PENDANT) Spectrum of 12	
Fig. SI21. ¹ H NMR Spectrum of 13	
Fig. SI22. ¹³ C NMR (PENDANT) Spectrum of 13	

δ_H					
Position	3	4	5	6	7
6	6.25, s	6.24, s	6.38, s	6.39, s	6.41, s
7					
8	6.87, brs	7.73, dd (9.2, 1.1)	7.44, d (8.2)	8.07, d (2.2)	7.65, d (8.7)
9		6.73, d (9.2)	7.58, d (8.2)		7.68, d (8.7)
10					
11			7.58, d (8.2)	7.42, d (8.8)	7.68, d (8.7)
12	7.05, dd (2.3, 11.9)		7.44, d (8.2)	7.80, dd (2.2,8.8)	7.65, d (8.7)
1				5.30, 2H, s	
2					7.27, t (8.7)
3				7.21, t (8.7)	7.73, dd (8.7, 6.0)
4				7.47, dd (8.7, 6.0)	
5					7.73, dd (8.7, 6.0)
6				7.47, dd (8.7, 6.0)	7.27, t (8.7)
7				7.21, t (8.7)	
-OCH ₃	3.78, 3H, s				
$-N(CH_3)_2$		3.10, 6H, s			
-SC(CH ₃) ₃			1.21, 9H, s		

Table S1. ¹H NMR data of compounds **3-7**^a

^aIn DMSO, 400 MHz. Coupling constants (*J*) are in Hertz.

Desition	δ_H				
Position	8	9	10	11	
6	6.39, s	6.41, s	6.40, s	6.10, s	
7					
8	7.57, d (8.7)	7.70, d (8.7)	7.71, d (8.2)		
9	7.04, d (8.7)	7.27, d (8.7)	7.67, d (8.2)		
10					
11	7.04, d (8.7)	7.27, d (8.7)	7.67, d (8.2)		
12	7.57, d (8.7)	7.70, d (8.7)	7.71, d (8.2)		
1	5.15, 2H, s				
2		6.81, m			
3					
4	7.48, m				
5	7.29, dd (9.3, 8.7)				
6	7.39, dd (8.7, 8.2)			6.10, s	
7					
-OCH ₃					
(C-9)					
$-OCH_3$					
$(\mathbf{C} - \mathbf{I} \mathbf{U})$					

 Table S2. ¹H NMR data of compounds 8-11^a

^aIn DMSO, 400 MHz. Coupling constants (*J*) are in Hertz.

D :/:	δ_H			
Position	12	13		
6	6.29, s	6.36, s		
7				
8	7.26, dd (6.8, 1.8)	6.98, d (12.4)		
9	6.65, dd (6.8, 1.8)			
10				
11		7.05, d (7.3)		
12				
1				
2				
3				
4				
5				
6				
``				
-OCH ₃ (C-9)		3.80, s		
-OCH ₃ (C-10)		3.78, s		
$-N(CH_3)_2$				

Table S3. ¹H NMR data of compounds 12-13^a

^aIn DMSO, 400 MHz. Coupling constants (*J*) are in Hertz.

Desition	δ_{C}						
Position	3	4	5	6	7	8	
2	156.7, qC	156.0, qC	156.2, qC	156.3, qC	156.3, qC	156.2, qC	
4	166.5, qC	165.7, qC	166.0, qC	165.9, qC	166.2, qC	166.2, qC	
5	126.1, qC	128.5, qC	129.2, qC	126.5, qC	128.6, qC	126.6, qC	
6	110.6, CH	98.8, CH	107.7, CH	106.3, CH	108.3, CH	109.0, CH	
7	121.1, qC	109.8, qC	134.1, qC	128.8, qC	132.7, qC	126.9, qC	
8	109.9, CH	134.4, CH	130.0, CH	125.4, CH	127.3, CH	131.7, CH	
9	151.3, qC	112.5, CH	137.5, CH	140.6, qC	130.5, CH	115.4, CH	
10	150.7, qC	161, qC	132.7, qC	150.5, qC	139.2, qC	160.7, qC	
11	153.7, qC	154.7, qC	137.5, CH	115.9, CH	130.5, CH	115.4, CH	
12	109.7, CH	163.2, qC	130.0, CH	135.4, CH	127.3, CH	131.7, CH	
1				70.4, CH ₂	136.3, qC	70.4, CH ₂	
2				132.6, qC	129.2, CH	136.0, qC	
3				130.4, CH	116.4, CH	163.2, qC	
4				116.1, CH	161.4, qC	126.6, CH	
5`				163.7, qC	116.4, CH	132.5, CH	
6				116.1, CH	129.2, CH	132.4, CH	
7`				130.4, CH		158.9, qC	
-OCH ₃	56.7, CH ₃						
-N(CH3) ₂		42.8, CH ₃					
-CN		115.1, qC					
-SC(CH ₃) ₃			46.8, qC				
-SC(CH ₃) ₃			31.2, CH ₃				

 Table S4.
 ¹³C NMR data of compounds 3-8^a

^aIn DMSO, 100 MHz. Carbon multiplicities were determined by pendant experiments. qC = quaternary. CH = methine, CH₂ = methylene, CH₃ =methyl carbons.

D:			$\delta_{ m C}$		
Position	9	10	11	12	13
2	156.4, qC	156.3, qC	156.4, qC	156.0, qC	156.2, qC
4	166.1, qC	166.0, qC	165.6, qC	165.8, qC	166.2, qC
5	132.4, qC	122.7, qC	135.3, qC	127.8, qC	128.3, qC
6	107.9, CH	106.6, CH	91.2, CH	100.1, CH	111.5, CH
7	129.2, qC	128.5, qC	115.0, qC	111.1, qC	111.9, qC
8	131.8, CH	136.8, CH	142.7, qC	124.3, CH	100.4, CH
9	122.3, CH	131.0, CH	142.7, qC	114.3, CH	145.8, qC
10	148.1, qC	130.3, qC	115.0, qC	148.7, qC	154.3, qC
11	122.3, CH	131.0, CH	142.7, qC	142.1, qC	101.0, CH
12	131.8, CH	136.8, CH	142.7, qC	139.7, qC	150.8, qC
1	117.0, qC				
2	108.7, CH		156.4, qC		
3					
4			165.6, qC		
5			135.3, qC		
6			91.2, CH		
7					
-OCH ₃					56.6, CH ₃
-N(CH3) ₂					56.7, CH ₃
-SCF ₃		136.7, qC			

 Table S5. ¹³C NMR data of compounds 9-13^a

^aIn DMSO, 100 MHz. Carbon multiplicities were determined by pendant experiments. qC = quaternary. CH = methine, CH₂ = methylene, CH₃ = methyl carbons.

Figure SI1. ¹H NMR Spectrum of **3**.

Figure SI2. ¹³C NMR (PENDANT) Spectrum of 3.

Figure SI3. ¹H NMR Spectrum of **4**.

Figure SI4. ¹³C NMR (PENDANT) Spectrum of 4.

Figure SI5. ¹H NMR Spectrum of **5**.

Figure SI6. ¹³C NMR (PENDANT) Spectrum of 5.

Figure SI7. ¹H NMR Spectrum of 6.

Figure SI9. ¹H NMR Spectrum of **7**.

Figure SI11. ¹H NMR Spectrum of 8.

Figure SI12. ¹³C NMR (PENDANT) Spectrum of 8.

Figure SI13. ¹H NMR Spectrum of 9.

Figure SI15. ¹H NMR Spectrum of 10.

Figure SI17. ¹H NMR Spectrum of 11.

Figure SI22. ¹³C NMR (PENDANT) Spectrum of 13.