Supporting Information

Palladium-catalyzed tandem reaction of 2-hydroxyarylacetonitriles

with sodium sulfinates: one-pot synthesis of 2-arylbenzofurans

Jiuxi Chen,^{*a,b*} Jianjun Li^{*a*} and Weike Su^{**a*}

^a Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. E-mail: <u>pharmlab@zjut.edu.cn</u>

^b College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

List of Contents

1.	General experimental details	S2
2.	General procedure	S2
3.	Control experiments	S3
4.	Analytical data for products	S5
5.	Copies of product ¹ H NMR and ¹³ C NMR	S10

1. General experimental details

Chemicals were either purchased or purified by standard techniques without special instructions. ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz. All reactions were conducted under air atmosphere. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). All products are known compounds and identified by comparison with authentic samples. Analytical data and spectra (¹H and ¹³C NMR) of all products are supplied in the Supporting Information.

2. General procedure

Under N₂ atmosphere, a Schlenk tube was charged with 2-hydroxyarylacetonitriles **1** (0.3 mmol), sodium sulfinates **2** (0.6 mmol), Pd(OAc)₂ (10 mol %), **L1** (20 mol %), *p*-NBSA (10 equiv), 2-MeTHF (2 mL), and H₂O (1 mL) at room temperature. The reaction mixture was stirred vigorously at 80 °C for 36 h. After the completion of the reaction, as monitored by TLC and GC-MS analysis, the reaction mixture was cooled to room temperature. The mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2 × 10 mL) and then brine (1 × 10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography (hexane/ethyl acetate as eluent) to afford the desired products **3**.

3. Control experiments

Scheme S1

Under N₂ atmosphere, a Schlenk tube was charged with **1a** (0.3 mmol), (4-(trifluoromethyl)phenyl)boronic acid (0.6 mmol), Pd(OAc)₂ (10 mol %), **L1** (20 mol %), *p*-NBSA (10 equiv), 2-MeTHF (2 mL), and H₂O (1 mL) at room temperature. The reaction mixture was stirred vigorously at 80 °C for 36 h. Trace target product **3i** was detected by GC/MS analysis.

Under N₂ atmosphere, a Schlenk tube was charged with **4** (0.3 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol %), **L1** (20 mol %), *p*-NBSA (10 equiv), 2-MeTHF (2 mL), and H₂O (1 mL) at room temperature. The reaction mixture was stirred vigorously at 80 °C for 36 h. The mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2 × 10 mL) and then brine (1 × 10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography (hexane/ethyl acetate as eluent) to afford the desired products **5** (89% yield).

Scheme S3

Under N₂ atmosphere, a Schlenk tube was charged with **1a** (0.3 mmol), **2a** (0.6 mmol), *p*-NBSA (10 equiv), 2-MeTHF (2 mL), and H₂O (1 mL) at room temperature. The reaction mixture was stirred vigorously at 80 °C for 36 h. No target product **3a** was detected by GC/MS analysis.

Under N₂ atmosphere, a Schlenk tube was charged with **6** (0.3 mmol), *p*-NBSA (10 equiv), 2-MeTHF (2 mL), and H₂O (1 mL) at room temperature. The reaction mixture was stirred vigorously at 80 °C for 36 h. The mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2 × 10 mL) and then brine (1 × 10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography (hexane/ethyl acetate as eluent) to afford the desired products **3a** (89% yield). However, trace yield of desired product **3a** was observed by GC/MS analysis in the absence of *p*-NBSA.

4. Analytical data for all products

2-Phenylbenzofuran (**3a**): White solid, mp 120–121 °C (Lit.¹ 121.6–122.2 °C); ¹H NMR(CDCl₃, 500 MHz) δ 7.86 (d, J = 7.5Hz, 2H), 7.57 (d, J=7.6Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.29-7.27 (m, 1H), 7.24-7.21 (m, 1H), 7.01(s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.0, 155.0, 130.6, 129.3, 128.9, 128.6, 125.0, 124.4, 123.0, 121.0, 111.3, 101.4.

2-p-Tolylbenzofuran (3b): White solid, mp 126–127 °C (Lit.² 126–128 °C); ¹H NMR (CDCl₃, 500 MHz): δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.28-7.19 (m, 4H), 6.95 (s, 1H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.3, 154.8, 138.6, 129.5, 129.4, 127.8, 124.9, 124.0, 122.9, 120.8, 111.1, 100.6, 21.4.

2-o-Tolylbenzofuran (**3**c): Oil,³ ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, *J* = 6.8 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.31-7.22 (m, 5H), 6.89 (s, 1H), 2.58 (s, 3H); ¹³C NMR (CDCl₃, 125MHz) δ 154.6, 153.3, 134.8, 130.2, 128.9, 128.1, 127.5, 127.1, 125.1, 123.2, 121.7, 119.9, 110.1, 104.1, 20.9.

2-(4-Methoxyphenyl)benzofuran (3d): White solid, mp 151–152 °C (Lit.⁴ 148–150 °C); ¹H NMR (CDCl₃, 500 MHz): δ 7.79 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 7.1 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.24-7.19 (m, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.87 (s, 1H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.1, 156.1, 154.8, 129.6, 126.5, 123.8,

¹ Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149.

² Kabalka, G. M.; Wang, L.; Pagni, R. M. *Tetrahedron* **2001**, *57*, 8017.

³ Astoin, J.; Demerseman, P.; Riveron, A.; Royer, R. J. Heterocycl. Chem. 1977, 14, 867.

⁴ Jaseer, E. A.; Prasad, D. J. C.; Sekar, G. *Tetrahedron* **2010**, 66, 2077.

123.4, 122.9, 120.6, 114.3, 111.0, 99.7, 55.4.

2-(4-tert-Butylphenyl)benzofuran (3e): White solid, mp 131–132 °C (Lit.⁵ 132 °C); ¹H NMR (CDCl₃, 500 MHz): δ 7.82 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.1 Hz, 1H), 6.99 (s, 1H), 1.38 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.0, 154.7, 151.6, 129.2, 127.6, 125.6, 124.6, 123.8, 122.7, 120.6, 110.9, 100.5, 34.6, 31.1.

2-(4-Fluorophenyl)benzofuran (**3***f*): White solid, mp 123–124 °C (Lit.⁶ 122–124 °C); ¹H NMR (CDCl₃, 500 MHz): δ 7.86-7.83 (m, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 8.1 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.15 (t, *J* = 8.7 Hz, 2H), 6.96 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 163.7, 161.7, 154.9, 154.7, 129.0, 126.7, 126.6, 126.6, 124.1, 122.9, 120.7, 115.8, 115.6, 111.0, 100.84, 100.83.

2-(4-Chlorophenyl)benzofuran (**3**g): White solid; mp 147–148 °C (Lit.⁷ 148–149 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.79 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.31 (t, J = 7.7 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.01 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 154.7, 154.6, 134.2, 128.9, 128.9, 128.8, 126.0, 124.4, 122.9, 120.8, 111.0, 101.6.

2-(2-Chlorophenyl)benzofuran (3h): White solid; mp 46-47 °C (Lit.⁸ 45–46 °C); ¹H NMR (CDCl₃, 500 MHz) δ 8.06 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.54-7.49 (m, 3H), 7.39 (t, J = 7.6 Hz, 1H), 7.34-7.30 (m, 2H), 7.29-7.27 (m, 1H); ¹³C

⁵ Astoin, J.; Demerseman, P.; Riveron, A.; Royer, R. J. Heterocycl. Chem. 1977, 14, 867.

⁶ Chittimalla, S. K.; Chang, T.-C.; Liu, T.-C.; Hsieh, H.-P.; Liao, C.-C. *Tetrahedron* 2008, 64, 2586.

⁷ Ghosh, S.; Das, J. *Tetrahedron Lett.* **2011**, *52*, 1112.

⁸ Carril, M.; Martin, R. S.; Tellitu, I.; Domínguez, E. Org. Lett. 2006, 8, 1467

NMR (CDCl₃, 125 MHz) δ 154.2, 152.0, 149.2, 131.3, 130.9, 129.1, 129.0, 127.0, 124.9, 123.0, 121.5, 121.1, 111.1, 107.4.

2-(4-(Trifluoromethyl)phenyl)benzofuran (**3i**): White solid; mp 159–161 °C (Lit.⁹ 162–163 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.94 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.25-7.24 (m, 1H), 7.11 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.1, 154.1, 133.6, 129.9, 128.8, 125.8, 125.7, 125.7, 125.6, 125.1, 125.0, 124.9, 123.2, 121.2, 111.3, 103.2.

2-(*Naphthalen-2-yl*)*benzofuran* (**3***j*): White solid, mp 162–163 °C (Lit.¹⁰ 163 °C); ¹H NMR (CDCl₃, 500 MHz) δ 8.37 (s, 1H), 7.94-7.87 (m, 3H), 7.83 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.53-7.47 (m, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.24-7.23 (m, 1H), 7.13 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.8, 154.9, 133.3, 133.1, 128.3, 128.3, 127.6, 126.5, 126.3, 124.2, 123.7, 122.8, 122.6, 120.8, 111.0, 101.8.

6-*Methoxy-2-phenylbenzofuran (3k)*: White solid, mp 80–81 °C (Lit.¹¹ 79–81 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.5 Hz, 3H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.08 (s, 1H), 6.96 (s, 1H), 6.87-6.90 (m, 1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 158.1, 155.9, 155.2, 130.7, 128.8, 128.1, 124.5, 122.6, 120.9, 111.9, 101.2, 95.9, 55.8.

⁹ Denmark, S. E.; Smith, R. C.; Chang, W.-T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131, 3104.

¹⁰ Astoin, J.; Demerseman, P.; Riveron, A.; Royer, R. J. Heterocycl. Chem. **1977**, 14, 867.

¹¹ Wang, X.; Liu, M.; Xu, L.; Wang, Q.; Chen, J.; Ding, J.; Wu, H. J. Org. Chem. 2013, 78, 5273.

7-*Methoxy-2-phenylbenzofuran (3l)*: White solid, mp 80–81 °C (Lit.¹² 79–80 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (d, *J* = 8.2 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.21-7.15 (m, 2H), 7.03 (s, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.1, 144.4, 143.2, 130.0, 129.4, 127.7, 127.6, 124.1, 122.6, 112.4, 105.7, 100.7, 55.2.

5-*Methyl-2-phenylbenzofuran* (**3***m*): White solid, mp 129–130 °C (Lit.¹³ 128–129 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.87 (d, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.38-7.34 (m, 2H), 7.11 (d, *J* = 8.3 Hz, 1H), 6.96 (s, 1H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.3, 153.6, 132.6, 130.9, 129.6, 129.0, 128.7, 125.8, 125.1, 121.0, 110.9, 101.4, 21.6.

5-*Chloro-2-phenylbenzofuran* (**3***n*): White solid, mp 152–153 °C (Lit.¹⁴ 154 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.85 (d, *J* = 7.6 Hz, 2H), 7.55 (s, 1H), 7.48-7.43 (m, 3H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 1H), 6.96 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 157.2, 153.1, 130.4, 129.8, 128.8, 128.7, 128.3, 124.9, 124.2, 120.2, 111.9, 100.6.

5-Bromo-2-phenylbenzofuran (3o): White solid, mp 159–160 °C (Lit.¹⁵ 158–159 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.71 (s, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.41-7.36 (m, 3H), 6.96 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 157.0, 153.4, 131.0, 129.7, 128.8, 128.7, 126.9, 124.9, 123.3, 115.8, 112.4, 100.4.

¹² Duan, X.-F.; Zeng, J.; Zhang, Z.-B.; Zi, G.-F. J. Org. Chem. 2007, 72, 10283.

¹³ Duan, X.-F.; Zeng, J.; Zhang, Z.-B.; Zi, G-F. J. Org. Chem. **2007**, 72, 10283.

¹⁴ Jaseer, E. A.; Prasad, D. J. C.; Sekar, G. *Tetrahedron* **2010**, 66, 2077.

¹⁵ Takeda, N.; Miyata, O.; Naito, T. Eur. J. Org. Chem. 2007, 1491.

1,2-Diphenylethanone (5). Yellow solid; mp 55-56 °C (Lit.¹⁶ 59-60 °C); ¹H NMR (CDCl₃, 500 MHz) δ 7.91 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.22 (t, J = 7.4 Hz, 2H), 7.18-7.13 (m, 1H), 4.18 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 196.6, 135.6, 133.5, 132.1, 128.4, 127.62, 127.59, 127.56, 125.8, 44.4.

¹⁶ Ye, C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2005, 7, 3961.

5. ¹H NMR and ¹³C NMR spectra for all products

Figure S1. ¹H NMR of 3a (500 MHz, CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃).

Figure S2. ¹H NMR of 3b (500 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃).

Figure S3. ¹H NMR of 3c (500 MHz, CDCl₃) and ¹³C NMR of 3c (125 MHz, CDCl₃).

Figure S4. 1 H NMR of 3d (500 MHz, CDCl₃) and 13 C NMR of 3d (125 MHz, CDCl₃).

Figure S5. ¹H NMR of 3e (500 MHz, CDCl₃) and ¹³C NMR of 3e (125 MHz, CDCl₃).

Figure S6. ¹H NMR of 3f (500 MHz, CDCl₃) and ¹³C NMR of 3f (125 MHz, CDCl₃).

Figure S7. ¹H NMR of 3g (500 MHz, CDCl₃) and ¹³C NMR of 3g (125 MHz, CDCl₃).

Figure S8. ¹H NMR of 3h (500 MHz, CDCl₃) and ¹³C NMR of 3h (125 MHz, CDCl₃).

Figure S9. ¹H NMR of 3i (500 MHz, CDCl₃) and ¹³C NMR of 3i (125 MHz, CDCl₃).

Figure S10. ¹H NMR of 3j (500 MHz, CDCl₃) and ¹³C NMR of 3j (125 MHz, CDCl₃).

Figure S11. ¹H NMR of 3k (500 MHz, CDCl₃) and ¹³C NMR of 3k (125 MHz, CDCl₃).

Figure S12. ¹H NMR of 3l (500 MHz, CDCl₃) and ¹³C NMR of 3l (125 MHz, CDCl₃).

Figure S13. ¹H NMR of 3m (500 MHz, CDCl₃) and ¹³C NMR of 3m (125 MHz, CDCl₃).

Figure S14. 1 H NMR of 3n (500 MHz, CDCl₃) and 13 C NMR of 3n (125 MHz, CDCl₃).

Figure S15. ¹H NMR of **30** (500 MHz, CDCl₃) and ¹³C NMR of **30** (125 MHz, CDCl₃).

Figure S16. ¹H NMR of 5 (500 MHz, CDCl₃) and ¹³C NMR of 5 (125 MHz, CDCl₃).