Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Metal-Free Aerobic Oxidative C-N Bond Cleavage of Tertiary Amines for the Synthesis of *N*-Heterocycles with High Atom Efficiency

Xiuling Chen, Tieqiao Chen, Yongbo Zhou,* Daoqing Han, Li-Biao Han, and Shuang-Feng Yin*

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410081, P. R. China
Fax: (+) 86-731-88821171;
E-mail: zhouyb@hnu.edu.cn; sf yin@hnu.edu.cn

Contents

General remarks	3
General procedure	3
Optimization of the reaction conditions	3
Metal-free verification and other relative experiments	4-5
Investigation on the reaction mechanism	5-9
¹ H NMR and ¹³ C NMR data of products	9-11
References	12
Copies of ¹ H and ¹³ C NMR spectra	13-34

1. General remarks

All non-aqueous reactions and manipulations were performed in oxygen atmosphere. The reactions were monitored by GC and GC-MS. The ¹H NMR and ¹³C NMR spectra were recorded on a Brucker ADVANCE III spectrometer at 400 MHz and 100 MHz, respectively, and chemical shifts were reported in parts per million (ppm). Flash column chromatography was performed using silica gel 200-300 mesh, GC-MS results were recorded on GC-MS QP2010, and GC analysis was performed on GC 7820A. Amines **1** were purchased from Energy Chemical, Alfa Aesar, Aladdin or Maya Reagent; amines **2** were purchased from Aladdin.

2. General experimental procedure for the synthesis of N-heterocycle derivatives

A 10 ml Schlenk-type tube equipped with a magnetic stir bar was charged with substrate amine 1 (1a-1f) (0.2 mmol) and acid (20 mol%). The reaction tube was evacuated and back-filled with O_2 . Under oxygen atmospheres, tertiary amines 2 (0.08mmol), secondary amines 2 (0.12 mmol), primary amines 2 (0.24 mmol) and dioxane (1 mL) were added at room temperature, then the reaction mixture was stirred at 115-130 °C for 10-18 h, recharging oxygen after 9 h. The reaction was monitored by GC or GC-MS. After completion of the reaction, the resulting solution was cooled to room temperature, and washed with saturated NaHCO₃ solution. The product was extracted with EtOAc or CHCl₃, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give analytically pure product.

Ö

3. Optimization of the reaction conditions^a

	N	H_2 = [Cu], a + N(C ₂ H ₅) ₃ O_2 (1 atm)		NH	
	• NH ₂ 1a	2a		3a	
Entry	Catalyst (10 mol%)	Acid (20 mol%)	T (° C)	Time (h)	Yield $(\%)^b$
1	Cu(OAc) ₂	CH ₃ COOH	120	13	55
2	$Cu(OAc)_2$	C ₆ H ₅ COOH	120	13	37
3	$Cu(OAc)_2$	C ₆ H ₅ CH ₂ COOH	120	13	35
4	$Cu(OAc)_2$	C ₆ H ₅ SO ₃ H	120	13	55
5	$Cu(OAc)_2$	Ph ₂ P(O)OH	120	13	64
6	CuCl ₂	$Ph_2P(O)OH$	120	13	69
7	CuCl	Ph ₂ P(O)OH	120	13	71
8	CuI	Ph ₂ P(O)OH	120	13	35
9	CuBr ₂	$Ph_2P(O)OH$	120	13	68
10	CuBr	$Ph_2P(O)OH$	120	13	72
11	Cu	$Ph_2P(O)OH$	120	13	71
12	$CuSO_4$	$Ph_2P(O)OH$	120	13	76
13	$Cu(OAc)_2$	$Ph_2P(O)OH$	130	13	82
14	$Cu(OAc)_2$	$Ph_2P(O)OH$	130	18	88
15	$Cu(OAc)_2$		130	18	25
16		Ph ₂ P(O)OH	130	13	76
17		$Ph_2P(O)OH$	130	18	90
18		CH ₃ COOH	130	18	88
19		PhCH ₂ COOH	130	18	61
20		PhCOOH	130	18	71
21		p-MePhCOOH	130	18	60
22		p-NO ₂ PhCOOH	130	18	51
23		C ₁₀ H ₇ CH ₂ COOH	130	18	65
24		PhSO ₃ H	130	18	88
25			130	18	27
26 ^c		Ph ₂ P(O)OH	130	18	91
27^d		Ph ₂ P(O)OH	130	18	61
28 ^e		Ph ₂ P(O)OH	130	18	15
29 ^f		Ph ₂ P(O)OH	130	18	-

^{*a*} Reaction conditions: *o*-aminobenzamide **1a** (0.2 mmol), NEt₃ **2a** (0.08 mmol), [Cu] (10 mol%), acid (20 mol%) based on **1a**, dioxane (1.0 mL), O₂ (1 atm) in a 10 mL Schlenk tube, recharging oxygen after 9 h. ^{*b*} GC yield using dodecane as internal standard. ^{*c*} Ph₂P(O)OH (50 mol%). ^{*d*} Ph₂P(O)OH (10 mol%). ^{*e*} Under air. ^{*f*} Under N₂

4. Metal-free verification and other relative experiments

The commercial available *o*-aminobenzamide 2a and $Ph_2P(O)OH$ was further purified by sublimation under reduced pressure. ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy, PE optima 5300DV) experiments are shown below. Possible critical transition metals, including Pd, Rh, Co, Cu, Fe, Mg, Ni, were tested. Analysis conditions: nebulizer flow: 0.8L/min; flow aid: 0.8L/min; the cooling gas flow: 15L/min; peristaltic pump speed: 1.5mL/min; equilibration time: 15sec. The results were listed in **Table 1**.

4.1. ICP data

ICP-AES analysis of various metals in reagents

Element	o-aminobenzamide 1a	1a/2a/dioxane/CH ₃ COOH	Ph ₂ P(O)OH	detection limit (mg/L)
Pd (340.458)	ND	ND	ND	0.044
Rh (343.489)	ND	ND	ND	0.06
Co (228.616)	ND	ND	ND	0.007
Cu (224.700)	ND	ND	0.0076	0.0067
Fe (238.204)	ND	ND	ND	0.0046
Mg (280.271)	ND	0.08	ND	0.0016
Ni (231.604)	ND	ND	ND	0.015

Unit: µg/g (ppm), ND: Not detected.

ICP-AES spectrogram of various metals

4.2 Verification experiments^a

-	$NH_2 + N(C_2H_5)_3$	$\frac{\text{cat (20 mol%)}}{O_2 (1 \text{ atm}), \text{ dioxane}} \qquad $	NH C
Entry	Cat (20 mol%)	Time (h)	Yield $(\%)^b$
1°	Ph ₂ P(O)OH	18	90
2^c	CH ₃ COOH	18	88
3^d	Ph ₂ P(O)OH	18	90
4 ^d	CH ₃ COOH	18	88

^{*a*} Reaction conditions: *o*-aminobenzamide **1a** (0.2 mmol), NEt₃ **2a** (0.08 mmol), cat (20 mol%) based on **1a**, dioxane (1.0 mL), O₂ (1 atm) in a 10 mL Schlenk tube, recharging oxygen after 9 h. ^{*b*} GC yield using dodecane as internal standard.^{*c*} Ph₂P(O)OH, CH₃COOH, dioxane and NEt₃ were used without purification. ^{*d*} Ph₂P(O)OH was purified by sublimation prior to examination; CH₃COOH, dioxane and NEt₃ were purified by distillation prior to examination.

5. Investigation on the reaction mechanism

(a) The reaction of *o*-aminobenzamide 1a with *N*,*N*-diethylbenzamide was conducted under similar reaction conditions, 3a was obtained in 55% yield, while 3e was not detected (eq. 1). When *o*-aminobenzamide 1a and 1.0 equiv tri-*n*-butylamine 2c were used as substrates at 25 °C, 20% tri-*n*-butylamine *N*-oxide I_{2e} was isolated and 75% tri-*n*-butylamine 2c was recovered (eq. 2). The resulting tri-*n*-butylamine *N*-oxide I_{2e} was found to react with *o*-aminobenzamide 1a under N₂ atmosphere, producing the corresponding quinazolinone derivatives 3c in high yield (eq. 3). Besides, the addition of a radical inhibitor, 2,2,6,6-tetramethyl piperidinyl-Noxyl (TEMPO), did not affect the yield of 3a (eq. 4). During the reaction of *o*-aminobenzamide with 1.2 equiv tri-*n*-octylamine, secondary amine and aldehyde were detected by GC-MS (eq. 5). In the presence of 20 mol% Ph₂P(O)OH, tri-*n*-octylamine and tribenzylamine could be readily oxidized by dioxygen and the corresponding aldehydes were provided in 56% and 50% yields, respectively (eq. 6). In the absence of Ph₂P(O)OH, the reaction of *b*-aminobenzamide 1a took place smoothly and the product 2-phenylquinazolin-4(3*H*)-one was produced in 97% yield (eq. 7). According to referees' comments, peroxyacids are very well known to oxidize tertiary amines to *N*-oxides, so the oxidative cyclocondensation of *o*-aminobenzamide 1a with tri-*n*-butylamine 2c was performed using *m*-cpba (3-chloroperbenzoic acid) as oxidant instead of dioxygen, we found this reaction took place smoothly and the corresponding product 2-propylquinazolin-4(3*H*)-one 3c was given in 93% yield (eq. 8).

Tri-*n***-butylamine** *N*-oxide (I_{2c}): Eluent: methanol/chloroform (1:3) ¹H NMR (400 MHz, CDCl₃): δ 3.47 (t, *J* = 7.2 Hz, 6H), 1.68 (br, 6H), 1.31 (t, *J* = 6.8 Hz, 6H), 0.87 (t, *J* = 6.8Hz, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 63.7, 24.6, 19.7, 13.7. MS (ESI, [M+H]⁺) Calcd. for C₁₂H₂₇NO: 202.2, found : 202.1.

The ESI full mass spectra of I_{2c}

(b) Only 25% yield of 3c was obtained when the copper salt was used as sole catalyst.

(c) Under oxygen atmosphere, *o*-aminobenzamide 1a can react with triethylamine at 130 °C for 20 h in the presence of 20 mol% Ph₂P(O)OH as the catalyst in H₂O, giving the dihydroquinazolinone $3a^1$ in 70% isolated yield. Subsequently, $3a^1$ can be converted to the corresponding quinazolinone 3a quantitatively using oxygen as the oxidant.

The experimental procedure for the synthesis of 3a¹

A 10 ml Schlenck tube equipped with a magnetic stir bar was charged with *o*-aminobenzamide **1a** (0.5 mmol) and $Ph_2P(O)OH$ (20 mol%). The reaction tube was evacuated and back-filled with O_2 . Under oxygen atmospheres, NEt₃ **2a** (0.2 mmol) and H_2O (1 ml) were added at room temperature, and then the reaction mixture was stirred at 130 °C for 20 h. The reaction was monitored by GC or GC-MS. After completion of the reaction, the resulting solution was cooled to room temperature, and neutralized with saturated solution of NaHCO₃. The product was extracted with EtOAc, dried over Na₂SO₄

and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel. Eluent: petroleum ether/ethyl acetate (5:1). White solid: 56 mg (70%). ¹H NMR (400 MHz, CDCl₃): δ 7,86 (d, *J* = 7.6 Hz, 1H), 7.27-7.31 (m, 1H), 6.89 (s, 1H), 6.85 (t, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 5.03 (q, *J* = 6.0 Hz, 1H); 4.33 (s, 1H), 1.50 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 147.7, 133.8, 128.5, 119.4, 115.9, 114.7, 61.6, 21.7. GC-MS: m/z = 162.

¹H NMR spectra of 2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (3a¹)

¹³C NMR spectra of 2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (3a¹)

6. ¹H NMR and ¹³C NMR data of products

 $^{\text{N}^{\text{CH}_3}}$ **2-Methylquinazolin-4(3***H***)-one (3a):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 26 mg (87%); m.p.: 235-239 °C (lit.^[1] 238-240 °C). ¹H NMR (400 MHz, CDCl₃): δ 12.23 (s, br, 1H), 8.30 (d, *J* = 8.0 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 153.4, 149.4, 134.9, 127.0, 126.4, 126.2, 120.2, 22.1. GC-MS: m/z = 160.

N^{-C}C₂H₅**2-Ethylquinazolin-4(3***H***)-one (3b):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 27 mg (80%); m.p.: 231-233 °C (lit.^[2] 229-231 °C). ¹H NMR (400 MHz, CDCl₃): δ 11.96 (s, br, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.6 Hz 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 2.87 (q, J = 7.6 Hz, 2H), 1.46 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 157.7, 149.5, 134.8, 127.2, 126.4, 126.3, 120.5, 29.2, 11.6. GC-MS: m/z = 174.

N^{-C₃H₇ **2-Propylquinazolin-4(3***H***)-one (3c):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 29 mg (79%). m.p.: 200-202 °C (lit.^[1] 198-200 °C). ¹H NMR (400 MHz, CDCl₃): δ 12.18 (s, br, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 2.79 (t, J = 7.2 Hz, 2H,); 1.89-1.98 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 156.9, 149.5, 134.8, 127.2, 126.3, 126.2, 120.5, 37.8, 21.1, 13.8. GC-MS: m/z = 188.}

N ^C7^H¹⁵**2-Heptylquinazolin-4(3***H***)-one (3d):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 38 mg (81%). m.p.: 140-143 °C (lit.^[3] 143-145 °C). ¹H NMR (400 MHz, CDCl₃): δ 12.04 (s, br, 1H), 8.29 (d, *J* = 7.6 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 2.80 (t, *J* = 8.0 Hz, 2H), 1.85-1.93 (m, 2H), 1.4-1.49 (m, 2H), 1.36-1.42 (m, 2H), 1.29-1.35 (m, 4H), 0.87 (t, *J* = 6.8Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 157.1, 149.5, 134.8, 127.2, 126.3, 126.2, 120.5, 36.0, 31.7, 29.2, 28.9, 27.6, 22.6, 14.1. GC-MS: m/z = 244.

N^{-C} Ph **2-Phenylquinazolin-4(3***H***)-one (3e):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 38 mg (86%). m.p.: 236-238 °C (lit.^[4] 236-237 °C). ¹H NMR (400 MHz, CDCl₃): δ 11.85 (s, br, 1H), 8.32 (d, J = 8.0 Hz, 1H), 8.28 (dd, J = 7.2 Hz, 8.0 Hz, 2H), 7.79–7.86 (m, 2H), 7.59 (t, J = 8.0H, 3H), 7.51 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 151.8, 149.5, 134.9, 132.8, 131.7, 129.0, 128.0, 127.5, 126.8, 126.4, 120.8. GC-MS: m/z = 221.

N 2,2-Dimethyl-2,3-dihydroquinazolin-4(1*H*)-one (3f): Eluent: petroleum ether/ethyl acetate (2:1). White solid: 28 mg (82%). m.p.: 182-184 °C (lit.^[4] 182-183 °C). 1H NMR (400 MHz, CDCl3): δ 7.87 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.78 (s, 1H), 6.62 (d, J = 8.0 Hz, 1H), 4.26 (s, 1H), 1.56 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 164.5, 145.9, 133.9, 128.3, 118.7, 114.7, 114.7, 67.7, 29.7. GC-MS: m/z = 176.

Quinazolin-4(3*H***)-one (3g):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 28mg (95%); m.p.: 215-216 °C (lit.^[5]). ¹H NMR (400 MHz, CDCl₃): δ 11.97 (s, br, 1H), 8.18 (s, 1H), 8.16 (s, 1H), 7.75 (t, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.8, 150.8, 147.6, 136.8, 129.4, 129.0, 128.6, 125.7. GC-MS: m/z = 146.

O N C

2,3-Dimethylquinazolin-4(3*H***)-one (3h):** Eluent: petroleum ether/ethyl acetate (2:1). White solid: 32 mg (91%). m.p.: 106-108 °C (lit.^[2] 107-109 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 3.59 (s, 1H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 154.5, 147.2, 134.2, 126.7, 126.6, 126.4, 120.2, 31.0, 23.6. GC-MS: m/z = 174.

N^{-C} Ph **3-Methyl-2-phenylquinazolin-4(3***H***)-one (3i):** Eluent: petroleum ether/ethyl acetate (5:1). White solid: 40 mg (87%). m.p.: 132-134 °C (lit.^[6] 130-132 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (s, 1H), 7.73 (s, 2H), 7.55–7.57 (m, 2H), 7.47–7.52 (m, 4H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 156.1, 147.3, 135.4, 134.3, 130.1, 128.9, 128.0, 127.5, 126.9, 126.7, 120.5, 34.3. GC-MS: m/z = 236.

2-Ethyl-6-methylquinazolin-4(3*H***)-one (3j):** Eluent: petroleum ether/ethyl acetate (4:1). White solid: 30 mg (83%). m.p.: 225-227 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.07 (s, br, 1H), 7.86 (s, 1H), 7.57 (d, *J* = 8.4Hz, 1H), 7.48 (d, *J* = 8.0Hz, 1H), 2.58 (q, *J* = 7.6Hz, 2H), 2.41 (s, 3H), 1.22 (t, *J* = 7.6Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.2, 157.9, 147.4, 136.0, 135.9, 127.1, 125.5, 121.0, 28.2, 21.2, 11.8. HRMS (EI): calcd for C₁₁H₁₂N₂O: 188.0950; found: 188.0949.

6-Methyl-2-propylquinazolin-4(3*H***)-one (3***k***): Eluent: petroleum ether/ethyl acetate (4:1). White solid: 33 mg (85%). m.p.: 222-223 °C (lit.^[5] 225-227 °C). ¹H NMR (400 MHz, DMSO-d_6): \delta 12.07 (s, br, 1H), 7.86 (s, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 2.55 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.68-1.77 (m, 2H), 0.92 (t, J = 7.4Hz, 3H); ¹³C NMR (100 MHz, DMSO-d_6): \delta 162.2, 156.8, 147.4, 136.0, 135.9, 127.1, 125.5, 121.0, 36.7, 21.2, 20.7, 14.0. GC-MS: m/z = 202.**

CI

6-Chloro-2-ethylquinazolin-4(3*H***)-one (3l):** Eluent: petroleum ether/ethyl acetate (4:1). White solid: 33 mg (81%). m.p.: 255-256 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.32 (s, br, 1H), 7.97 (d, J = 2.4 Hz, 1H), 7.74 (dd, J = 2.4 Hz, 2.4 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 2.61 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.3, 159.4, 148.1, 134.8, 130.6, 129.5, 125.1, 122.5, 28.0, 11.7. HRMS (EI): calcd for C₁₀H₉ClN₂O: 208.0403; found: 208.0390.

6-Chloro-2-propylquinazolin-4(3H)-one (3m): Eluent: petroleum ether/ethyl acetate (4:1). White solid: 36 mg (82%). m.p.: 251-253 °C (lit.^[1] 248-250 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.34 (s, br, 1H), 7.98 (d, *J* = 2.4Hz, 1H), 7.79 (dd, *J* = 2.4 Hz, 2.8 Hz, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.68-1.77 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.3, 158.4, 148.1, 134.8, 130.6, 129.5, 125.1, 122.5, 36.8, 20.6, 13.9. GC-MS: m/z = 221.

N 2-Heptyl-1*H*-benzo[*d*]imidazole (30): Eluent: petroleum ether/ethyl acetate (20:1). White solid: 38 mg (88%). m.p.: 150-151 °C (lit.^[7] 147-149 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.58 (m, 2H), 7.19-7.25 (m, 2H), 2.97 (t, *J*

= 7.8 Hz, 2H); 1.82-1.89 (m, 2H), 1.25-1.36 (m, 2H), 1.15-1.23 (m, 6H), 0.81 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 138.6, 122.1, 114.6, 31.7, 29.39, 29.36, 29.0, 28.5, 22.6, 14.1. GC-MS: m/z = 216.

2-heptylbenzo[*d*]**thiazole (3p):** Eluent: petroleum ether/ethyl acetate (30:1). 38 mg (82%). ¹H NMR (400 MHz, CDCl₃): 7.53-7.58 (m, 2H), 7.19-7.23 (m, 2H), 2.81 (t, J = 8.0 Hz, 2H), 1.85-1.93 (m, 2H), 1.4-1.49 (m, 2H), 1.36-1.42 (m, 2H), 1.29-1.35 (m, 4H), 0.87 (t, J = 6.8Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.7, 138.6, 122.1, 114.6, 36.0, 31.6, 29.2, 28.9, 27.6, 22.6, 14.0. HRMS (EI): calcd for C₁₄H₁₉NS: 233.1238; found: 233.1220.

2-Phenylbenzo[*d*]thiazole (3q): Eluent: petroleum ether/ethyl acetate (30:1). White solid: 36 mg (86%). m.p.: 111-112 °C (lit.^[7] 112-114 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.13 (t, *J* = 8.0 Hz, 1H), 8.08-8.10 (m, 3H), 7.53-7.58 (m, 4H), 7.46 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.4, 153.9, 136.5, 135.0, 132.1, 129.9, 129.3, 127.3, 126.2, 123.4, 122.9. GC-MS: m/z = 211.

2-(Pyridin-3-yl)quinazolin-4(3H)-one (3r): Eluent: petroleum ether/ethyl acetate (2:1). White solid: 41 mg (92%). m.p.: 273-274 °C (lit.^[8] 275-276 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 9.29 (s, 1H), 8.75 (s, 1H), 8.51 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.64 (s, 1H), 7.55 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ 162.6, 152.3, 151.2, 149.2, 135.9, 135.2, 129.2, 127.9, 127.4, 126.3, 124.0, 121.6. GC-MS: m/z = 223.

2-Propyl-1*H***-benzo[***d***]imidazole (3s): Eluent: petroleum ether/ethyl acetate (40:1). White solid: 25 mg (80%). m.p.: 143-145 °C (lit.^[7] 147-149 °C). ¹H NMR (400 MHz, CDCl₃): \delta 7.53-7.58 (m, 2H), 7.19-7.25 (m, 2H), 2.99 (t,** *J* **= 7.6 Hz, 2H), 1.85-1.95 (m, 2H), 0.97 (t,** *J* **= 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 155.7, 138.6, 122.1, 114.6, 31.2, 21.8, 13.9. GC-MS: m/z = 160.**

2-(4-Chlorophenyl)-1*H*-benzo[*d*]imidazole (3t): Eluent: petroleum ether/ethyl acetate (10:1). White solid: 41 mg (90%). m.p.: 292-293 °C (lit.^[7] 290-291 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.01 (s, br, 1H), 8.19 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.55 (s, 2H), 7.22 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.6, 144.2, 135.5, 134.9, 129.5, 128.6, 123.2, 122.3, 119.4, 111.9. GC-MS: m/z = 228.

2-ethylbenzo[*d*]**thiazole (3u):** Eluent: petroleum ether/ethyl acetate (30:1). White solid: 25 mg (78%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.53-7.58 (m, 2H), 7.18-7.25 (m, 2H), 2.80 (q, *J* = 7.6 Hz, 2H), 1.36 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.6, 138.6, 122.0, 114.6, 22.7, 12.5. HRMS (EI): calcd for C₉H₉NS: 163.0456; found: 163.0447.

OMe 2-(3-Methoxyphenyl)benzo[*d*]thiazole (3v): Eluent: petroleum ether/ethyl acetate (80:1). White solid: 44 mg (93%). m.p.: 242-244 °C (lit.^[7] 246-247 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.50 (d, *J* = 7.6 Hz, 2H), 7.18 (s, 4H), *J* = 7.6 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.5, 160.2, 153.9, 134.9, 134.6, 130.9, 127.1, 125.9, 123.4, 122.7, 120.2, 117.8, 112.0. GC-MS: m/z = 241.

7. References

- (1) X. Liu, H. Fu, Y. Jiang, Y. Zhao, Angew. Chem. Int. Ed., 2009, 48, 348-351
- (2) W. Xu, H. Fu, J. Org. Chem., 2011, 76, 3846-3852
- (3) A. J. A. Watson, A. C. Maxwell, J. M. Williams, Org. Biomol. Chem., 2012, 10, 240-243
- (4) X. S. Wang, K. Yang, J. Zhou, S. J. Tu, J. Comb. Chem., 2010, 12, 417-421.
- (5) W. Xu, H. Fu, J. Org. Chem., 2011, 76, 3846-3852
- (6) H. Hidemasa, Y. Ino, H. Suzuki, Y. Yokoyama, J. Org. Chem., 2012, 77, 7046-7051
- (7) T. B. Nguyen, L. Ermolenko, W. A. Dean, A. Al-Mourabit, Org. Lett., 2012, 14, 5948-5951
- (8) J. Zhou, J. Fang, J. Org. Chem., 2011, 76, 7730-7736

8. Copies of ¹H and ¹³C NMR spectra

¹H and ¹³C NMR spectra of 2-methylquinazolin-4(3*H*)-one (3a)

¹H and ¹³C NMR spectra of 2-phenylquinazolin-4(3*H*)-one (3e)

¹H and ¹³C NMR spectra of quinazolin-4(3*H*)-one (3g)

¹H and ¹³C NMR spectra of 3-methyl-2-phenylquinazolin-4(3*H*)-one (3i)

¹H and ¹³C NMR spectra of 6-chloro-2-propylquinazolin-4(3*H*)-one (3m)

¹H and ¹³C NMR spectra of 2-heptyl-1*H*-benzo[*d*]imidazole (30)

¹H and ¹³C NMR spectra of 2-heptylbenzo[*d*]thiazole (3p)

¹H and ¹³C NMR spectra of 2-propyl-1H-benzo[*d*]imidazole (3s)

¹H and ¹³C NMR spectra of 2-heptylbenzo[*d*]thiazole (3u)

##