Pyrene Chromophores for the Photoreversal of Psoralen Interstrand Crosslinks

Jens M. Stadler and Thorsten Stafforst

Supporting Information

Materials and methods

1-Pyrene acetic acid and pyrene-1-boronic acid were purchased from Sigma-Aldrich. 1-Ethynylpyrene and 5-iodouracil were obtained from Alfa Aesar. Resins, Fmoc-Dpr(Mtt)-OH, and Fmoc-Lys(Boc)-OH were purchased from Merck. Fmoc-PNA(Bhoc)-OH building blocks came from Link Technologies (UK). Solvents and reagents for solid phase peptide synthesis were purchased from ABCR (Germany). All chemicals were used without further purification.

Syntheses

<u>OPfp-activated 1-pyrene acetic acid (3)</u>. TLC (ethylacetate): R_F (product) = 0.91; R_F (free acid of product) = 0.05; ¹H-NMR (400.2 MHz, CDCl₃): δ = 4.59 (s, 2H; CH₂), 7.90-8.20 (m, 9H; pyrene CH); ¹³C-NMR (100.6 MHz, CDCl3, ¹H uncoupled, not ¹⁹F uncoupled): δ = 38.4 (CH₂), 122.5 (CH), 124.6 (CF), 124.9 (CH), 125.1 (CF), 125.4 (CH), 125.6 (CH), 125.7 (C), 126.2 (CH), 127.3 (CH), 127.7 (CH), 128.3 (CH), 128. 5 (CH), 129.5 (CF), 130.7 (CF), 131.2 (CF), 131.3 (CF), 167.5 (CO) ppm, CH could be discriminated from CF via ¹H/¹³C HSQC; HR-ESI-TOF-MS: 449.0571 expected for C₂₄H₁₁F₅O₂Na₁, 449.0573 found.

¹H-NMR of compound <u>3</u>.

¹³C-NMR of compound <u>3</u>.

 $^{1}H/^{^{13}}C$ -HSQC NMR spectra of compound <u>3</u>.

<u>5-Iodo-uracil-N1-acetic acid (4)</u>: **TLC** (ethyl acetate / MeOH 9:1 + 1% AcOH): $R_F = 0.35$; ¹**H-NMR** (600.13 MHz, D6-DMSO): $\delta = 4.42$ (s, 2H; CH₂); 8.22 (s, 1H; H-6); 11.78 (s, 1H; NH); 13.30 (s br, 1H; OH) ppm; ¹³**C-NMR** (150.9 MHz, D6-DMSO): $\delta = 49.4$ (CH₂); 68.9 (C-5); 151.1 (C-6); 151.6 (C-2); 162.0 (C-4); 170.2 (COOH) ppm; C-H connectivity was assigned via ¹H/¹³C-HSCQ; the N1-regioisomer was clearly assigned via ¹H/¹³C-HMBC; **HR-ESI-TOF-MS**: 296.9367 expected for C₆H₆I₁N₂O₄, 296.9363 found.

¹H-NMR spectra of compound <u>4</u>.

¹³C-NMR spectra of compound <u>4</u>.

¹H/¹³C-HSQC spectra of compound <u>4</u>.

 ${}^{1}H/{}^{13}C$ -HMBC spectra of compound <u>4</u>.

<u>OPfp-activated uracil acetic acid directly linked to pyrene (6)</u>: TLC (ethylacetate): R_F (product) = 0.91; R_F (free acid of product) = 0.05; ¹H-NMR (250.1 MHz, D6-DMSO): free acid: \delta = 4.57 (s, 2H; CH2); 7.92-8.35 (m, 10H; H-6, pyrene CH); 13.21 (s br, 1H; COOH); ¹³C-NMR (101 MHz, D6-DMSO) \delta = 170.0 (COOH), 163.5 (C-4), 151.3 (C-2), 146.1 (CH, C-6), 131.1 (C), 131.0 (C), 130.7 (C), 129.8 (C), 129.2 (C), 128.6 (CH), 128.0 (CH), 127.7 (CH), 127.7 (CH), 126.8 (CH), 125.8 (CH), 125.6 (CH), 125.4 (C), 125.0 (CH), 124.3 (CH), 124.1 (C), 113.0 (C-5), 49.2 (CH₂); HR-ESI-TOF-MS: free acid: 369.0881 expected for C₂₂H₁₃N₂O₄, found 369.0876.

¹*H*-*NMR* spectra of the free acid intermediate of compound <u>6</u>. A minor PPh₃ impurity is seen around 7.75 ppm.

¹³C-NMR spectra of the free acid intermediate of compound <u>6</u>. A minor PPh₃ impurity is seen around 129.2 and 131.8 ppm.

 ${}^{1}H/{}^{13}C$ -HSQC spectra of compound <u>6</u>.

<u>OPfp-activated uracil acetic acid ethynyl-linked to pyrene (8)</u></u>: TLC (ethylacetate 100%): R_F (product) = 0.95; R_F (free acid of product) = 0.05; ¹H-NMR (250.1 MHz): δ = 4.50 (s, 2H; CH2); 8.06-8.63 (m, 10H; H-6, pyrene CH); 11.86 (NH) ppm; ¹³C-NMR (101 MHz, D6-DMSO) δ = 169.6 (COO), 162.3 (C4), 150.4 (C2), 149.7 (C6), 131.3 (C), 131.1 (C), 130.9 (C), 129.4 (C), 129.3 (C), 129.1 (CH), 129.1 (CH), 128.7 (CH), 127.6 (CH), 127.1 (CH), 126.3 (CH), 126.0 (C), 125.3 (C), 125.2 (CH), 124.0 (CH), 123.7 (C), 98.8 (C5), 98.1 (ethinyl C), 91.6 (ethinyl C), 49.4 (CH₂); **HR-ESI-TOF-MS**: 583.0688 expected for C₃₀H₁₃F₅N₂O₄Na₁: 583.0687 found.

¹H-NMR spectra of compound <u>8</u>.

¹³C-NMR spectra of compound <u>8</u>.

Pyrene-PNAs <u>9-11</u>

PNA-sequences: PNA <u>9</u>: H-Lys-ctgctcgcc-Dpr(β-pyrene <u>3</u>)-Lys-Lys-NH: UV: ε (mM⁻¹cm⁻¹) = 90 (260 nm), 21 (334 nm), 29 (350 nm), 2.0 (365nm); **MS**: 775.8475 expected for [M+4H]⁴⁺: C₁₃₃H₁₇₈N₅₆O₃₄, found: 775.8490; PNA <u>10</u>: H-Lys-ctgctcgcc-Dpr(β-pyrene <u>6</u>)-Lys-Lys-NH: UV: ε (mM⁻¹cm⁻¹) = 100 (260 nm), 26 (350 nm), 12 (365 nm); **MS**: 803.3504 expected for [M+4H]⁴⁺: C₁₃₇H₁₈₀N₅₈O₃₆, found: 803.3518; PNA <u>11</u>: H-Lys-ctgctcgcc-Dpr(β-pyrene <u>8</u>)-Lys-Lys-NH: UV: ε (mM⁻¹cm⁻¹) = 100 (260 nm), 20 (365 nm), 36 (400 nm), 25 (430 nm); **MS**: 809.3504 expected for [M+4H]⁴⁺: C₁₃₇H₁₈₀N₅₈O₃₆, found: 809.3513. Extinction coefficients used for PNA: t (8.4 mM⁻¹cm⁻¹), a (15.2 mM⁻¹cm⁻¹), c (7.05 mM⁻¹cm⁻¹), g (12.0 mM⁻¹cm⁻¹).

HPLC-HR-MS analysis of PNA <u>**10**</u> H-Lys-ctgctcgcc-Dpr(β -pyrene <u>**3**</u>)-Lys-Lys-NH. 1.) UV-trace 272 nm, 2.) total ion current, 3.) extracted ion current 776.1 m/z, 4.) integrated MS over 6.5-7.5 min, 5) close-up at [M+4H]⁴⁺.

HPLC-HR-MS analysis of PNA <u>**10**</u> H-Lys-ctgctcgcc-Dpr(β -pyrene <u>6</u>)-Lys-Lys-NH. 1.) UV-trace 272 nm, 2.) total ion current, 3.) extracted ion current 803.6 m/z, 4.) integrated MS over 7.0-8.0 min, 5) close-up at [M+4H]⁴⁺.

HPLC-HR-MS analysis of PNA <u>**11**</u> H-Lys-ctgctcgcc-Dpr(β -pyrene <u>**7**</u>)-Lys-Lys-NH. 1.) UV-trace 272 nm, 2.) total ion current, 3.) extracted ion current 809.6 m/z, 4.) integrated MS over 8.5-9.5 min, 5) close-up at [M+4H]⁴⁺.

Irradiation experiments

Irradiation experiments were performed as described in the main text. We here report only additional experiments and the densitometric data used for Figure 2.

Results

1.) 350±20 nm, xl24 12 alone, no PNA

Controls:

Exp.	μOD	mean gray
А	2.5	8.187
В	1.25	9.81
С	0.625	14.24
D	0.313	18,85
	0	24.98

xl24 irradiation

time	mean gray	calc. µOD
0	24.98	0
2.5	24.20	0.033
5.0	23.57	0.060
10	22.77	0.098
20	21.17	0.177
40	18.07	0.349
80	15.72	0.512

2.) 350±20 nm, <u>12</u> + PNA <u>9</u>

To improve the accuracy of the kinetic data / quantum yield, the average of two experiments was used

Controls Experiment 1:

Exp.	μOD	mean gray
A	2.5	9.54
В	1.25	12.93
С	0.625	16.99
D	0.313	20.68
	0	25.24

xl24 irradiation Experiment 1

	•	
time	mean gray	calc. μOD
0	25.24	0
2.5	19.36	0.45
5.0	15.24	0.858
10	13.26	1.16
20	12.04	1.49
40	11.57	1.49
80	12.58	1.36

Controls Experiment 2:

ay

xl24 irradiation Experiment 2

	•	
time	mean gray	calc. μOD
0	26.50	0
2.5	18.45	0.479
5.0	17.81	0.530
10	15.24	0.783
20	13.48	1.07
40	12.44	1.36
80	12.13	1.41

averaged data Exp.1 / Exp.2 for kinetic analysis

time	calc. µOD
0	0
2.5	0.464
5.0	0.694
10	0.972
20	1.280
40	1.425
80	1.39

3.) 350±20 nm, <u>12</u> + PNA <u>10</u>

Controls Experiment:

Exp.	μOD	mean gray
Α	2.5	6.94
В	1.25	11.22
С	0.625	15.18
D	0.313	17.53
	0	22.84

xl24 irradiation Experiment

mean gray	calc. µOD
22.84	0
21.40	0.070
21.38	0.070
20.04	0.163
19.08	0.223
	mean gray 22.84 21.40 21.38 20.04 19.08

40	17.68	0.325
80	16.55	0.432

4.) 350±20 nm, <u>12</u> + PNA <u>11</u>

Controls Experiment:

Exp.	μOD	mean gray
A	2.5	7.78
В	1.25	12.13
С	0.625	17.33
D	0.313	19.14
	0	23.53

xl24 irradiation Experiment

	-	
time	mean gray	calc. μOD
0	23.53	0
2.5	22.87	0.024
5.0	21.69	0.135
10	20.42	0.253
20	18.83	0.380
40	17.08	0.600
80	16.41	0.680

5.) Additional Experiment

4.) <u>365</u>±20 nm, <u>12</u> + PNA <u>9</u>

Controls Experiment:

Exp.	μOD	mean gray
А	2.5	9.16
В	1.25	14.33
С	0.625	18.32
D	0.313	23.16
	0	26.53

xl24 irradiation Experiment

time	mean gray	calc. μOD
0	26.53	0
2.5	22.50	0.297
5.0	20.40	0.473
10	17.83	0.742
20	15.10	1.095
40	13.13	1.44
80	12.07	1.67

PAGE gel and kinetic analysis for xl24 12 + PNA 9, 365±20 nm irradiation

Determination of the quantum yield

Quantum yield was determined exactly as described before. Commercial DMNB-caged cAMP was diluted to 10 μ M in irradiation buffer, as described above. Aliquots of 55 μ L each were put in PCR tubes and irradiated inside the fluorescence spectrometer at 350±20 nm as described above. Each full aliquot (55 μ L) was subjected to analytical HPLC (20 μ L loop, 2.5fold overload). Aliquots were generated that were 0 min, 38 sec, 75 sec, 150 sec, 5.0 min, 10 min, or 20 min irradiated. The half-life for the formation of cAMP was determined from the area of the 260 nm HPLC trace and was directly plotted against the irradiation time an fitted according to 1st-order kinetics. The obtained half-life was 3.5±0. 2 min and equals an uncaging efficiency $\epsilon \phi$ of 600 M⁻¹cm⁻¹.

Data used for the plot:

irradiation time	HPLC area
0	< 4.0
38 sec	16.448
75 sec	27.526
150 sec	46.849
5.0 min	85.642
10.0 min	115.204
20.0 min	128.826

