Copper(II)-catalyzed C-O coupling of aryl bromides with aliphatic diols: synthesis of ethers, phenols, and benzo-fused cyclic ethers

Yajun Liu, Se Kyung Park, Yan Xiao, Junghyun Chae*

Supporting Information

Table of contents

1. General considerations	S 2
2. Copper(II)-catalyzed coupling of aryl bromides with aliphatic diols (Table 2,3)	S2
2.1. General experimental procedure (I)	
2.2. Synthesis and characterization of the products	
3. Synthesis of phenols using aryl alkyl ethers (Scheme 1)	S13
3.1. General experimental procedure (II)	
3.2. Synthesis and characterization of the products	
4. Synthesis of benzofurans using aryl alkyl ethers (Scheme 2)	S17
4.1. General experimental procedure (III)	
4.2. Synthesis and characterization of the products	
5. Synthesis of benzo-fused cyclic ethers using aryl alkyl ethers (Scheme 3)	S18
5.1. General experimental procedure (IV)	
5.2. Synthesis and characterization of the products	
6. Synthesis of phenol in 0.1 mol scale	S21
7. Copies of ¹ H and ¹³ C NMR spectra	S23

1. General considerations

Reagents: All the copper catalysts have purity greater than 97% and aliphatic diols were reagent grade. All reagents and solvent were obtained from commercial suppliers and used without further purification. Dichloromethane was dried by CaH₂. All manipulations were carried out under Ar.

Analytical methods: ¹H and ¹³C NMR spectra were recorded on a 500 MHz spectrometer (125 MHz for ¹³C). Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quadruplet), quintet, m (multiplet), and coupling constants (*J*) are reported in hertz units. Spectrometer with chemical shifts reported in ppm relative to residual solvent peaks or to TMS as the internal standard. GC-MS analysis conducted on a GC-MSD system and products described in GC yield were accorded to the authentic sample/*n*-dodecane calibration standard from GC-MSD. LC-MS and HRMS spectra were recorded using ESI mode. IR spectra were recorded in neat. Column chromatography was performed on silica gel60 (230-400 mesh) and TLC was performed on silica gel 60 F_{254} glass plate.

2. Copper(II)-catalyzed coupling of aryl bromides with aliphatic diols (Table 2 and Table3)

2.1. General experimental procedure (I)

To a Schlenk test tube charged with a mixture of aryl bromide (1) (1.0 mmol) and potassium carbonate (415 mg, 3.0 mmol) was added copper chloride (6.7 mg, 0.05 mmol) and aliphatic diols (1.0 mL) under Ar. The resulting mixture was stirred for 20 h at 130 °C. The reaction mixture was then acidified to pH=3 with 1N HCl solution. The aqueous phase was extracted twice with EtOAc and the combined organic layers was washed with H₂O and brine, dried over MgSO₄, and concentrated in vacuo. Purification of the crude product by column chromatography afforded the desired product (**2**, **3**, **4**).

2.2. Synthesis and characterization of the products

2-(*p*-tolyloxy)ethanol (2a)¹ [CAS: 15149-10-7] As the general procedure I, 1-bromo-4-methylbenzene (171 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (146 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 8.5 Hz, 2H), 4.05 (t, *J* = 5.0 Hz, 2H), 3.96-3.93 (m, 2H), 2.29 (s, 3H), 2.12 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 130.4, 130.0, 114.4, 69.2, 61.6, 20.5; MS (EI) *m*/*z* = 152, 108 (100), 91, 77, 65.

¹Capparelli, M. P.; Deschepper, R. E.; Swenton, J. S. J. Org. Chem., 1987, 52, 4953-4966.

2-phenoxyethanol (2b) [CAS: 122-99-6] As the general procedure I, bromobenzene (157 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (136 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.28 (m, 2H), 6.97-6.91 (m, 3H), 4.08 (t, *J* = 4.0 Hz, 2H), 3.98-3.94 (m, 2H), 2.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.8, 129.8, 121.4, 114.8, 69.2, 61.7; Elemental analysis (%) : Calcd. for C 69.54, H 7.30; Found C 69.56, H 7.21; MS (EI) *m/z* = 138, 94(100), 77, 66, 51.

2-(*o*-tolyloxy)ethanol (2c) [CAS:6161-86-0] As the general procedure I, 1-bromo-2-methylbenzene (171 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (150 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.14-7.12 (m, 2H), 6.88-6.85 (t, *J* = 7.0 Hz, 1H), 6.81-6.79 (d, *J* = 9.0 Hz, 1H), 4.05-4.04 (m, 2H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 121.1, 127.12, 127.07, 121.1, 111.6, 69.5, 61.8, 16.5; Elemental analysis (%) : Calcd. for C 71.03, H 7.95; Found C 71.04, H 8.01; FT-IR 3465, 2936, 1737, 1593, 1496, 1375, 1242, 1123, 1043, 917, 812, 743; MS (EI) m/z = 152, 108(100), 91, 77, 65.

2-(2,6-dimethylphenoxy)ethanol (2d) [CAS: 16737-71-6] As the general procedure I, 2-bromo-1,3dimethylbenzene (185 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 140 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (156 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, *J* = 7.5 Hz, 2H), 6.96-6.91 (m, 1H), 3.98-3.93 (m, 2H), 3.91-3.75 (m, 2H), 2.30 (s, 6H), 2.21 (t, *J* = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 131.0, 129.2, 124.3, 73.1, 62.7, 16.5; HRMS (FAB) *m/z* calcd for C₆H₁₄O₂ [M]⁺: 116.0994, found: 116.0991. IR (neat): 3294, 2948, 2912, 2871, 1466, 1223, 1202, 1076, 1045, 1031, 824, 771, 752, 673 cm⁻¹.

2-(3,5-dimethylphenoxy)ethanol (2e) [CAS: 5960-05-4] As the general procedure I, 1-bromo-3,5dimethylbenzene(185 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 $^{\circ}$ C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white-yellow solid (164 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.03-7.01 (m, 2H), 6.95-6.92 (m, 1H), 3.96 (t, *J* = 4.5 Hz, 2H), 3.90 (t, *J* = 5.0 Hz, 2H), 2.30 (s, 6H), 2.23 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 130.8, 128.9, 72.9, 62.4, 16.3; Elemental analysis (%) : Calcd. for C 72.26, H 8.49; Found C 72.27, H 8.50; MS (EI) *m*/*z* = 166, 122 (100), 107, 77.

2-(biphenyl-4-yloxy)ethanol² (**2f**) [CAS: 19070-95-2] As the general procedure I, 4-bromobiphenyl (233 mg, 1.0 mmol) in a Schlenk flask was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (203 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.53 (m, 4H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.33-7.30 (m, 1H), 7.00 (d, *J* = 7.0 Hz, 2H), 4.13 (t, *J* = 3.0 Hz, 2H), 4.00 (t, *J* = 3.0 Hz, 2H), 2.04 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 140.7, 134.2, 128.7, 128.2, 126.7, 114.8, 69.3, 61.5; MS (EI) *m/z* = 214, 170 (100), 141, 115.

2-(naphthalen-1-yloxy)ethanol³ (**2g**) [CAS: 711-82-0] As the general procedure I, 1-bromonaphthalene (207 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as red solid (180 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 9.0 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.50-7.45 (m, 3H), 7.38 (t, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 7.5 Hz, 1H), 4.10 (t, *J* = 4.5 Hz, 2H), 3.98 (t, *J* = 4.5 Hz, 2H), 2.81 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3, 134.5, 127.6, 126.5, 125.8, 125.5, 125.3, 121.7, 120.8, 104.9, 69.5, 61.6; MS (ESI) *m/z* = 189.1 (M⁺).

2-(naphthalen-2-yloxy)ethanol (**2h**)⁴ [**CAS: 93-20-9**] As the general procedure I, 2-bromonaphthalene (207 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (174 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.70 (m, 3H), 7.49-7.41 (m, 1H), 7.40-7.33 (m, 1H), 7.21-7.13 (m, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 4.04 (t, *J* = 6.5 Hz, 2H), 2.06 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 134.7, 129.8, 129.4, 127.9, 127.0, 126.7, 124.1, 119.0, 107.1, 69.4, 61.8.

E. Bioorg. Med. Chem., 2004, 12, 4937-4951.

²Zhang, T.; Park, S.-Y.; Farmer, B. L.; Interrante, L. V. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 984-997.

³Bolchi, C.; Catalano, P.; Fumagalli, L.; Gobbi, M.; Pallavicini, M.; Pedretti, A.; Villa, L.; Vistolia, D.; Valotia,

⁴Kessler, S. N.; Wegner, H. A., Org. Lett.2010, 12, 4062-4065.

2-(4-methoxyphenoxy)ethanol ⁵ (**2i**) [CAS: 5394-57-0] As the general procedure I, 1-bromo-4methoxybenzene (187 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (156 mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 6.88-6.83 (m, 4H), 4.04 (t, *J* = 5.0 Hz, 2H), 3.94 (t, *J* = 5.0 Hz, 2H), 3.77 (s, 3H), 2.08-2.04 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3, 152.9, 115.8, 114.9, 70.1, 61.8, 55.9; MS (EI) *m/z* = 168, 124 (100), 109, 81.

2-(3-methoxyphenoxy)ethanol (**2j**) As the general procedure I, 1-bromo-3-methoxybenzene (187mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (154 mg, 92%).¹H-NMR (500 MHz, CDCl₃) δ 7.20-7.17 (t, J = 8.5 Hz, 1H), 6.54-6.48 (m, 3H), 4.08-4.06 (m, 2H), 3.96-3.95 (m, 2H), 3.79 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ 160.8, 159.8, 129.9, 106.68, 106.65, 101.1, 69.2, 61.5, 55.3; MS (EI) m/z = 168, 124 (100), 94, 77. Elemental analysis (%): Calcd for C 64.27, H 7.19; Found C 64.23, H 7.20; FT-IR 3354, 2939, 2875, 1729, 1588, 1492, 1453, 1335, 1264, 1199, 1038, 994, 834, 761, 686.

2-(2-methoxyphenoxy)ethanol ⁶ (**2k**) [CAS: 118181-71-0] As the general procedure I, 1-bromo-2methoxybenzene (187 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (154 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 6.98-6.89 (m, 4H), 4.13 (t, *J* = 4.0 Hz, 2H), 3.92 (t, *J* = 4.0 Hz, 2H), 3.87 (s, 3H), 2.91(m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ 149.9, 148.3, 122.1, 121.3, 114.8, 112.1, 71.4, 61.3, 55.8; MS (ESI) *m/z* = 169.1 (M⁺).

2-(3,5-dimethoxyphenoxy)ethanol (**2l**) [CAS: 27318-86-1] As the general procedure I, 1-bromo-3,5dimethoxybenzene (217 mg, 1.0 mmol) in a Schlenk flask was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (196 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 6.10 (s, 3H), 4.05-4.03 (m, 2H),

⁵Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem. Int. Ed. 2009, 48, 9346-9349.

⁶Ochoa-Teran, A.; Rivero, I. A. ARKIVOC, 2008, 2, 235-242.

3.94-3.93 (m, 2H), 3.76 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 160.7, 93.7, 69.4, 61.6, 55.6; Elemental analysis (%) : Calcd. for C 60.59, H 7.12; Found C 60.60, H 7.11; MS (ESI) *m/z* = 199.1 (M⁺).

2-(4-fluorophenoxy)ethanol (**2m**) [CAS: 49650-88-6] As the general procedure I, 1-bromo-4-fluorobenzene (175 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (149 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (t, J = 8.0 Hz, 2H), 6.86-6.84 (m, 2H), 4.04 (m, 2H), 3.96-3.94 (m, 2H), 2.38 (t, J = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (d, J = 237.25 Hz, C-F), 155.0 (d, J = 2.13 Hz, C-F), 116.1(d, J = 22.87 Hz, C-F), 115.8 (d, J = 8.0 Hz, C-F), 70.1, 61.6; Elemental analysis (%) : Calcd. for C 61.53, H 5.81; Found C 61.52, H 5.85; MS (EI) m/z = 156.

2-(4-chlorophenoxy)ethanol (**2n**) [CAS: 2924-66-5] As the general procedure I, 1-bromo-4-chlorobenzene (191 mg, 1.0 mmol) in a Schlenk flask was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless solid (165 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (t, *J* = 9.0 Hz, 2H), 6.84 (t, *J* = 7.0 Hz, 2H), 4.05 (t, *J* = 5.0 Hz, 2H), 3.97-3.94 (m, 2H), 2.10-2.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 129.4, 126.0, 115.8, 69.5, 61.4; Elemental analysis (%) : Calcd. for C 55.67, H 5.26; Found C 55.62, H 5.19; MS (ESI) *m*/*z* = 170.9 (M^{*}).

2-(3-chlorophenoxy)ethanol (20) [CAS: 6161-83-7] As the general procedure I, 1-bromo-4-chlorobenzene (191 mg, 1.0 mmol) in a Schlenk flask was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as colorless solid (163 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (t, *J* = 7.5 Hz, 1H), 7.01-6.88 (m, 2H), 6.81 (d, *J* = 7.5 Hz, 1H), 4.10-4.04 (m, 2H), 3.98-3.92 (m, 2H), 2.09 (br-s, 1H).¹³C NMR (125 MHz, CDCl₃) δ 159.3, 134.9, 130.3, 121.3, 115.0, 113.0, 69.4, 61.3.

1-(4-(2-hydroxyethoxy)phenyl)ethanone ⁷ (**2p**) [CAS: 31769-45-6] As the general procedure I, 4'-Bromoacetophenone (200 mg, 1.0 mmol) in a Schlenk flask was stirred for 36 h at 110 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as orange solid (158 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, *J* = 6.5, 2.0 Hz, 2H),

⁷Mello, R.; Martinez-Ferrer, J.; Asensio, G.; Gonzalez-Nunez, M. E. J. Org. Chem., 2007, 72, 9376-9378.

6.96 (dd, J = 6.5, 2.0 Hz, 2H), 4.16 (t, J = 4.0 Hz, 2H), 4.00 (t, J = 4.0 Hz, 2H), 2.56 (s, 3H), 2.13 (t, J = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 196.8, 162.5, 130.65, 130.64, 114.2, 69.4, 61.3, 26.4; MS (ESI) m/z = 181.0 (M⁺).

1-(3-(2-hydroxyethoxy)phenyl)ethanone ⁸ (**2q**) [CAS: 1892-43-9] As the general procedure I, 1-(3bromophenyl)ethanone(200 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 110 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (162 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.55 (m, 1H), 7.53-7.50 (m, 1H), 7.42-7.35 (m, 1H), 7.15-7.13 (m, 1H), 4.14 (t, *J* = 5.0 Hz, 2H), 4.01-3.96 (m, 2H), 2.60 (s, 3H), 2.18 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.2, 159.1, 138.7, 129.9, 121.8, 120.3, 113.3, 69.6, 61.6, 27.0; MS (ESI) *m*/*z* = 180, 165, 121(100), 93, 65.

1-(2-(2-hydroxyethoxy)phenyl)ethanone ⁹ (**2r**) [CAS: 126572-94-9] As the general procedure I, 2'bromoacetophenone (200 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 110 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (150 mg, 83%). ¹H NMR (500 MHz, CD₃Cl₃) δ 7.72 (d, *J* = 2.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.05-7.01 (m, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 4.21 (t, *J* = 5.0 Hz, 2H), 4.00 (t, *J* = 5.0 Hz, 2H), 2.89 (s, 1H), 2.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.9, 157.9, 133.7, 130.5, 128.6, 121.1, 113.6, 70.6, 61.2, 31.3; MS (ESI) *m*/*z* = 180, 165, 121(100), 93, 65.

2-(3,5-bis(trifluoromethyl)phenoxy)ethanol (**2s**) [CAS: 887268-12-4] As the general procedure I, 1-bromo-3,5-bis (trifluoromethyl)benzene (293 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*hexane) afforded the desired product as white solid (249 mg, 91%). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (s, 1H), 7.34 (s, 2H), 4.18 (t, *J* = 4.0 Hz, 2H), 4.04 (t, *J* = 4.0 Hz, 2H), 2.03 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.20, 133.9 (q, *J* = 33.38 Hz, C-F), 123.1 (q, *J* = 271.13 Hz, C-F), 114.9 (m, *J* = 4.0 Hz, C-F), 114.7

⁸Riggio, G.; Raeber, A. J.; Hopff, W. H. Helv.Chim.Acta., 1989, 72, 1216-1224.

⁹Fumagalli,L.;Bolchi, C.; Colleoni, S.; Gobbi, M.; Moroni, B.; Pallavicini, M.; Pedretti, A.; Villa, L.; Vistolia,

G.; Valoti, E. Bioorg. Med. Chem., 2005, 13, 2547-2559.

(q, *J* = 3.75 Hz, C-F), 70.0, 61.1; Elemental analysis (%) : Calcd. for C 43.81, H 2.93; Found C 43.87, H 2.93; MS (EI) *m*/*z* = 274.

3-(2-hydroxyethoxy)phenol¹⁰ (**2t**) [CAS: 850895-55-5] As the general procedure I, 3-bromophenol (173 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (145 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.15-7.12 (m, 1H), 6.52-6.49 (m, 1H), 6.46-6.43 (m, 2H), 5.00 (s, 1H), 4.08-4.02 (m, 2H), 3.99-3.88 (m, 2H), 2.10-2.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 156.7, 130.2, 108.2, 107.0, 102.2, 69.1, 61.5; MS (EI) *m/z* = 154, 110(100), 93, 82, 65.

2-(4-(2-hydroxyethoxy)phenyl)ethanol (**2u**) [CAS: 4960-67-2] As the general procedure I, 2-(4bromophenyl)ethanol (201mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (10% methanol in CH₂Cl₂) afforded the desired product as white solid (145 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, *J* = 7.1 Hz, 2H), 6.88 (d, *J* = 7.1 Hz, 2H), 4.10-4.02 (m, 2H), 4.02-3.90 (m, 2H), 3.83 (q, *J* = 6.0 Hz, 2H), 2.82 (t, *J* = 6.5 Hz, 2H), 2.03 (t, *J* = 6.0 Hz, 1H), 1.38 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.3, 130.9, 130.1, 114.7, 69.2, 63.8, 61.5, 38.3; MS (EI) *m/z* = 182, 151, 107(100), 77.

4-(2-hydroxyethoxy)benzoic acid (**2v**) [CAS: 1711-24-6] As the general procedure I, 4-bromobenzoic acid (201 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 hat 130 °C. Following aqueous workup, purification of the crude product by column chromatography (10% methanol in CH₂Cl₂) afforded the desired product as white solid (173 mg, 95%). ¹H NMR (500 MHz, CD₃OD) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 4.11 (t, *J* = 3.0 Hz, 2H), 3.73 (t, *J* = 3.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 162.8, 131.8, 123.3,114.7, 70.2, 59.9; Elemental analysis (%) : Calcd. for C 59.34, H 5.53; Found C 59.38, H 5.41; MS (ESI) *m*/*z* = 181.1 (M⁻).

2-(pyridin-3-yloxy)ethanol¹¹ (**2w**) [CAS: 119967-49-6] As the general procedure I, 3-bromopyridine (158 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 hat 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid

¹⁰Singh, A.; Yip, W. -T.; Halterman, R. L. Org. Lett., 2012, 14, 4046-4049.

¹¹Kocak, A.; Kurbanli, S.; Malkondu, S. Synth.Commun., 2007, 37, 3697-3708.

(125 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 8.33(t, J = 5.0 Hz, 1H), 8.23(t, J = 5.0 Hz, 1H), 7.28-7.23 (m, 2H), 4.15-4.13 (m, 2H), 4.02-3.99 (m, 2H), 3.85 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 142.2, 138.0, 124.0, 121.2, 69.7, 61.1; MS (EI) m/z = 139, 95(100), 78, 67, 51.

3-phenoxypropan-1-ol¹² (**3b**) [CAS: 6180-61-6] As the general procedure I, bromobenzene(157mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (137 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 6.96-6.90 (m, 3H), 4.12 (t, *J* = 6.0 Hz,2H), 3.87-3.84 (m, 2H), 2.06-2.03 (m, 2H), 1.96 (t, J = 5.0 Hz,1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 129.5, 120.9, 114.5, 65.6, 60.5, 32.0; MS (EI) *m/z* = 166, 108(100), 91, 77.

3-(o-tolyloxy)propan-1-ol¹² (**3c**) [CAS: 52448-99-4] As the general procedure I, 1-bromo-2-methylbenzene (171 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (128 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 7.19-7.10 (m, 2H), 6.88-6.83 (m, 2H), 4.13 (t, *J* = 5.0 Hz,2H), 3.90-3.88 (m, 2H), 2.22 (s, 3H), 2.10-2.04 (m, 2H), 1.96-1.92 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 130.7, 126.8, 126.5, 120.5, 110.8, 65.9, 60.9, 32.1, 16.3; MS (EI) *m*/*z* = 180, 122(100), 107, 91, 77.

3-([1,1'-biphenyl]-4-yloxy)propan-1-ol² (**3f**) [CAS: 173025-78-0] As the general procedure I, 4-bromo-1,1'biphenyl (233 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (187 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.43 (m, 4H), 7.41-7.35 (m, 2H), 7.30-7.27 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 2H), 4.18 (t, *J* = 6.0 Hz, 2H), 3.88 (t, *J* = 6.0 Hz,2H),2.10- 2.05 (m, 2H), 1.70 (m, 1H);¹³C NMR (125 MHz, CDCl3) δ 158.3, 140.8, 134.0, 128.7, 126.8, 126.72, 126.68, 114.8, 65.9, 60.6, 32.0; MS (EI) *m/z* = 228.

¹²Sugimura, T.; Hagiya, K.; Sato, Y.; Tei, T.; Tai, A.Okuyama, T. Org. Lett., 2001, 3, 37-40.

3-(3-methoxyphenoxy)propan-1-ol¹³ (**3j**) [CAS:136167-42-5] As the general procedure I, 1-bromo-3methoxybenzene (187 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (169 mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.18 (t, *J* = 8.0 Hz, 1H), 6.53-6.50 (m, 2H), 6.47 (t, *J* = 2.5 Hz, 1H), 4.11 (t, *J* = 6.0 Hz, 2H), 3.88-3.84 (m, 2H), 3.79 (s, 3H), 2.04 (quintet, *J* = 6.0 Hz, 2H), 1.80-1.78 (m, 1H);¹³C NMR (125 MHz, CDCl₃) δ 160.8, 160.0, 129.9, 106.6, 106.5, 100.9, 65.8, 60.6, 55.3, 32.0; MS (EI) *m*/*z* = 182, 124(100), 94.

3-(2-methoxyphenoxy)propan-1-ol¹⁴ (**3k**) [CAS: 136167-44-7] As the general procedure I, 1-bromo-2methoxybenzene (187 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (149 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 6.94-6.80 (m, 4H), 4.20 (t, *J* = 6.0 Hz, 2H), 3.89-3.85 (m, 5H), 2.74 (t, *J* = 5.0 Hz, 1H), 2.10-2.06 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 148.1, 121.5, 120.8, 113.3, 111.5, 68.5, 61.6, 55.8, 31.8; MS (EI) *m/z* = 182.

3-(3,5-dimethoxyphenoxy)propan-1-ol(3l) [CAS: 1082823-86-6] As the general procedure I, 1-bromo-3,5dimethoxybenzene (217 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (182 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ 6.09 (s, 3H), 4.09 (t, *J* = 6.0 Hz, 2H), 3.89-3.85 (m, 2H), 3.74 (s, 6H), 2.03 (quintet, *J* = 6.0Hz, 2H), 1.73 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 160.6, 93.4, 65.8, 60.6, 55.4, 32.0; HRMS (FAB) *m/z* calcd for C₁₁H₁₆O₄ [M+H]⁺: 213.1127, found: 212.1126. IR (neat): 3387, 2941, 1592, 1470, 1193, 1146, 1060, 818, 752, 681 cm⁻¹.

3-(4-fluorophenoxy)propan-1-ol¹⁵ (**3m**) [CAS: 104413-57-2] As the general procedure I, 1-bromo-4fluorobenzene (175 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (138 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 6.99-6.94 (m, 2H), 6.85-6.82 (m, 2H), 4.08 (t, *J* = 5.0 Hz,2H), 3.89-3.85 (m, 2H), 2.03 (p, *J* = 6.0 Hz, 2H), 1.79 (t, *J* = 5.0 Hz,1H);¹³C NMR (125

¹³Zettl, H.; Steri, R.; Lammerhofer, M.; Schubert-Zsilavecz, M. Bioorg. Med. Chem. Lett., 2009, 19, 4421-4426.

¹⁴Panchgalle, S. P.; Kunte, S. S.; Chavan, S. P.; Kalkote, U. R.Synth.Commun., **2011**, *41*, 1938-1944.

¹⁵Peprah, K.; Zhu, X. Y.; Eyunni, S. V.K.; Etukala, J. R.; Setola, V.; Roth, B. L.; Ablordeppey, S. Y.*Bioorg. Med. Chem.*, **2012**, *20*, 1671-1678.

MHz, CDCl₃) δ 157.3 (d, *J* = 236.75 Hz, C-F),154.9 (d, *J* = 2.13 Hz, C-F), 115.8 (d, *J* = 228.75 Hz, C-F), 115.4 (d, *J* = 7.87 Hz, C-F), 66.3, 60.4, 32.0; MS (EI)*m*/*z* = 170, 112(100), 83, 57.

3-(4-chlorophenoxy)propan-1-ol ¹⁶ (**3n**) [CAS: 18673-04-6] As the general procedure I, 1-bromo-4chlorobenzene (191 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (147 mg, 79%). ¹H NMR (500 MHz, CDCl₃) δ 7.24-7.22 (m, 2H), 6.85-6.82 (m, 2H), 4.09 (t, *J* = 6.0Hz, 2H), 3.86 (t, *J* = 6.0 Hz, 2H), 2.04 (p, *J* = 6.0Hz, 2H), 1.69 (s, 1H);¹³C NMR (125 MHz, CDCl₃) δ 157.4, 129.3, 125.7, 115.7, 104.7, 85.9, 60.3, 31.9; MS (EI) *m/z* = 186.

3-(3-chlorophenoxy)propan-1-ol¹⁶ (**3o**) [CAS: 57264-55-8] As the general procedure I, 1-bromo-3chlorobenzene (191 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (153 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (t, *J* = 8.0 Hz, 1H), 6.95-6.90 (m, 2H), 6.79 (dd, *J* = 8.5, 2.5 Hz, 1H), 4.10 (t, *J* = 5.0 Hz, 2H), 3.87-3.84 (m, 2H), 2.06-2.01 (m, 2H), 1.77 (t, J = 5.0 Hz, 1H);¹³C NMR (125 MHz, CDCl₃) δ 159.5, 134.9, 130.2, 121.0, 114.9, 113.0, 65.7, 60.1, 31.9; MS (EI) *m*/*z* = 186.

4-(*p*-tolyloxy)butan-1-ol¹⁷ (4a) [CAS: 60222-64-2] As the general procedure I, 1-bromo-4-methylbenzene (171 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C using Cs₂CO₃ as base instead of K₂CO₃. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (144 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 7.07 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 3.98 (t, J = 6.0 Hz, 2H), 3.71 (t, J = 6.0 Hz, 2H), 2.28 (s, 3H), 1.91-1.83 (m, 2H), 1.81-1.71 (m, 2H), 1.68 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.7, 129.93, 129.88, 114.3, 67.8, 62.0, 29.6, 25.9, 20.5; MS (EI) *m/z* = 180, 108(100), 77.

4-(3,5-dimethylphenoxy)butan-1-ol (4e) [CAS: 40324-48-9] As the general procedure I, 1-bromo-3,5-dimethylbenzene (185 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 \degree Cusing Cs₂CO₃ as base

¹⁶Goosen, A.; Marais, C. F.; McCleland, C. W.; Rinaldi, F. C. J. Chem. Soc. Perkin Trans. 2, 1995, 1227-1236.

¹⁷Sword, R.; Baldwin, L. A.; Murphy, J. A. Org. Biomol. Chem., 2011, 9, 3560-3570.

instead of K₂CO₃. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (120 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 6.60 (d, *J* = 4.5 Hz, 1H), 6.53 (d, *J* = 5.0 Hz, 2H), 3.99-3.96 (m, 2H), 3.73-3.69 (m, 2H), 2.27 (s, 6H), 1.88-1.85(m, 2H), 1.76-1.73 (m, 2H);¹³C NMR (125 MHz, CDCl₃) δ 159.1, 139.4, 122.8, 112.5, 67.8, 62.8, 29.8, 26.2, 21.7; HRMS (FAB) *m*/*z* calcd for C₁₂H₁₈O₂ [M+H]⁺: 195.1385, found: 195.1388. IR (neat): 3338, 2918, 2870,1593, 1467, 1322, 1294, 1167, 1154, 1057, 826, 687 cm⁻¹.

4-(4-methoxyphenoxy)butan-1-ol (**4i**) [CAS: 123731-28-2] As the general procedure I, 1-bromo-4methoxybenzene (187 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C using Cs₂CO₃ as base instead of K₂CO₃. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (153 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 6.86-6.81 (m, 4H), 3.96-3.94 (m, 2H), 3.77 (s, 3H), 3.73-3.70 (m, 2H), 1.89-1.85 (m, 3H), 1.77-1.75 (2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 153.1, 115.7, 115.0, 68.2, 60.9, 55.8, 29.5, 26.0; HRMS (FAB) *m/z* calcd for C₁₁H₁₆O₃ [M]⁺: calcd for 196.1099, found: 196.1100. IR (neat): 3294, 2949, 2911, 2877, 1508, 1223, 1114, 1032, 824, 737 cm⁻¹.

4-(4-chlorophenoxy)butan-1-ol (4n) [CAS: 55129-23-2] As the general procedure I, 1-bromo-4-chlorobenzene (191 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C using Cs₂CO₃ as base instead of K₂CO₃. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (124 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 9.0 Hz, 2H), 6.82 (d, *J* = 9.0 Hz, 2H), 3.97 (t, *J* = 6.0 Hz, 2H), 3.72 (t, *J* = 6.5 Hz, 2H), 1.94-1.82 (m, 2H), 1.81-1.70 (m, 2H), 1.58 (s, 1H);¹³C NMR (125 MHz, CDCl₃) δ 157.5, 132.2, 129.3, 125.5, 116.3, 115.7, 68.0, 62.5,48.2, 29.4, 25.7;HRMS (FAB) *m/z* calcd for C₁₀H₁₃ClO₂ [M+H]⁺: calcd for 201.0682, found: 201.0682. IR (neat): 3351, 2943, 2873, 1491, 1240, 1046, 822, 664,507 cm⁻¹.

4-(3-chlorophenoxy)butan-1-ol (**4o**) [CAS: 1153244-52-0] As the general procedure I, 1-bromo-3-chlorobenzene (191 mg, 1.0 mmol) in a Schlenk test tube was stirred for 20 h at 130 °C using Cs₂CO₃ as base instead of K₂CO₃. Following aqueous workup, purification of the crude product by column chromatography (25% EtOAc in *n*-hexane) afforded the desired product as white solid (144 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.18 (m, 1H), 6.94-6.89 (m, 2H), 6.83-6.73 (m, 1H), 4.08-3.92 (m, 2H), 3.75-3.71 (m, 2H), 1.90-1.87 (m, 2H), 1.81-1.69 (m, 2H), 1.59 (s, 1H);¹³C NMR (125 MHz, CDCl₃) δ 159.9, 135.1, 130.4, 121.1, 115.1, 113.3, 68.2, 62.7, 29.6, 25.9; HRMS (FAB) *m*/*z* calcd for C₁₀H₁₃ClO₂ [M+H]⁺: calcd for 201.0682, found: 201.0681. IR (neat): 3335, 2943, 2874, 1593, 1468, 1283, 1245, 1230, 1046, 765, 629,444 cm⁻¹.

3. Synthesis of phenols using arylalkyl ethers (Scheme 1)

3.1. General experimental procedure (II)

To a solution of aryloxy-aliphatic alcohol (2, 3, 4) (1.0 mmol) in a Schlenk flask was added potassium hydroxide (168 mg, 3.0 mmol) and DMSO (3.0 mL). The resulting mixture was stirred at 100 $^{\circ}$ C for 3 h (120 $^{\circ}$ C and 5 h for 3). The reaction mixture was then acidified to pH=3 with 1N HCl solution. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with H₂O and brine, and dried over MgSO₄ and concentrated in vacuo. Purification of the crude product by column chromatography afforded the desired phenolic product (5).

3.2. Synthesis and characterization of the products

p-cresol¹⁸ (5a) [CAS: 106-44-5] from 2a: As the general procedure II, 2-(*p*-tolyloxy)ethanol(152 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (107 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.03 (t, *J* = 8.0 Hz, 2H), 6.75-6.71 (m, 2H), 4.98 (s, 1H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 130.1, 130.0, 115.1, 20.5; MS (EI) *m/z* = 108(100), 77, 51. *p*-cresol¹⁸ (5a) [CAS: 106-44-5] from 4a: As the general procedure II, 4-(*p*-tolyloxy)butan-1-ol(180 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (105 mg, 98%).

-ОН

Phenol¹⁹ (**5b**) [CAS: 108-95-2] As the general procedure II, 2-phenoxyethanol (138 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless solid (93 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.20 (m, 2H), 6.93-6.90 (m, 1H), 6.83-6.82 (m, 2H), 5.84 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 129.7, 121.0, 115.4; MS (EI) *m/z* =94.

¹⁸Yang,K.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S.Org. Lett. 2011, 13, 4340-4343.

3,5-dimethylphenol¹⁸ (**5e**) [CAS: 108-68-9] As the general procedure II, 2-(3,5-dimetyl phenoxy)ethanol (166 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as yellow solid (120 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 6.58 (s, 1H), 6.46 (s, 2H), 4.76 (s, 1H), 2.26 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 157.3, 94.2, 93.2, 55.4; MS (EI) *m/z* = 122.

4-biphenol¹⁹ (**5f**) [CAS: 92-69-3] from **2e**: As the general procedure II, 2-(biphenyl-4- yloxy)ethanol (214 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as white liquid (168 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.50-7.47 (m, 2H), 7.43-7.40 (m, 2H), 7.32-7.29 (m, 1H), 6.92-6.90 (m, 2H), 4.77 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 140.7, 134.0, 128.7, 128.4, 126.71, 126.70, 115.6; MS (ESI) *m*/*z* = 170 (100), 141, 115.

4-biphenol¹⁹ (**5f**) [CAS: 92-69-3] from **3e**: As the general procedure II, 3-(biphenyl-4-yloxy)propan-1-ol (228 mg, 1.0 mmol) in a Schlenk flask was stirred for 5 h at 120 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as white liquid (158 mg, 93%).

Naphthalen-1-ol²⁰ (**5g**) [CAS: 90-15-3] As the general procedure II, 2-(naphthalen-1-yloxy)ethanol (188 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as white solid (115 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (t, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 7.0 Hz, 1H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.15 (s, 1H), 7.10 (dd, *J* = 8.5, 2.5 Hz, 1H), 4.98 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 134.6, 129.8, 128.9, 127.8, 126.5, 126.4, 123.6, 117.7, 109.5; MS (EI) *m*/*z* = 144 (100), 115, 89.

МеО-ОН

4-methoxyphenol¹⁸ (**5i**) [CAS: 150-76-5] from **2g**: As the general procedure II, 2-(4-methoxylphenoxy) ethanol (168 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 \degree C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as

¹⁹Mann, G.;Incarvito, C.; Rheingold, A. L.;Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224-3225.

²⁰Chae, J. H. Arch. Pharm. Res. 2008, 31, 305-309.

colorless liquid (123 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 6.80-6.75 (m,4H), 5.53 (s, 1H), 3.76 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.8, 156.8, 130.2, 107.9, 106.4, 101.6, 55.3; MS (EI) *m*/*z* = 124, 109 (100), 81, 53. 4-methoxyphenol¹⁸ (**5g**) from **4g**: As the general procedure II, 4-(4-methoxyphenoxy)butan-1-ol (196mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (121 mg, 98%).

МеО

3-methoxyphenol $(5j)^{21}$ As the general procedure II,2-(3-methoxyphenoxy)ethanol (168mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (114 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.14-7.11 (m, 1H), 6.50-6.48 (m, 1H), 6.45-6.42 (m, 2H), 3.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.8, 156.7, 130.2, 107.9, 106.4, 101.6, 55.3; MS (EI) *m*/*z* = 124 (100), 94, 81, 66, 53.

2-methoxyphenol²² (**5k**) [CAS: 90-05-1] As the general procedure II, 2-(2-methylphenoxy) ethanol (168mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as yellow solid (109 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 6.92 (m, 1H), 6.87-6.85 (m, 3H), 5.62 (s, 1H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.5, 145.6, 121.4, 120.1, 114.5, 110.6, 55.8; MS (EI) *m*/*z* = 124.

Мео ОН

3,5-dimethoxyphenol²² (**51**) [CAS: 500-99-2] from **2j**: As the general procedure II, 2-(3,5-dimethoxyphenoxy)ethanol(198 mg, 1.0 mmol) in a Schlenk flask was stirred for 5 hat 120 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as orange liquid (140 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 6.08 (s, 1H), 6.03 (t, *J* = 2.0 Hz, 2H), 5.29 (s, 1H), 3.75 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 157.3, 94.3, 93.2, 55.3; MS (ESI) *m/z* = 153.1 (M⁻).

3,5-dimethoxyphenol²² (**5**I) [CAS: 500-99-2] from **3j**: As the general procedure II, 3-(3,5-dimethoxyphenoxy)propan-1-ol (212 mg, 1.0 mmol) in a Schlenk flask was stirred for 5 hat 120 °C. Following

²¹Thakur, K. G.; Sekar, G. Chem. Commun., 2011, 47, 6692-6694.

²²Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Zhou, X.Chem.Commun.2010, 46, 4767-4769.

aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as orange liquid (141 mg, 91%).

4-fluorophenol¹⁸ (**5m**) [CAS: 371-41-5] As the general procedure II, 2-(4-fluorophenoxy) ethanol (156 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as brown liquid (109 mg, 98%). ¹H NMR (500 MHz, CDCl₃) δ 6.94-6.91 (m, 2H), 6.78-6.76 (m, 2H), 4.85 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2 (d, *J* = 236.25 Hz, C-F), 151.5 (d, *J* = 2.25 Hz, C-F), 116.1 (d, *J* = 7.88 Hz, C-F), 116.0 (d, *J* = 23.25 Hz, C-F); MS (EI) *m*/*z* = 112.

4-chlorophenol¹⁸ (**5n**) [CAS: 106-48-9] As the general procedure II, 2-(4-chlorophenoxy) ethanol (172 mg, 1.0 mmol,) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (127 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8.5 Hz, 2H), 6.76 (d, *J* = 8.5 Hz, 2H), 5.37 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.1, 129.8, 126.1, 117.0; MS (ESI) *m/z* = 130, 128 (100), 65.

4-chlorophenol¹⁸ (**5n**) [CAS: 106-48-9] As the general procedure II, 3-(4-chlorophenoxy) propan-1-ol (186mg, 1.0 mmol,) in a Schlenk flask was stirred for 5 h at 120 $^{\circ}$ C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (122 mg, 95%).

3-chlorophenol¹⁸ (**50**) [CAS: 108-43-0] As the general procedure II, 4-(3-chlorophenoxy)butan-1-ol (200 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as colorless liquid (127 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.14 (m, 1H), 6.94-6.91 (m, 1H),6.87-6.85 (m, 1H),6.73-6.71 (m, 1H),5.05 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.2, 134.9, 130.5, 121.1, 115.9, 113.7; MS (ESI) *m*/*z* = 130 (M⁺), 128 (M⁺, 100), 100, 65.

о — — — он

1-(4-hydroxyphenyl)ethanone¹⁹ (**5p**) [CAS: 99-93-4] As the general procedure II, 1-(4-(2-hydroxyethoxy) phenyl)ethanone (0.18 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as white solid (134 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.93-7.91 (m,2H), 6.93-6.91 (m,

2H), 6.45 (s, 1H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.2, 161.0, 131.2, 129.8, 115.5, 26.4.; MS (EI) *m*/*z* = 136, 121 (100), 93, 65.

3,5-bis(trifluoromethyl)phenol ²³ (**5s**) [CAS: 349-58-6] As the general procedure II, 2-(3,5-bis (trifluoromethyl)phenoxy)ethanol (274 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (20% EtOAc in *n*-hexane) afforded the desired product as brown liquid (218 mg, 95%). ¹H NMR (500 MHz, DMSO) δ 10.93 (s, 1H), 7.45 (s, 1H), 7.36 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 156.4, 133.0 (q, *J* = 8.38 Hz, C-F), 123.6 (d, *J* = 3.0 Hz, C-F), 122.6 (q, *J* = 271.38 Hz, C-F), 121.4 (quintet, *J* = 3.5 Hz, C-F); MS (EI) *m/z* = 230.

4-hydroxybenzoic acid¹⁸ (**5v**) [CAS: 99-96-7] As the general procedure II, 4-(2-hydroxyethoxy)benzoic acid (182 mg, 1.0 mmol) in a Schlenk flask was stirred for 3 h at 100 °C. Following aqueous workup, purification of the crude product by column chromatography (10% methanol in CH₂Cl₂) afforded the desired product as white solid (124 mg, 90%). ¹H NMR (500 MHz, DMSO) δ 12.42 (s, 1H), 10.22 (s, 1H), 7.78 (t, *J* = 5.0 Hz, 2H), 6.82 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (125 MHz, DMSO) δ 167.8, 162.3, 132.2, 122.1, 115.8.

4. Synthesis of benzofurans using arylalkyl ethers (Scheme 2)

4.1 General experimental procedure (III)

To a solution of aryloxyethanol (2) (2 mmol) in DMSO, was added IBX (846 mg, 3 mmol). Then the mixture was stirred at room temperature for 12 h. 20 mL of water was added and filtered. The filtrate was extracted with ethyl acetate and the organic layer was washed with brine, dried with anhydrous Na_2SO_4 and then condensed. The crude product was directly used for the next step. It was dissolved in toluene (10 mL) and Amberlyst (0.4g) was added. Then the mixture was stirred at 50 °C for 2 h. After filtration, toluene was removed in vacuum and the resulting crude product was purified by column chromatography (10% EtOAc in *n*-hexane) to afford the desired product (6).

4.2. Synthesis and characterization of the products

²³Zhao, D.; Wu,N.; Zhang,S.; Xi, P.; Su, X.; Lan, J.; You, J.Angew. Chem. Int. Ed. 2009, 48, 8729-8732.

7-methylbenzofuran²⁴ (6c) [CAS: 17059-52-8] As the general procedure (III), 2-(*o*-tolyloxy)ethanol (304 mg, 2 mmol) was used as substrate. After reaction, purification by column chromatography (10% EtOAc in *n*-hexane) afforded colorless liquid (161 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 2.0 Hz, 1H), 7.49-7.35 (m, 1H), 7.17-7.05 (m, 2H), 6.79-6.66 (m, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz,CDCl₃) δ 154.0, 144.6, 126.8, 125.0, 122.7, 121.6, 118.6, 106.8, 15.1.

naphtho[2,1-b]furan²⁵ (6h) [CAS: 232-95-1] As the general procedure (III), 2-(naphthalen-2-yloxy)ethanol (376 mg, 2 mmol) was used as substrate. After reaction, purification by column chromatography (10% EtOAc in *n*-hexane) afforded white solid (211 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.73-6.66 (m, 2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 1H), 7.26-7.23 (m,1H); ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 144.4, 130.6, 129.0, 128.1, 126.5, 125.4, 124.7, 123.7, 122.9, 112.8, 105.8.

5-methoxybenzofuran²⁶ (**6i**) [CAS: 13391-28-1] As the general procedure (III), 2-(4-methoxyphenoxy)ethanol (336 mg, 2 mmol) was used as substrate. After reaction, purification by column chromatography (10% EtOAc in *n*-hexane) afforded yellow liquid (223 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.05 (s, 1H), 6.98-6.84 (m, 1H), 6.71 (s, 1H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 149.9, 145.7, 127.9, 113.1, 111.8, 106.7, 103.5, 55.9.

5. Synthesis of benzo-fused cyclic ethers using arylalkyl ethers (Scheme 3)

5.1. General experimental procedure (IV)

To a solution of aryloxy-aliphatic alcohol (2, 3, 4) (2.0 mmol) in a flask, was added Jones reagent (2 mL, 8.0 mmol) and acetone (10.0 mL) under ice bath. After stirring for 1 h at the same temperature, the reaction was quenched with water, and then extracted twice with EtOAc and the combined organic layer was washed with

²⁴Barker, P.; Finke, P.; Thompson, K. Synth. Commun. 1989,19, 257-265.

²⁵Antelo, B.; Castedo, L.; Delamano, J.; Gómez, A.; López, C.; Tojo, G. J. Org. Chem. 1996,61, 1188-1189.

²⁶Hu, Y.; Kamitanaka, T.; Mishima, Y.; Dohi, T.; Kita, Y. J. Org. Chem. **2013**, 78, 5530-5543.

 H_2O and brine, dried over anhydrous MgSO₄ and concentrated in vacuo. Purification of the crude product by recrystallization afforded the intermediate compounds. The intermediate compound was further dissolved in the dry CH_2Cl_2 (3 mL), and triflic acid (1.0 mL) was added by injection in small portions under ice bath. Then the reaction mixture was stirred at room temperature overnight. The reaction was quenched with ice water, then extracted twice with CH_2Cl_2 and the combined organic layer was washed with H_2O and saturated Na_2CO_3 solution, dried over anhydrous MgSO₄ and concentrated in vacuo. Purification of the crude product by column chromatography afforded the desired benzo-fused cyclic ethers (7).

5.2. Synthesis and characterization of the products

benzofuran-3(2H)-one²⁷ (**7b**) [CAS: 7169-34-8] As the general procedure IV, 2-phenoxyethanol (276 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate product (2-phenoxyacetic acid[CAS: 122-59-8]: ¹H NMR (500 MHz, DMSO) δ 7.33-7.27 (m, 2H), 6.97-6.89 (m, 3H), 4.66 (s, 2H); ¹³C NMR (125 MHz, DMSO) δ 171.0, 158.4, 130.2, 121.7, 115.1, 65.1) as white solid (228 mg, 75%). Then 2-phenoxyacetic acid (152 mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after adding triflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**7c**) as light yellow liquid (111 mg, 83%). ¹HNMR (500 MHz,CDCl₃) δ 7.69-7.67 (m, 1H), 7.62 (t, *J* =10.0 Hz,1H), 7.15 (d, *J* =10.0 Hz,1H), 7.11 (d, *J* =10.0 Hz,1H), 4.63 (s,2H); ¹³CNMR (125MHz,CDCl₃) δ 198.9, 173.0, 136.9, 123.0, 121.0, 120.1, 112.6, 73.7.

4,6-dimethylbenzofuran-3(2H)-one²⁸ (**7d**) [CAS: 20895-44-7] As the general procedure IV, 2-(3,5-dimetyl phenoxy)ethanol (332 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate product (2-(3,5-dimethylphenoxy)acetic acid[CAS: 5406-14-4]: ¹H NMR (500 MHz, DMSO) δ 6.67 (s, 1H), 6.55 (s, 2H), 4.65 (s, 2H), 2.29 (s, 6H).¹³C NMR (125 MHz, DMSO) δ 171.0, 155.9, 131.0, 129.4, 124.7, 69.4, 16.6;) as white solid (317 mg, 88%). Then the intermediate product(180 mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after adding triflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**7d**) as white solid (130 mg, 91%). ¹H NMR (500 MHz, CDCl₃) δ 6.73 (s, 1H), 6.65 (s, 1H), 4.57 (s, 2H), 2.55 (s, 3H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.0, 175.0, 149.3, 139.0, 124.8, 117.0, 110.8, 74.9, 22.4, 17.7. MS (EI) *m/z* = 162 (100), 133, 105, 77.

²⁷Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Org. Lett., **2011**, 13, 5628-5631.

²⁸Sebej, P.; Lim, B. H.; Park, B. S.; Givens, R. S.; Klan, P. Org. Lett., 2011, 13, 644-647.

6-phenylchroman-4-one (**7f**) [CAS: 73316-17-3] As the general procedure IV, 3-([1,1'-biphenyl]-4yloxy)propan-1-ol (556 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate compound (3-([1,1'-biphenyl]-4yloxy)propanoic acid[CAS: 63472-21-9]: ¹H NMR (500 MHz, DMSO) δ 12.40 (s, 1H), 7.60 (dd, *J* = 11.0 Hz, 5.0 Hz, 4H), 7.45-7.42 (m, 2H), 7.32 (dd, *J* = 11.0, 4.0 Hz, 1H), 7.05-7.02 (m, 2H), 4.29-4.11 (m, 2H), 2.71-2.67 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 172.9, 158.7, 140.5, 133.4, 129.6, 128.5, 127.4, 126.9, 115.6, 64.4, 34.8) as white solid (440 mg, 91%). Then the intermediate compounds(242 mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after adding triflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**7f**) as white solid (210 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 2.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.46- 7.42 (m, 2H), 7.35-7.33 (m, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 4.58 (t, *J* = 8.5 Hz, 2H), 2.86 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 192.0, 161.5, 139.8, 134.9, 134.8, 129.1, 127.6, 127.0, 125.4, 121.6, 118.6, 67.3, 38.1.HRMS (FAB) *m/z* calcd for C₁₅H₁₂O₂ [M+H]⁺: calcd for 225.0916, found: 225.0916; IR (neat): 2876, 1683, 1611, 1476, 1454, 1402, 1295, 1247, 1219, 1172, 1030, 832, 762, 691, 557, 528 cm⁻¹.

7-methoxychroman-4-one ²⁹ (**7j**) [CAS: 863309-86-8] As the general procedure IV, 3-(2-methoxyphenoxy)propan-1-ol (364 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate compound (3-(3-methoxyphenoxy)propanoic acid[CAS: 49855-03-0]: ¹H NMR (500 MHz, DMSO) δ 12.40 (s, 1H), 7.17 (t, J = 8.0 Hz, 1H), 6.52-6.46 (m, 3H), 4.13 (t, *J* = 8.0 Hz, 2H), 3.72 (s, 3H), 2.67 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, DMSO) δ 173.0, 161.2, 160.3, 130.7, 107.2, 107.1, 101.3, 64.2, 55.8, 34.8) as brown solid (314 mg, 80%). Then the intermediate compound (196mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after addingtriflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**7j**) as white solid (160 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 6.41 (s, 1H), 4.52 (t, *J* = 5.0 Hz, 2H), 3.84 (s, 3H), 2.76 (t, *J* = 5.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 166.0, 163.8, 128.9, 115.3, 109.9, 100.7, 67.4, 55.6, 37.4.

²⁹Siddaiah, V.; Rao, C. V.; Venkateswarlu, S.; Krishnaraju, A. V.; Subbaraju, G. V. *Bioorg. Med. Chem.* **2006**, *14*, 2545-2 551.

7-methyl-3,4-dihydrobenzo[b]oxepin-5(2H)-one³⁰ (**7a**) [CAS: 41177-66-6] As the general procedure IV, 4-(p-tolyloxy)butan-1-ol (360 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate compound (4-(p-tolyloxy)butanoic acid[CAS: 22180-02-5]: ¹H NMR (500 MHz, DMSO) δ 12.17 (s, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.0 Hz, 1H), 3.92 (t, *J* = 6.5 Hz, 2H), 2.39-2.35 (m, 2H), 2.22 (s, 3H), 1.95-1.85 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 174.8, 157.1, 130.5, 129.8, 114.9, 67.1, 30.8, 25.0, 20.8) white solid (369 mg, 95%). Then the intermediate compound (194 mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after adding triflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**7a**) as white solid (162 mg, 92%). ¹H NMR (500 MHz, DMSO) δ 7.44-7.43 (m, 1H), 7.33-7.31 (m, 1H), 7.01 (dd, *J* = 8.0, 2.0 Hz, 1H), 4.17-4.14 (m, 2H), 2.78-2.75 (m, 2H), 2.28 (s, 3H), 2.10-2.08 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 200.9, 159.8, 135.3, 132.5, 129.5, 129.4, 121.5, 73.0, 41.0, 26.0, 20.7.

8-chloro-3,4-dihydrobenzo[b]oxepin-5(2H)-one (**70**) [CAS: 37483-57-1] As the general procedure IV, 4-(3-chlorophenoxy)butan-1-ol (400 mg, 2.0 mmol) in a flask was stirred for 1 h under ice bath. Following aqueous workup, purification of the crude product by recrystallization afforded the intermediate compound (4-(3-chlorophenoxy)butanoic acid [CAS: 5057-51-2]: ¹H NMR (500 MHz, DMSO) δ 12.16 (s, 1H), 7.32-7.28 (m, 1H), 7.02-6.97 (m, 2H), 6.92-6.90 (m, 1H), 4.01-4.00 (m, 2H), 2.38 (t, *J* = 6.0 Hz, 2H), 1.94-1.93 (m, 2H).¹³C NMR (125 MHz, DMSO) δ 174.7, 160.2, 134.4, 131.6, 121.2, 115.2, 114.2, 67.7, 30.7, 24.8) as white solid (360 mg, 84%). Then the intermediate compound (214mg, 1.0 mmol) in a Schlenk test tube was stirred overnight at room temperature after adding triflic acid (1.0 mL) under ice bath. Following aqueous workup, purification of the crude product by column chromatography (10% EtOAc in *n*-hexane) afforded the desired product (**70**) as white solid (182mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.10-7.05 (m, 2H), 4.27-4.24 (m, 2H), 2.90-2.88 (m, 2H), 2.24-2.21 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.7, 162.8, 139.6, 130.9, 127.8, 123.5, 121.3, 73.5, 40.8, 26.4. HRMS (FAB) *m*/*z* calcd for C₁₀H₉ClO₂ [M+H]⁺: calcd for 197.0369, found: 197.0369; IR (neat): 2969, 1680, 1590, 1558, 1414, 1372, 1268, 1198, 1086, 1050, 985, 819, 767, 592, 515 cm⁻¹.

6. Synthesis of phenol in 0.1 mol scale

Bromodobenzene (**1b**, 15.7 g, 0.1 mol), CuCl₂ (0.67 g, 5 mmol) and K₂CO₃ (41 g, 0.3 mol) were stirred in 56 mL of ethylene glycol (1.0 mol, ~2 M) under Ar atmosphere at 130 °C for 20 h. The reaction mixture was diluted with 100 mL of water after cooling to room temperature, acidified with concentrated HCl to pH=3 under ice bath, and then extracted with ethyl acetate (200 mL x 2). The combined organic layer was washed with water for twice and brine, dried over anhydrous magnesium sulphate and concentrated in vacuum to give a pale yellow liquid **2b** (13.7 g, 0. 099 mol, crude yield 99%). The concentrated crude coupled product was directly used for

³⁰Nikitin, K. V.; Andryukhova, N. P. Can. J. Chem., 2004, 82, 571-578.

the next reaction and well cleaved at 100 °C after 5 h in the presence of KOH (16.8 g, 0.3 mol) in 200 mL of DMSO under N_2 atmosphere. The reaction mixture was cooled to room temperature, diluted with 200 mL of water, acidified with concentrated HCl under ice bath to pH=3, and then extracted with ether (200 mL x 4). The combined organic layer was washed with water for twice and brine, dried over anhydrous magnesium sulphate and concentrated in vacuum to afford the crude phenol, which was further purified by distillation under reduced pressure to give phenol **5b** (8.75 g, 0.093 mol, yield 93% over 2 steps) as colorless liquid.

7. Copies of ¹H and ¹³C NMR spectra

	731 732 7729 7729 7729 7728 7728 7728 7728 772	694 6693 6693 6692 6691 6691	4 09 4 08	407 339 339 335 335					0.00
Parameter 1 Title 2 Comment 3 Origin 4 Spectrometer 5 Solvent 6 Temperature 7 Experiment 8 Probe 9 Number of Scans 10 Spectrometer Frequence 11 Spectral Width 12 Lowest Frequency 13 Nucleus 14 Acquired Size 15 Spectral Size	Value 110526-XY1-081-H Std proton Varian vmms cdcl3 30.0 1D dualbb 32 vy500.02 8012.8 -1014.3 1H 16415 65536	200							
							~		
	1.& T 2.75			2.07년 2.00년		₽\$6:0			
0 9.5 9.0 8.5	8.0 7.5 7.0	6.5 6.0 5.	5 5.0 4.5 f1 (ppm)	4.0 3.5	3.0	2.5 2.0	1.5 1.0	0.5	0.0
Parameter 1 Title 2 Comment 3 Origin 4 Spectrometer 5 Solvent 6 Temperature 7 Experiment 8 Probe 9 Number of Scans 10 Spectrometer Frequency 11 Spectral Width 12 Lowest Frequency 13 Nucleus 14 Acquired Size 15 Spectral Size	bit Value 110526-XY1-081-C Std proton Varian vomrs cdcl3 3.0 1D dualbb 260 125.74 30487.8 -2073.6 13C 39649 131072	-129.55 -121.12 -121.12	80.96	77.28 cdd3 cbo 70.77 cbo 70.77 cbo 70.67 cbo 70.67	64*19				00'0
Contract National State			estuarter som en et som en et			And a contract of the second second	Start School Backgert John S	ufe glasse schuler son ganz voor in	renesserabierne

		$ \begin{array}{c} 134.439\\ 129.530\\ 129.100\\ 127.649\\ 127.649\\ 123.798\\ 113.696\\ 118.696\\ -106.820\\ \end{array} $	77 258 77.004 76.750 69.165 61.515	0.000
Parameter	Value			
Title	131121-L-nap-ethanol-C			
Comment	Std proton			O OH
Origin	Varian			
Spectrometer	vnnrs			
Solvent	cdcl3			
Temperature	3.0			
Pulse Sequence	s2pul			
Number of Scans	1554			
Receiver Gain	20			
Relaxation Delay	1.0000			
Pulse Width	0.0000			
Spectrometer Frequence	cy 125.74			
Spectral Width	30487.8			
Lowest Frequency	-2073.9			
Nucleus	13C			
Acquired Size	39649			
Spectral Size	131072	allel r		
ety di lancative transfer, in su ber, desetta anna a				nya po-diaya, se utwa yada wita kutwa a
220 210 200 1	ничет и ларости дляго черу за чери 1 1 1 1 1 1 1 1 1 1 190 180 170 160 150	η την ποσηματριστέρει η του ποτοποιοτού του	анд станий тэнгээр энэ релах дар зацагаан. 90 80 70 60 50 40	андарията донитропрофилалов росситело от 1 1 1 1 1 1 1 1 1 1 30 20 10 0 -10

S36

110 100 f1 (ppm) -10

	Parameter	Value	\wedge
1	Title	111014-SK-phenol-H	
2	Comment	Std proton	HO
3	Origin	Varian	
4	Spectrometer	vnmrs	
5	Solvent	cdcl3	
6	Temperature	30.0	
7	Experiment	1D	
8	Probe	dualbb	
9	Number of Scans	8	
10	Spectrometer Frequency	500.02	
11	Spectral Width	8012.8	
12	Lowest Frequency	-1053.2	
13	Nucleus	1H	
14	Acquired Size	16415	
15	Spectral Size	65536	

00.00

S63

S64

S68

S69

		C117	6.76	-537
Parameter	Value	N.	N.	CI
1 Title	111006-SK-4chlo	orophe	nol-H	
2 Comment	Std proton			
3 Origin	Varian			HU
4 Spectrometer	vnmrs			
5 Solvent	cdcl3			
6 Temperature	30.0			
7 Experiment	1D			
8 Probe	dualbb			
9 Number of Scans	8			
10 Spectrometer Frequer	cy 500.02			
11 Spectral Width	8012.8			
12 Lowest Frequency	-1022.4			
13 Nucleus	1H			
14 Acquired Size	16415			
15 Spectral Size	65536			

----0.00

	Parameter	Value	
1	Title	110926-SK-07-3Cl-H	
2	Comment	Std proton	
3	Origin	Varian	HO * CI
4	Spectrometer	vnmrs	
5	Solvent	cdcl3	
6	Temperature	30.0	
7	Experiment	1D	
8	Probe	dualbb	
9	Number of Scans	8	
10) Spectrometer Frequency	y 500.02	
11	Spectral Width	8012.8	
12	2 Lowest Frequency	-1009.4	
1.	3 Nucleus	1H	
14	4 Acquired Size	16415	
1:	5 Spectral Size	65536	

110 100 f1 (ppm)

S71

0.00

110 100 f1 (ppm) 220 210 150 140 130 -10

		7.591 7.399 7.7382	6.909 6.896 6.896	L6.707	-3.846		-1.567	-0.000
Parameter Title Comment	Value 130723-XY6-557-H Std proton				·			
Origin	Varian							-0
Solvent	cdcB						ſ ſ	\rangle
Temperature	30.0						0	
Pulse Sequence	s2pul						Ĭ CH-	
Number of Scans	32							
Receiver Gain	34							
Relaxation Delay	1.0000							
Pulse width Spectrometer Frequency	2 500 02				Ĩ			
Spectral Width	8012.8							
Lowest Frequency	-1013.1							
Nucleus	1H							
Acquired Size	16415							
Spectral Size	65536							
			שלי איני איזייני		 т			
		0.87	-10.1		3.00-			
		~ 155.901 ~ 149.927 ~ 145.709	-127.929	×113.052 ×111.791 ×106.677 ×103.474	$\{\frac{77.264}{76.756}$	-55.909		
Parameter	Value							
Comment	Std proton						<u>^</u>	
Origin	Varian							¥ ⁰ ⟩
Spectrometer	vnmrs							
Solvent	cdcl3						0. ~	
Temperature	3.0						CH ₃	
Pulse Sequence	s2pul							
Receiver Gain	30				1			
Relaxation Delav	1.0000							
Pulse Width	0.0000							
Spectrometer Frequency	125.74							
Spectral Width	30487.8							
Lowest Frequency	-2072.5							
Nucleus	13C 30640							
Spectral Size	131072	1		h I.				
	Partonicumantina							
220 210 200 1	90 180 170 160) 150 140	130 1	20 110 100 f1 (ppm)	90 80 70	60 50	40 30 20	10 0 -10

-8.15 -8.15 -8.14 -8.14 -8.14 -7.73 -7.74 -7.733 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.74 -7.75

S87

