Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Synthesis of phosphaisocoumrin amidates via DIBAL-H-mediated selective amidation of phosphaisocoumrin esters

Yu-Juan Guo, Pei-Jiang Chen, Bo Wang, Ai-Yun Peng*

School of Chemistry & Chemical Engineering, SunYat-senUniversity, 135 Xingangxi Lu, Guangzhou, 510275, China Tel: 86 020 84110918; Fax: 86 20 84112245; E-mail: <u>cespay@mail.sysu.edu.cn</u>

List of contents

${}^{1}\text{H} / {}^{13}\text{C} / {}^{31}\text{P}$ NMR spectra of 2a	S2–S4
¹ H / ¹³ C / ³¹ P NMR spectra of 2b	
¹ H / ¹³ C / ³¹ P NMR spectra of 2c	S8–S10
¹ H / ¹³ C / ³¹ P NMR spectra of 2d	
¹ H / ¹³ C / ³¹ P NMR spectra of 2e	S14–S16
¹ H / ¹³ C / ³¹ P NMR spectra of 2f	S17–S19
¹ H / ¹³ C / ³¹ P NMR spectra of 2g	
¹ H / ¹³ C / ³¹ P NMR spectra of 2h	
^{1}H / ^{13}C / ^{31}P NMR spectra of 2i	
¹ H / ¹³ C / ³¹ P NMR spectra of 2j	
¹ H / ¹³ C / ³¹ P NMR spectra of 2k	

¹H NMR (300 MHz, CDCl₃) of **2a**

¹³C NMR (75 MHz, CDCl₃) of **2a**

³¹P NMR (121 MHz, CDCl₃) of **2a**

¹H NMR (300 MHz, CDCl₃) of 2b

¹³C NMR (75 MHz, CDCl₃) of **2b**

³¹P NMR (121 MHz, CDCl₃) of **2b**

 13 C NMR (75 MHz, CDCl₃) of **2c**

³¹P NMR (121 MHz, CDCl₃) of **2c**

¹H NMR (300 MHz, CDCl₃) of **2d**

¹³C NMR (75 MHz, CDCl₃) of **2d**

³¹P NMR (121 MHz, CDCl₃) of **2d**

¹H NMR (300 MHz, CDCl₃) of **2e**

¹³C NMR (75 MHz, CDCl₃) of **2e**

³¹P NMR (121 MHz, CDCl₃) of **2e**

¹H NMR (300 MHz, CDCl₃) of 2f

¹³C NMR (75 MHz, CDCl₃) of **2f**

³¹P NMR (121 MHz, CDCl₃) of **2f**

¹³C NMR (101 MHz, CDCl₃) of **2g**

³¹P NMR (121 MHz, CDCl₃) of **2g**

¹³C NMR (101 MHz, CDCl₃) of **2h**

³¹P NMR (121 MHz, CDCl₃) of **2h**

¹H NMR (300 MHz, CDCl₃) of **2i**

¹³C NMR (75 MHz, CDCl₃) of **2i**

16.43 - 10000 CI - 9000 - 8000 - 7000 - 6000 - 5000 - 4000 - 3000 - 2000 - 1000 - 0 -1000 35 -35 40 30 25 20 -10 -15 -20 10 5 0 f1 (ppm) 15 -5 -25 -30

³¹P NMR (121 MHz, CDCl₃) of**2i**

¹H NMR (300 MHz, CDCl₃) of **2j**

Br - 13000 - 12000 - 11000 - 10000 - 9000 - 8000 - 7000 - 6000 - 5000 - 4000 - 3000 - 2000 - 1000 -0 -1000 10 5 0 f1 (ppm) 40 35 15 -5 -10 -15 -20 -25 -35 25 20 30 -30

³¹P NMR (121 MHz, CDCl₃) of 2j

¹H NMR (300 MHz, CDCl₃) of $2\mathbf{k}$

¹³C NMR (75 MHz, CDCl₃) of **2k**

³¹P NMR (121 MHz, CDCl₃) of **2k**