Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

# Organocatalytic Synthesis of Optically Active β-Branched α-Amino Esters via Asymmetric Biomimetic Transamination

Cunxiang Su,<sup>a</sup> Ying Xie,<sup>a</sup> Hongjie Pan,<sup>a</sup> Mao Liu,<sup>a</sup> Hua Tian,<sup>a</sup> and Yian Shi\*<sup>a,b,c</sup>

 <sup>a</sup> Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
<sup>b</sup> State Key Laboratory of Coordination Chemistry, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.

<sup>c</sup> Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

# **Supporting Information**

# **Table of Contents**

| General methods                                      | 2  |
|------------------------------------------------------|----|
| Experimental procedures and characterization data    | 2  |
| HPLC data for determination of enantiomeric excesses | 13 |
| The X-ray structure of compound 14j                  | 20 |
| NMR spectra                                          | 29 |

General Methods. All commercially available reagents were used without further purification. All dry solvents were freshly distilled under nitrogen from appropriate drying agents before use. Toluene, benzene, tetrahydrofuran, and ethyl ether were distilled from sodium-benzophenone. Dichloromethane, 1,2-dichloroethane, and acetonitrile were distilled from CaH<sub>2</sub>. N,N-Dimethylformamide was dried over 4 Å molecular sieves (activated at 180 °C under vacuum over 8 h). Column chromatography was performed on silica gel (200-300 mesh). <sup>1</sup>H NMR spectra were recorded on a 400 MHz NMR spectrometer and <sup>13</sup>C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. Catalysts C1-C3 were prepared according to the reported procedures.<sup>1,2</sup> *t*-Butvl  $\beta$ ,  $\beta$ '-disubstituted  $\alpha$ -keto esters were generally prepared from the corresponding ketones by 2-[(*t*-butyldimethylsilyl)oxy]-2-(diethoxyphosphoryl)acetate,<sup>3</sup> olefination with ethyl hydrolysis of the resulting  $\alpha$ -siloxy  $\alpha$ , $\beta$ -unsaturated esters to keto acids,<sup>3-5</sup> and subsequent esterification with isobutene.<sup>6</sup>  $\alpha$ -Keto esters **4i** was prepared from **4h** by ring-closing metathesis (RCM) using Grubbs second-generation ruthenium catalyst.<sup>7</sup>

- (1) X. Xiao, Y. Xie, C. Su, M. Liu and Y. Shi, J. Am. Chem. Soc., 2011, 133, 12914.
- (2) X. Xiao, M. Liu, C. Rong, F. Xue, S. Li, Y. Xie and Y. Shi, Org. Lett., 2012, 14, 5270.
- (3) S. He, Z. Lai, D. X. Yang, Q. Hong, M. Reibarkh, R. P. Nargund and W. K. Hagmann, *Tetrahedron Lett.*, 2010, **51**, 4361.
- (4) C. H. Senanayake, K. Fang, P. Grover, R. P. Bakale, C. P. Vandenbossche and S. A. Wald, *Tetrahedron Lett.*, 1999, **40**, 819.
- (5) R. M. Archer, S. F. Royer, W. Mahy, C. L. Winn, M. J. Danson and S. D. Bull, *Chem. Eur. J.*, 2013, **19**, 2895.
- (6) H. Molines, M. H. Massoudi, D. Cantacuzene and C. Wakselman, Synthesis, 1983, 322.
- (7) H. Hu, J. A. Faraldos and R. M. Coates, J. Am. Chem. Soc., 2009, 131, 11998.

## **Preparation of Catalyst C4**



To a solution of compound **C3** (1.770 g, 3.0 mmol) in MeOH (30.0 mL) was added Pd(OH)<sub>2</sub>/C (20%) (0.300 g).<sup>1</sup> The reaction mixture was stirred at room temperature under hydrogen (1 atm) for 14 h, filtered through Celite, washed with EtOAc, concentrated, and purified by flash column chromatography (silica gel, packed with EtOAc containing 1% Et<sub>3</sub>N) (eluent: EtOAc/MeOH = 40/1) to give compound **C4** as a yellow solid (1.699 g, 96% yield). mp. 87-88 °C;  $[\alpha]^{20}_{D} = -83.7$  (*c* 0.73, CHCl<sub>3</sub>); IR (film) 3239, 1622, 1457, 1154 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.70 (br s, 1H), 8.73 (d, *J* = 4.4 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.84 (s, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.37 (d, *J* = 4.4 Hz, 1H), 6.95 (s, 2H), 5.20-5.00 (m, 1H), 3.41-2.88 (m, 9H), 2.69-2.52 (m, 3H), 2.44-2.34 (m, 1H), 1.81-1.68 (m, 3H), 1.53-1.40 (m, 3H), 1.40-1.31 (m, 3H), 1.30-1.07 (m, 12H), 0.83-0.72 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.9, 148.3, 145.9, 145.8, 145.7, 137.7, 134.2, 131.4, 129.2, 127.4, 124.1, 118.9, 113.2, 79.6, 69.2, 60.3, 58.6, 43.7, 37.3, 32.1, 28.5, 28.4, 28.1, 27.6, 25.4, 22.2, 19.4, 16.7, 14.9, 14.0, 12.1; HRMS Calcd for C<sub>35</sub>H<sub>50</sub>N<sub>3</sub>O<sub>3</sub>S (M+H): 592.3567; Found: 592.3566.

 G. Sabitha, S. Nayak, M. Bhikshapathi, M. Chittapragada and J. S. Yadav, Synthesis, 2011, 22, 3661.



Prepared in a manner similar to C4. light yellow solid; mp. 86-87 °C;  $[\alpha]^{20}_{D} =$ 

+184.2 (*c* 0.84, CHCl<sub>3</sub>); IR (film) 3239, 1489, 1457, 1154 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (d, *J* = 4.4 Hz, 1H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.78 (s, 1H), 7.49 (dd, *J* = 9.2, 2.0 Hz, 1H), 7.35 (d, *J* = 4.4 Hz, 1H), 7.05-6.98 (m, 1H), 6.96 (s, 2H), 5.05 (s, 1H), 3.21-3.00 (m, 7H), 2.99-2.79 (m, 3H), 2.79-2.68 (m, 1H), 2.63-2.53 (m, 2H), 2.02-1.91 (m, 1H), 1.72-1.67 (m, 1H), 1.53-1.41 (m, 7H), 1.36-1.17 (m, 12H), 0.94-0.81 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.1, 148.4, 146.0, 145.9, 145.7, 137.3, 134.0, 131.4, 129.2, 127.0, 124.9, 119.0, 114.6, 80.4, 69.3, 60.0, 51.0, 50.2, 37.3, 32.2, 28.54, 28.49, 27.0, 26.2, 25.2, 21.5, 19.5, 16.8, 14.9, 14.0, 12.1. HRMS Calcd for C<sub>35</sub>H<sub>50</sub>N<sub>3</sub>O<sub>3</sub>S (M+H): 592.3567; Found: 592.3571.

#### Representative procedures for the preparation of $\beta$ , $\beta$ '-disubstituted $\alpha$ -keto esters



To a solution of phosphonate **11**<sup>1</sup> (38.990 g, 110.0 mmol) in THF (100.0 mL) was added a solution of LiHMDS (1 M solution in THF) (110.0 mL, 110.0 mmol) at -78 °C under N<sub>2</sub>.<sup>1</sup> After the reaction mixture was stirred at -78 °C for 30 min, a solution of ketone **10j** (10.011 g, 100.0 mmol) in THF (10.0 mL) was added dropwise over 10 min. The reaction mixture was stirred at -78 °C for 30 min, warmed to room temperature overnight, quenched with saturated aqueous NH<sub>4</sub>Cl solution (100.0 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 100.0 mL), washed with brine (100.0 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 10/1) to afford ester **12j** as a light yellow oil (29.446 g, 98%). IR (film) 1712, 1280, 1216, 1097 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.21 (q, *J* = 7.2 Hz, 2H), 3.71 (t, *, J* = 5.6 Hz, 2H), 3.67 (t, *J* = 5.6 Hz, 2H), 0.10

(s, 6H);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 134.9, 129.8, 68.7, 68.2, 60.8, 29.9, 29.4, 25.9, 18.5, 14.4, -4.3; HRMS Calcd for C<sub>15</sub>H<sub>28</sub>NaO<sub>4</sub>Si (M+Na): 323.1649; Found: 323.1654.

(1) S. He, Z. Lai, D. X. Yang, Q. Hong, M. Reibarkh, R. P. Nargund and W. K. Hagmann, *Tetrahedron Lett.*, 2010, **51**, 4361.

To a solution of ester 12j (29.446 g, 98.0 mmol) and acetic acid (28.0 mL, 490.0 mmol) in CH<sub>3</sub>CN (100.0 mL) was added solid cesium fluoride (29.772 g, 196.0 mmol) in one portion at 0 °C.<sup>1</sup> Upon stirring at 0 °C for 30 min and room temperature for 24 h, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub> (100.0 mL), extracted with EtOAc (3 x 100.0 mL), washed with saturated aqueous NaHCO<sub>3</sub> (100.0 mL), and concentrated to give a yellow oil, which was subsequently dissolved in EtOH (200.0 mL), followed by the addition of aqueous 2 N NaOH (100.0 mL).<sup>2</sup> Upon stirring at room temperature for 17 h, the reaction mixture was diluted with water, washed with n-hexane (3 x 50.0 mL), acidified with concentrated HCl to pH = 2, extracted with  $CH_2Cl_2$  (3 x 50.0 mL), washed with brine (50.0 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 10/1 to 0/1) to give  $\alpha$ -keto acid 13j as a white solid (12.010 g, 78% yield). mp. 88-90 °C; IR (film) 3421, 1723, 1273, 1081 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.06 (ddd, J = 11.6, 3.6, 2.4 Hz, 2H), 3.54 (td, J = 11.6, 2.4 Hz, 2H), 3.46 (tt, J = 11.2, 4.0 Hz, 1H), 1.92-1.84 (m, 2H), 1.79-1.67 (m, 2H);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.4, 161.0, 66.9, 42.5, 27.3; HRMS Calcd for C<sub>7</sub>H<sub>9</sub>O<sub>4</sub> (M-H): 157.0495; Found: 157.0493.

- (1) R. M. Archer, S. F. Royer, W. Mahy, C. L. Winn, M. J. Danson and S. D. Bull, *Chem. Eur. J.*, 2013, 19, 2895.
- (2) C. H. Senanayake, K. Fang, P. Grover, R. P. Bakale, C. P. Vandenbossche and S. A. Wald, *Tetrahedron Lett.*, 1999, 40, 819.

To a screw capped pyrex heavy-walled pressure bottle containing a solution of  $\alpha$ -keto acid **13j** (12.012 g, 76.0 mmol), *t*-butanol (12.0 mL), and Et<sub>2</sub>O (5.0 mL) at -40 °C, were

added concentrated sulfuric acid (3.0 mL) and liquid isobutene (70.0 mL), respectively.<sup>1</sup> Upon stirring at room temperature for 48 h, the reaction mixture was cooled to -20 °C, quenched with saturated aqueous NaHCO<sub>3</sub> (70.0 mL), extracted with EtOAc (3 x 100.0 mL), washed with brine (100.0 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 40/1 to 10/1) to give  $\alpha$ -keto ester **4j** as a yellow oil (8.424 g, 52% yield). IR (film) 1721, 1371, 1113, 1019 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.40-3.95 (m, 2H), 3.48 (td, *J* = 11.2, 1.6 Hz, 2H), 3.24-3.14 (m, 1H), 1.85-1.77 (m, 2H), 1.75-1.62 (m, 2H), 1.54 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 161.2, 84.4, 67.0, 43.4, 27.9, 27.3; HRMS Calcd for C<sub>11</sub>H<sub>18</sub>NaO<sub>4</sub> (M+Na): 237.1097; Found: 237.1104.

(1) H. Molines, M. H. Massoudi, D. Cantacuzene and C. Wakselman, Synthesis, 1983, 322.



A mixture of *t*-butyl 3-allyl-2-oxohex-5-enoate (**4h**) (1.262 g, 5.6 mmol) and Grubbs 2nd-generation Ru catalyst (0.153 g, 0.18 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (60.0 mL) was stirred at room temperature under N<sub>2</sub> for 18 h,<sup>1</sup> concentrated, and purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 20/1) to give  $\alpha$ -keto ester **4i** as a light yellow oil (0.766 g, 70% yield); IR (film) 1722, 1370, 1161 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.62 (br s, 2H), 3.84-3.71 (m, 1H), 2.68-2.62 (m, 4H), 1.54 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.3, 161.5, 128.8, 84.1, 45.3, 34.6, 28.0; HRMS Calcd for C<sub>11</sub>H<sub>17</sub>O<sub>3</sub> (M+H): 197.1172; Found: 197.1174.

(1) H. Hu, J. A. Faraldos and R. M. Coates, J. Am. Chem. Soc., 2009, 131, 11998.

# Representative procedure for transamination of $\beta$ -branched $\alpha$ -keto esters (Table 2, entry 3)

To a well-dried Schlenk tube charged with 4 Å molecular sieves (0.25 g), 4-CNPhCH<sub>2</sub>NH<sub>2</sub> (0.198 g, 1.50 mmol), and catalyst **C4** (0.0296 g, 0.050 mmol) under N<sub>2</sub> at room temperature was added a solution of  $\alpha$ -keto ester **4c** (0.106 g, 0.50 mmol) in dry toluene (5.0 mL). Upon stirring at 80 °C for 72 h, the reaction mixture was filtered through a short plug of silica gel to remove molecular sieves, washed with EtOAc (containing 1% MeOH), and concentrated. The resulting residue was dissolved in THF (7.5 mL), followed by the addition of aqueous 2 N HCl (7.5 mL). Upon stirring at room temperature for 1 h, the resulting mixture was diluted with water (50 mL) and washed with diethyl ether (3 x 10.0 mL). The organic phase was extracted with 1 N HCl (10.0 mL). The aqueous phases were combined, brought to pH = 8 with solid NaHCO<sub>3</sub>, extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 30.0 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: EtOAc/CH<sub>3</sub>OH = 40/1) to give  $\alpha$ -amino ester **6c** as a yellow oil (0.087 g, 82% yield, 94% ee).

# Representative procedure for the preparation of *N*-benzoyl derivative of amino ester for the determination of the enantiomeric excess

To a solution of **6c** (0.021 g, 0.10 mmol) in  $CH_2Cl_2$  (1.0 mL) were added  $Et_3N$  (0.018 g, 0.18 mmol) and BzCl (0.021 g, 0.15 mmol). The reaction mixture was stirred at room temperature for 30 min and purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 10/1) to afford *N*-benzoyl amino ester **14c** as a white solid (0.029 g, 90% yield). The sample was subjected to chiral HPLC (Chiralcel OD-H column) to determine the enantiomeric excess.

#### Table 2, entry 1

Yellow oil;  $[\alpha]^{20}_{D} = -31.8$  (*c* 0.77, CHCl<sub>3</sub>) (87% ee); IR (film) 3384, 1727, 1595, 1260, 1154 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.20 (d, *J* = 8.4 Hz, 1H), 2.51-2.37 (m, 1H),

2.10-1.91 (m, 3H), 1.90-1.72 (m, 3H), 1.71-1.55 (m, 2H), 1.43 (s, 9H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.6, 81.0, 59.6, 40.3, 28.3, 25.5, 25.4, 18.1; HRMS Calcd for C<sub>10</sub>H<sub>20</sub>NO<sub>2</sub> (M+H): 186.1489; Found: 186.1484.

#### Table 2, entry 2

Yellow oil;  $[\alpha]^{20}{}_{\rm D} = -11.0 \ (c \ 0.84, \ {\rm CHCl}_3) \ (94\% \ {\rm ee});$  IR (film) 3377, 1727, 1367, 1152 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.17 (d, J = 7.2 Hz, 1H), 2.12-1.99 (m, 1H), 1.76-1.48 (m, 8H), 1.46 (s, 9H), 1.42-1.28 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.4, 80.9, 59.1, 44.6, 29.4, 28.5, 28.3, 25.8, 25.6; HRMS Calcd for C<sub>11</sub>H<sub>22</sub>NO<sub>2</sub> (M+H): 200.1645; Found: 200.1642.

# Table 2, entry 3



Yellow oil;  $[\alpha]^{20}{}_{\rm D} = -22.8 \ (c \ 0.87, \ {\rm CHCl}_3) \ (94\% \ {\rm ee});$  IR (film) 3384, 1727, 1367, 1152 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.12 (d,  $J = 4.4 \ {\rm Hz}, 1 \ {\rm H})$ , 1.79-1.69 (m, 2H), 1.68-1.54 (m, 4H), 1.51-1.35 (m, 2H), 1.45 (s, 9H), 1.31-1.00 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.1, 81.0, 60.3, 42.5, 29.9, 28.3, 28.0, 26.52, 26.51, 26.4; HRMS Calcd for C<sub>12</sub>H<sub>24</sub>NO<sub>2</sub> (M+H): 214.1802; Found: 214.1803.

## Table 2, entry 4



Yellow oil;  $[\alpha]_{D}^{20} = -23.9$  (*c* 1.08, CHCl<sub>3</sub>) (94% ee); IR (film) 3457, 1738, 1366, 1229 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.22 (d, *J* = 4.4 Hz, 1H), 1.88-1.79 (m, 1H), 1.75-1.63 (m, 3H), 1.63-1.53 (m, 3H), 1.52-1.28 (m, 8H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)

δ 175.2, 81.0, 60.9, 43.7, 31.9, 29.1, 28.5, 28.3, 28.1, 27.4, 27.2; HRMS Calcd for C<sub>13</sub>H<sub>26</sub>NO<sub>2</sub> (M+H): 228.1958; Found: 228.1960.

#### Table 2, entry 5



Yellow oil;  $[\alpha]^{20}{}_{D} = -20.2$  (*c* 1.16, CHCl<sub>3</sub>) (95% ee); IR (film) 3381, 1725, 1275, 1154 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.18 (d, *J* = 4.8 Hz, 1H), 1.98-1.88 (m, 1H), 1.75-1.64 (m, 2H), 1.63-1.53 (m, 4H), 1.52-1.25 (m, 10H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.2, 80.9, 61.4, 41.3, 31.3, 28.3, 27.9, 26.9, 26.8, 26.4, 25.8; HRMS Calcd for C<sub>14</sub>H<sub>28</sub>NO<sub>2</sub> (M+H): 242.2115; Found: 242.2112.

#### Table 2, entry 6

NH<sub>2</sub> CO<sub>2</sub><sup>t</sup>Bu

Yellow oil;  $[\alpha]^{20}{}_{D} = -14.2$  (*c* 0.63, CHCl<sub>3</sub>) (92% ee); IR (film) 3403, 1736, 1366, 1218 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.16 (d, *J* = 4.4 Hz, 1H), 2.05-1.93 (m, 1H), 1.67 (br s, 2H), 1.45 (s, 9H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.0, 81.0, 60.4, 32.3, 28.3, 19.5, 17.2; HRMS Calcd for C<sub>9</sub>H<sub>20</sub>NO<sub>2</sub> (M+H): 174.1489; Found: 174.1484.

# Table 2, entry 7

H<sub>2</sub>N CO<sub>2</sub><sup>t</sup>Bu

6g

Yellow oil;  $[\alpha]^{20}{}_{D} = -23.6$  (*c* 0.84, CHCl<sub>3</sub>) (91% ee); IR (film) 3386, 1727, 1368, 1154 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.40 (d, *J* = 4.0 Hz, 1H), 1.63-1.20 (m, 7H), 1.46 (s, 9H), 0.94 (t, *J* = 7.2 Hz, 3H), 0.90 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.7, 80.9, 56.4, 45.5, 28.2, 23.1, 22.1, 12.1, 12.0; HRMS Calcd for C<sub>11</sub>H<sub>24</sub>NO<sub>2</sub> (M+H): 202.1802; Found: 202.1799.

H<sub>2</sub>N CO<sub>2</sub><sup>t</sup>Bu

Yellow oil;  $[\alpha]^{20}{}_{D} = -33.8$  (*c* 1.00, CHCl<sub>3</sub>) (92% ee); IR (film) 3384, 1727, 1367, 1217 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.85-5.70 (m, 2H), 5.12-4.98 (m, 4H), 3.41 (d, *J* = 3.6 Hz, 1H), 2.18-1.98 (m, 4H), 1.97-1.89 (m, 1H), 1.46 (s, 9H), 1.40 (br s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.2, 137.1, 137.0, 116.9, 116.8, 81.2, 56.3, 41.9, 35.1, 33.9, 28.3; HRMS Calcd for C<sub>13</sub>H<sub>24</sub>NO<sub>2</sub> (M+H): 226.1802; Found: 226.1803.

## Table 2, entry 9

Yellow oil;  $[\alpha]^{20}{}_{\rm D} = -4.9 \ (c \ 1.24, \ CHCl_3) \ (92\% \ ee);$  IR (film) 3462, 1736, 1366, 1218 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl\_3)  $\delta$  5.65 (br s, 2H), 3.28 (d,  $J = 6.8 \ Hz, 1H$ ), 2.63-2.52 (m, 1H), 2.48-2.35 (m, 2H), 2.31-2.18 (m, 2H), 1.52 (br s, 2H), 1.45 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl\_3)  $\delta$  174.8, 129.9, 129.7, 80.9, 58.7, 41.4, 35.7, 34.6, 28.1; HRMS Calcd for C<sub>11</sub>H<sub>20</sub>NO<sub>2</sub> (M+H): 198.1489; Found: 198.1485.

## Table 2, entry 10



Yellow oil;  $[\alpha]^{20}{}_{D} = -23.5$  (*c* 0.77, CHCl<sub>3</sub>) (91% ee); IR (film) 3383, 1726, 1367, 1152 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.03-3.95 (m, 2H), 3.41-3.31 (m, 2H), 3.14 (d, *J* = 6.0 Hz, 1H), 1.87-1.75 (m, 1H), 1.63-1.38 (m, 6H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.6, 81.4, 68.2, 68.0, 59.7, 39.9, 29.6, 28.4, 28.3; HRMS Calcd for C<sub>11</sub>H<sub>22</sub>NO<sub>3</sub> (M+H): 216.1594; Found: 216.1595.

S 6k

Yellow oil;  $[\alpha]^{20}{}_{D} = -21.2$  (*c* 0.91, CHCl<sub>3</sub>) (93% ee); IR (film) 3464, 1735, 1366, 1218 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.14 (d, *J* = 4.4 Hz, 1H), 2.73-2.57 (m, 4H), 1.96-1.87 (m, 2H), 1.70-1.47 (m, 5H), 1.45 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.4, 81.4, 60.2, 42.1, 31.0, 29.4, 28.98, 28.97, 28.3; HRMS Calcd for C<sub>11</sub>H<sub>22</sub>NO<sub>2</sub>S (M+H): 232.1366; Found: 232.1366.

#### Table 2, entry 12

Yellow oil;  $[\alpha]_{D}^{20} = -10.4$  (*c* 1.05, CHCl<sub>3</sub>) (90% ee); IR (film) 3453, 1737, 1366, 1217 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.87-3.77 (m, 2H), 3.14-2.99 (m, 1H), 2.42 (s, 3H), 2.27-2.15 (m, 2H), 1.76-1.68 (m, 1H), 1.66-1.47 (m, 6H), 1.43 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.3, 143.6, 133.3, 129.8, 127.9, 81.6, 59.1, 46.5, 46.4, 40.0, 28.3, 27.0, 21.7; HRMS Calcd for C<sub>18</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>4</sub>S (M+Na): 391.1662; Found: 391.1671.

## The determination of the absolute configuration of $\alpha$ -amino ester 6c



A solution of  $\alpha$ -amino ester (*R*)-**6c** (0.107 g, 0.50 mmol) (94% ee) in 6 N HCl (7.5 mL) and dioxane (2.5 mL) was stirred at 100 °C for 12 h.<sup>1</sup> The reaction mixture was cooled to room temperature, washed with Et<sub>2</sub>O (3 x 5.0 mL), and concentrated to give amino acid hydrochloride **15c** as a white solid (0.096 g, 99% yield). decomp. 257 °C;  $[\alpha]^{20}_{D} = -24.9$  (*c* 0.88, 1.5 N HCl) [lit.<sup>2</sup>  $[\alpha]^{20}_{D} = -33.5$  (1.5 N HCl)]; IR (film) 3331, 1736, 1366, 1217,

1153 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, MeOD)  $\delta$  3.81 (d, J = 4.0 Hz, 1H), 2.00-1.90 (m, 1H), 1.89-1.78 (m, 3H), 1.77-1.65 (m, 2H), 1.41-1.10 (m, 5H); <sup>13</sup>C NMR (100 MHz, MeOD)  $\delta$ 171.2, 59.0, 40.2, 29.5, 29.3, 27.0, 26.9, 26.7; HRMS Calcd for C<sub>8</sub>H<sub>16</sub>NO<sub>2</sub> (M-Cl): 158.1176; Found: 158.1172.

- (1) T. Ooi, D. Kato, K. Inamura, K. Ohmatsu and K. Maruoka, Org. Lett., 2007, 9, 3945.
- (2) C. Toniolo, G. M. Bonora and S. Salardi, Int. J. Biol. Macromol., 1981, 3, 377.



To a solution of amino acid hydrochloride **15c** (0.058 g, 0.30 mmol) in MeOH (2.0 mL) was added SOCl<sub>2</sub> (0.642 g, 5.4 mmol) dropwise at -20 °C. The reaction mixture was stirred at room temperature overnight, concentrated, and dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL), followed by the addition of Et<sub>3</sub>N (0.091 g, 0.90 mmol) and BzCl (0.063 g, 0.45 mmol) successively. Upon stirring at room temperature for 30 min, the reaction mixture was purified by flash column chromatography (silica gel, eluent: petroleum ether/EtOAc = 10/1 to 5/1) to afford *N*-benzoyl amino ester **16c** as a white solid (0.064 g, 78% yield). The sample was subjected to chiral HPLC (Chiralcel OD-H column) to determine the enantiomeric excess. mp. 123-124 °C;  $[\alpha]^{20}_{D} = -40.2$  (*c* 0.99, CHCl<sub>3</sub>) (94% ee); IR (film) 3330, 1740, 1365, 1217 cm<sup>-1</sup>; <sup>-1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, *J* = 7.6 Hz, 2H), 7.55-7.49 (m, 1H), 7.48-7.42 (m, 2H), 6.62 (d, *J* = 8.0 Hz, 1H), 4.81-4.75 (m, 1H), 3.78 (s, 3H), 1.95-1.86 (m, 1H), 1.81-1.62 (m, 5H), 1.32-1.06 (m, 5H); <sup>-13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.8, 167.3, 134.3, 131.9, 128.8, 127.2, 57.3, 52.4, 41.5, 29.7, 28.6, 26.1; HRMS Calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>3</sub> (M+H): 276.1594; Found: 276.1597.

T. Ooi, D. Kato, K. Inamura, K. Ohmatsu and K. Maruoka, Org. Lett., 2007, 9, 3945.

# The chromatograms for determination of enantioselectivity

Table 2, entry 1 NHBz CO<sub>2</sub><sup>t</sup>Bu

**HPLC Condition: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (85/15); **Flow rate:** 1.0 mL/min; **Detection:** UV226 nm.



# Table 2, entry 2 NHBz CO<sub>2</sub><sup>t</sup>Bu 14b





**HPLC Condition: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (85/15); **Flow rate:** 1.0 mL/min; **Detection:** UV226 nm.



## Table 2, entry 4





**HPLC Condition: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (85/15); **Flow rate:** 1.0 mL/min; **Detection:** UV226 nm.



# Table 2, entry 6

NHBz CO<sub>2</sub><sup>t</sup>Bu



Table 2, entry 7 BzHN CO<sub>2</sub><sup>t</sup>Bu 14g

HPLC Condition: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (85/15); Flow rate: 1.0 mL/min; Detection: UV226 nm.



## Table 2, entry 8





Table 2, entry 9 NHBz CO<sub>2</sub>'Bu 14i

**HPLC Condition: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (85/15); **Flow rate:** 1.0 mL/min; **Detection:** UV226 nm.



Table 2, entry 10







**HPLC Condition: Column:** Chiralcel OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (85/15); **Flow rate:** 1.0 mL/min; **Detection:** UV226 nm.



Table 2, entry 12















| Identification code                      | 14j                                |                 |
|------------------------------------------|------------------------------------|-----------------|
| Empirical formula                        | C18 H25 N O4                       |                 |
| Formula weight                           | 319.39                             |                 |
| Temperature                              | 173.1500 K                         |                 |
| Wavelength                               | 0.71073 Å                          |                 |
| Crystal system                           | Orthorhombic                       |                 |
| Space group                              | P 21 21 21                         |                 |
| Unit cell dimensions                     | a = 5.5701(4) Å                    | <b>a</b> = 90°. |
|                                          | b = 9.0120(6)  Å                   | b=90°.          |
|                                          | c = 33.683(2)  Å                   | <b>g</b> = 90°. |
| Volume                                   | 1690.8(2) Å <sup>3</sup>           |                 |
| Z                                        | 4                                  |                 |
| Density (calculated)                     | 1.255 Mg/m <sup>3</sup>            |                 |
| Absorption coefficient                   | 0.088 mm <sup>-1</sup>             |                 |
| F(000)                                   | 688                                |                 |
| Crystal size                             | 0.34 x 0.14 x 0.1 mm <sup>3</sup>  |                 |
| Theta range for data collection          | 3.311 to 27.479°.                  |                 |
| Index ranges                             | -7<=h<=7,-11<=k<=11,-43<           | =l<=42          |
| Reflections collected                    | 20256                              |                 |
| Independent reflections                  | 3875 [R(int) = 0.0705]             |                 |
| Completeness to theta = $26.000^{\circ}$ | 99.7 %                             |                 |
| Absorption correction                    | Semi-empirical from equivaler      | nts             |
| Max. and min. transmission               | 1.0000 and 0.5829                  |                 |
| Refinement method                        | Full-matrix least-squares on F     | 2               |
| Data / restraints / parameters           | 3875 / 0 / 211                     |                 |
| Goodness-of-fit on F <sup>2</sup>        | 1.116                              |                 |
| Final R indices [I>2sigma(I)]            | R1 = 0.0531, $wR2 = 0.1152$        |                 |
| R indices (all data)                     | R1 = 0.0671, $wR2 = 0.1257$        |                 |
| Absolute structure parameter             | 0.2(7)                             |                 |
| Extinction coefficient                   | n/a                                |                 |
| Largest diff. peak and hole              | 0.185 and -0.264 e.Å <sup>-3</sup> |                 |

# Table 1. Crystal data and structure refinement for 14j.

|     | Х        | у       | Z       | U(eq) |
|-----|----------|---------|---------|-------|
| 01  | -2088(4) | 3181(3) | 7456(1) | 43(1) |
| O2  | 1300(4)  | 6221(2) | 5964(1) | 40(1) |
| 03  | 3951(4)  | 6378(2) | 6474(1) | 31(1) |
| O4  | 5572(4)  | 2806(3) | 5965(1) | 42(1) |
| N1  | 1579(4)  | 3120(3) | 6052(1) | 31(1) |
| C1  | 1924(5)  | 4102(3) | 6389(1) | 30(1) |
| C2  | -207(5)  | 4024(3) | 6679(1) | 30(1) |
| C3  | 297(6)   | 4894(4) | 7061(1) | 37(1) |
| C4  | -1746(7) | 4697(4) | 7354(1) | 45(1) |
| C5  | -2697(6) | 2339(4) | 7114(1) | 39(1) |
| C6  | -781(6)  | 2419(3) | 6792(1) | 35(1) |
| C7  | 2338(5)  | 5680(3) | 6244(1) | 30(1) |
| C8  | 4615(5)  | 7952(3) | 6407(1) | 31(1) |
| С9  | 5759(6)  | 8119(4) | 6000(1) | 41(1) |
| C10 | 2463(6)  | 8948(3) | 6461(1) | 39(1) |
| C11 | 6409(6)  | 8208(4) | 6737(1) | 41(1) |
| C12 | 3488(6)  | 2531(3) | 5861(1) | 31(1) |
| C13 | 2973(5)  | 1501(3) | 5525(1) | 31(1) |
| C14 | 876(6)   | 675(3)  | 5504(1) | 37(1) |
| C15 | 543(7)   | -337(4) | 5195(1) | 46(1) |
| C16 | 2263(8)  | -487(4) | 4905(1) | 51(1) |
| C17 | 4332(7)  | 354(4)  | 4920(1) | 45(1) |
| C18 | 4706(6)  | 1341(4) | 5229(1) | 37(1) |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for **14j**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| O1-C4     | 1.421(4) |
|-----------|----------|
| O1-C5     | 1.422(4) |
| O2-C7     | 1.209(3) |
| O3-C7     | 1.343(3) |
| O3-C8     | 1.484(3) |
| O4-C12    | 1.238(4) |
| N1-C1     | 1.454(3) |
| N1-C12    | 1.351(4) |
| C1-C2     | 1.539(4) |
| C1-C7     | 1.521(4) |
| C2-C3     | 1.531(4) |
| C2-C6     | 1.529(4) |
| C3-C4     | 1.518(5) |
| C5-C6     | 1.521(4) |
| C8-C9     | 1.520(4) |
| C8-C10    | 1.509(4) |
| C8-C11    | 1.513(4) |
| C12-C13   | 1.491(4) |
| C13-C14   | 1.387(4) |
| C13-C18   | 1.396(4) |
| C14-C15   | 1.396(4) |
| C15-C16   | 1.374(5) |
| C16-C17   | 1.380(5) |
| C17-C18   | 1.385(4) |
|           |          |
| C4-O1-C5  | 110.5(2) |
| C7-O3-C8  | 121.8(2) |
| C12-N1-C1 | 120.5(2) |
| N1-C1-C2  | 111.5(2) |
| N1-C1-C7  | 109.7(2) |
| C7-C1-C2  | 111.3(2) |
| C3-C2-C1  | 111.6(2) |
| C6-C2-C1  | 111.3(2) |
| C6-C2-C3  | 108.2(2) |
| C4-C3-C2  | 110.4(3) |
| O1-C4-C3  | 111.7(3) |

 $\label{eq:and angles [] Table 3. Bond lengths [Å] and angles [°] for 14j.$ 

| 01-C5-C6    | 112.5(3) |
|-------------|----------|
| C5-C6-C2    | 111.7(2) |
| O2-C7-O3    | 125.5(3) |
| O2-C7-C1    | 123.7(3) |
| O3-C7-C1    | 110.7(2) |
| 03-C8-C9    | 109.7(2) |
| O3-C8-C10   | 110.7(2) |
| O3-C8-C11   | 101.4(2) |
| C10-C8-C9   | 112.5(3) |
| C11-C8-C9   | 111.8(3) |
| O4-C12-N1   | 121.6(3) |
| O4-C12-C13  | 121.4(3) |
| N1-C12-C13  | 117.0(3) |
| C14-C13-C12 | 122.4(3) |
| C14-C13-C18 | 119.3(3) |
| C18-C13-C12 | 118.3(3) |
| C13-C14-C15 | 120.1(3) |
| C16-C15-C14 | 120.0(3) |
| C15-C16-C17 | 120.2(3) |
| C16-C17-C18 | 120.3(3) |
| C17-C18-C13 | 120.0(3) |
|             |          |

Symmetry transformations used to generate equivalent atoms:

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 01  | 61(2)           | 43(1)           | 25(1)           | -1(1)           | 6(1)            | -5(1)           |
| O2  | 50(1)           | 39(1)           | 33(1)           | 5(1)            | -9(1)           | -5(1)           |
| O3  | 37(1)           | 27(1)           | 30(1)           | -1(1)           | -3(1)           | -4(1)           |
| O4  | 35(1)           | 55(1)           | 35(1)           | -10(1)          | 0(1)            | -4(1)           |
| N1  | 35(1)           | 33(1)           | 24(1)           | -6(1)           | 0(1)            | -1(1)           |
| C1  | 34(2)           | 31(1)           | 24(1)           | -1(1)           | -2(1)           | -1(1)           |
| C2  | 37(2)           | 30(1)           | 23(1)           | 1(1)            | -2(1)           | 2(1)            |
| C3  | 45(2)           | 37(2)           | 28(1)           | -5(1)           | 3(1)            | -3(2)           |
| C4  | 60(2)           | 40(2)           | 34(2)           | -6(1)           | 11(2)           | -8(2)           |
| C5  | 49(2)           | 38(2)           | 31(1)           | 2(1)            | 0(1)            | -2(2)           |
| C6  | 49(2)           | 31(2)           | 26(1)           | -1(1)           | 0(1)            | -2(1)           |
| C7  | 36(2)           | 29(1)           | 25(1)           | -3(1)           | 1(1)            | -2(1)           |
| C8  | 35(2)           | 26(1)           | 33(1)           | 0(1)            | 3(1)            | -4(1)           |
| С9  | 43(2)           | 42(2)           | 38(2)           | 2(1)            | 11(2)           | -2(2)           |
| C10 | 41(2)           | 34(2)           | 42(2)           | -1(1)           | 7(1)            | 4(1)            |
| C11 | 41(2)           | 40(2)           | 43(2)           | -4(1)           | -2(2)           | -7(2)           |
| C12 | 37(2)           | 31(2)           | 24(1)           | 1(1)            | 2(1)            | 0(1)            |
| C13 | 39(2)           | 32(2)           | 22(1)           | -2(1)           | 0(1)            | 2(1)            |
| C14 | 41(2)           | 37(2)           | 32(2)           | -3(1)           | 2(1)            | 1(1)            |
| C15 | 50(2)           | 41(2)           | 47(2)           | -11(2)          | -4(2)           | -3(2)           |
| C16 | 70(2)           | 46(2)           | 37(2)           | -17(2)          | -8(2)           | 6(2)            |
| C17 | 58(2)           | 50(2)           | 28(2)           | -5(1)           | 4(2)            | 9(2)            |
| C18 | 44(2)           | 42(2)           | 26(1)           | 1(1)            | 4(1)            | 4(2)            |
|     |                 |                 |                 |                 |                 |                 |

Table 4. Anisotropic displacement parameters(Ųx 10³) for 14j. The anisotropic displacement factorexponent takes the form: $-2p^2$ [ h² a\*²U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

|      | X     | У     | Z    | U(eq) |
|------|-------|-------|------|-------|
| H1   | 150   | 2913  | 5973 | 37    |
| H1A  | 3368  | 3780  | 6531 | 35    |
| H2   | -1620 | 4455  | 6550 | 36    |
| H3A  | 1782  | 4545  | 7179 | 44    |
| H3B  | 485   | 5938  | 6999 | 44    |
| H4A  | -1403 | 5261  | 7593 | 54    |
| H4B  | -3214 | 5085  | 7239 | 54    |
| H5A  | -4203 | 2702  | 7007 | 47    |
| H5B  | -2927 | 1311  | 7190 | 47    |
| H6A  | -1332 | 1889  | 6559 | 42    |
| H6B  | 669   | 1938  | 6887 | 42    |
| H9A  | 7046  | 7418  | 5973 | 61    |
| H9B  | 6377  | 9108  | 5971 | 61    |
| H9C  | 4576  | 7938  | 5798 | 61    |
| H10A | 1298  | 8736  | 6259 | 58    |
| H10B | 2955  | 9966  | 6441 | 58    |
| H10C | 1766  | 8776  | 6717 | 58    |
| H11A | 5636  | 8065  | 6989 | 62    |
| H11B | 7015  | 9203  | 6721 | 62    |
| H11C | 7712  | 7518  | 6711 | 62    |
| H14  | -308  | 795   | 5696 | 44    |
| H15  | -845  | -910  | 5185 | 55    |
| H16  | 2033  | -1157 | 4699 | 61    |
| H17  | 5480  | 258   | 4721 | 54    |
| H18  | 6112  | 1896  | 5239 | 45    |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **14j**.

Table 6. Torsion angles  $[\circ]$  for 14j.

\_

| 01-C5-C6-C2     | -54.8(3)  |
|-----------------|-----------|
| O4-C12-C13-C14  | 151.3(3)  |
| O4-C12-C13-C18  | -26.8(4)  |
| N1-C1-C2-C3     | 172.4(2)  |
| N1-C1-C2-C6     | 51.4(3)   |
| N1-C1-C7-O2     | 38.2(4)   |
| N1-C1-C7-O3     | -143.3(2) |
| N1-C12-C13-C14  | -27.1(4)  |
| N1-C12-C13-C18  | 154.8(3)  |
| C1-N1-C12-O4    | -0.1(4)   |
| C1-N1-C12-C13   | 178.3(2)  |
| C1-C2-C3-C4     | -175.5(3) |
| C1-C2-C6-C5     | 173.7(2)  |
| C2-C1-C7-O2     | -85.7(3)  |
| C2-C1-C7-O3     | 92.8(3)   |
| C2-C3-C4-O1     | 59.4(4)   |
| C3-C2-C6-C5     | 50.7(3)   |
| C4-O1-C5-C6     | 59.0(3)   |
| C5-O1-C4-C3     | -61.5(4)  |
| C6-C2-C3-C4     | -52.8(3)  |
| C7-O3-C8-C9     | -62.4(3)  |
| C7-O3-C8-C10    | 62.3(3)   |
| C7-O3-C8-C11    | 179.3(2)  |
| C7-C1-C2-C3     | -64.7(3)  |
| C7-C1-C2-C6     | 174.3(2)  |
| C8-O3-C7-O2     | 0.9(4)    |
| C8-O3-C7-C1     | -177.6(2) |
| C12-N1-C1-C2    | -151.5(3) |
| C12-N1-C1-C7    | 84.6(3)   |
| C12-C13-C14-C15 | -176.3(3) |
| C12-C13-C18-C17 | 177.6(3)  |
| C13-C14-C15-C16 | -1.8(5)   |
| C14-C13-C18-C17 | -0.6(5)   |
| C14-C15-C16-C17 | 0.4(5)    |
| C15-C16-C17-C18 | 0.9(5)    |
| C16-C17-C18-C13 | -0.8(5)   |
|                 |           |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 14j [Å and °].

| D-HA | d(D-H) | d(HA) | d(DA) | <(DHA) |
|------|--------|-------|-------|--------|
|      |        |       |       |        |















S33



S34





































































































