Supporting Information

Base mediated 7-*exo-dig* intramolecular cyclization of Ugi-Propargyl precursors: Highly efficient and regioselective synthetic approach toward diverse 1, 4-benzoxazepine-5(2H)-ones

Shashi Pandey,^a S. Vinod Kumar,^a Ruchir Kant^b and Prem M. S. Chauhan^a*

^aMedicinal and Process Chemistry Division and ^bMolecular and Structural Biology Division, CSIR-Central Drug Research Institute,Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031, India *Email: Premsc58@hotmail.com, prem_chauhan_2000@yahoo.com

Table of Contents

1.	General information	S2
2.	General procedures	S3
3.	Characterization of compounds	S4-S29
4.	Crystallographic data for compound 6d and 6i	S30-S32
5.	Copies of ¹ H, and ¹³ C NMR spectra	S33-S70

General information: All chemicals and reagents were purchased from commercial sources and were used without further purification. 100-200 mesh silica gel was used for column chromatography, and TLC was performed on Merck-precoated silica gel 60-F254. Melting points were recorded with COMPLAB melting point apparatus and are uncorrected. All the synthesized compounds were fully characterized by ¹H, ¹³CNMR, IR, and further confirmed through ESI-MS, ESI-HRMS analysis. IR spectra were recorded on a Perkin-Elmer FT-IR RXI spectrophotometer and values reported in cm⁻¹. NMR spectra were recorded with 400 MHz spectrometers for ¹H NMR, 100 MHz for ¹³C NMR using CDCl₃, DMSO-d₆ as solvent and tetramethylsilane as internal standard. Chemical shifts are reported in parts per million. Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), multiplet (m), and broad singlet (br s). ESI-MS spectra were obtained on a LCQ Advantage Ion trap mass spectrometer (Finnigan thermo fischer scientific) and High-resolution mass spectra (ESI-HRMS) were recorded on Agilent 6520 ESI-QTOF mass spectrometer. Crystallographic data for the X ray crystal structure analysis of **6d and 6i**, reported in this manuscript have been deposited with the Cambridge Crystallographic Data Center (CCDC) as supplementary publication, CCDC No. 984887 and 984705 respectively.

General procedure for the preparation of ugi-propargyl adduct 5(a-t).

A solution of benzaldehyde (1.0 mmol), propargylamine (1.0 mmol), 2 hydroxy benzoic acid (1.0 mmol), isocyanide (1.0 mmol) in MeOH (3mL) was stirred at rt for 18-24 hrs. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluent: hexane/ EtOAc) to afforded Ugi-Propargyl products **5(a-t)**.

General procedure for the preparation of 1,4-benzoxazepine-5(2H)-one 6(a-t).

To a solution of 5(0.5 mmol) in DMF (1.5-2.0 mL) s added K₂CO₃ (2.0 equiv.) and stirred the reaction at 90 °C for 2h. After completion of the reaction as indicated by TLC, the resulting reaction mixture was quenched with water (5 mL), and then extracted three times with EtOAc (20 mL × 3). The combined organic layers were washed with water (20 mL × 3) and brine (20 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuum. The crude thus obtained was purified by column chromatography on silica gel (eluent: hexane/ EtOAc) to afford desired products **6(a-t)**.

N-(2-(tert-butylamino)-1-(4-chlorophenyl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl)

White solid; Yield 80%; Mp: 143-144 °C; IR (KBr) v_{max} : 3365, 3305, 1637, 1216cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.36(br s, 1H), 7.57-7.54(m, 1H), 7.43-7.36(m, 4H), 7.35-7.31(m, 1H), 6.99(dd, 1H, *J*= 0.8 Hz, *J*=8.3 Hz), 6.91-6.87(m, 1H), 5.82(s, 1H), 5.70(s, 1H), 4.22-4.11(m, 2H), 2.10(t, 1H, *J* = 2.4), 1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =172.4, 168.2, 157.1, 135.0, 132.9, 132.5, 131.4, 129.1, 127.8, 119.4, 118.3, 117.8, 78.9, 72.9, 63.9, 52.1, 38.3, 28.5; HRMS (ESI TOF (+))calcd for [C₂₂H₂₃ClN₂O₃ + H⁺] 399.1470 found 399.1449.

N-(1-(4-bromophenyl)-2-(tert-butylamino)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl) benzamide 5b

White solid; Yield 76% ; Mp: 138-139 °C; IR (KBr) v_{max} : 3419, 3306, 1630, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.37(br s, 1H), 7.57-7.53(m, 3H), 7.37(d, 3H, *J* = 7.3 Hz), 7.00(d, 1H, *J* = 8.3 Hz), 6.91-6.88(m, 1H), 5.81(s, 1H), 5.68(s, 1H), 4.23-4.12(m, 2H), 2.10(s, 1H), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =172.5, 168.2, 157.2, 133.1, 132.9, 132.1, 131.7, 127.8, 123.2,

119.4, 118.3, 117.8, 78.9, 72.9, 64.0, 52.2, 38.4, 28.5; HRMS (ESI TOF (+)) calcd for $[C_{22}H_{23}BrN_2O_3 + H^+]$ 443.0965 found 443.0946.

N-(2-(tert-butylamino)-1-(4-fluorophenyl)-2-oxoethyl)-2-hydroxy-N-(prop-2-yn-1-yl) benzamide 5c

White solid; Yield 73%; Mp: 105-106 °C; IR (KBr) v_{max} : 3420, 3307, 1631, 1216cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.42$ (br s, 1H), 7.58(dd, 1H, J = 1.1 Hz, J = 7.7 Hz), 7.48-7.45(m, 2H), 7.38-7.33(m, 1H), 7.12-7.08(m, 2H),7.01 (dd, 1H, J = 0.8 Hz, J = 8.3Hz), 6.91-6.87(m, 1H), 5.73(s, 2H), 4.23-4.12(m, 2H), 2.07(t, 1H, J = 2.4), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.5$, 168.5, 164.3, 161.8, 157.2, 132.9, 132.1, 132.0, 129.9, 129.8, 127.8, 119.3, 118.4, 117.9, 116.1, 115.8, 79.0, 72.7, 63.8, 52.2, 38.2, 28.6; ESI-MS: m/z 405 [M+Na]⁺.

N-(2-(tert-butylamino)-1-(4-nitrophenyl)-2-oxoethyl)-2-hydroxy-N-(prop-2-yn-1-yl) benzamide 5d

White solid; Yield 72% ; Mp: 172-173 °C; IR (KBr) v_{max} : 3418, 3306, 1635, 1216 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ = 9.24(br s, 1H), 8.26-8.24(m, 2H), 7.70(d, 2H, *J* = 8.6 Hz), 7.63 (dd, 1H, *J*= 1.3 Hz, *J* = 7.8 Hz), 7.41-7.37(m, 1H),7.02 (dd, 1H, *J* = 0.7 Hz, *J* = 8.3Hz), 6.94-6.90(m, 1H), 6.02(br s, 1H), 5.73(s, 1H), 4.35-4.18(m, 2H), 2.16(t, 1H, *J* = 2.4), 1.39(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.7, 167.4, 157.6, 147.9, 141.5, 133.4, 130.6, 127.8, 123.8, 119.5, 118.0, 117.6, 78.5, 73.6, 64.0, 52.3, 39.2, 28.5; ESI-MS: m/z 432 [M+Na]⁺.

N-(2-(tert-butylamino)-2-oxo-1-phenylethyl)-2-hydroxy-N-(prop-2-yn-1-yl) benzamide 5e

White solid; Yield 88%; Mp: 83-84°C; IR (KBr) v_{max} : 3419, 3307, 1630, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.44$ (br s, 1H), 7.58(d, 1H, J = 7.7Hz), 7.48-7.37(m, 5H), 7.35-7.33(m, 1H), 7.01(dd, 1H, J = 0.9 Hz, J = 8.3 Hz), 6.91-6.87(m, 1H), 5.78(s, 1H), 5.74(br s, 1H), 4.21-4.11(m, 2H), 2.05(t, 1H, J = 2.4), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.4$, 168.6, 157.1, 134.0, 132.7, 130.1, 128.9, 127.8, 119.3, 117.8, 79.0, 76.7, 72.4, 64.7, 52.1, 38.0, 28.5; ESI-MS: m/z 365 [M+H]⁺.

N-(2-(tert-butylamino)-2-oxo-1-(p-tolyl)ethyl)-2-hydroxy-N-(prop-2-yn-1-yl)benzamide 5f

White solid; Yield 72% ; Mp: 77-78°C; IR (KBr) v_{max} : 3415, 3307, 1631, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.44$ (br s, 1H), 7.54(d, 1H, J = 6.1 Hz), 7.34-7.31(m, 3H), 7.21(d, 2H, J = 7.8 Hz), 6.98(d, 1H, J = 8.1 Hz), 6.89-6.86(m, 1H), 5.77(s, 1H), 5.74(br s, 1H), 4.11(s, 2H), 2.37(s, 3H), 2.06(t, 1H, J = 2.2 Hz), 1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.3$, 168.9, 157.1, 138.9, 132.7, 130.8, 130.0, 129.7, 127.8, 119.3, 118.8, 117.8, 79.2, 72.4, 64.7, 52.1, 38.0, 28.6, 21.2; ESI-MS: m/z 379 [M+H]⁺.

N-(2-(tert-butylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl) benzamide 5g

White solid; Yield 78%; Mp: 155-156°C; IR (KBr) v_{max} : 3411, 3307, 1630, 1179 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.46(br s, 1H), 7.55 (dd, 1H, J = 1.1 Hz, J =7.7 Hz), 7.39(d, 2H, J = 8.7 Hz), 7.36-7.31(m, 1H), 6.99(dd, 1H, J = 0.9 Hz, J = 8.4 Hz), 6.93-6.91(m, 2H), 6.90-6.86(m, 1H), 5.74(s, 1H), 5.71(s, 1H), 4.12(d, 2H, J = 2.4 Hz), 3.83(s, 3H), 2.06(t, 1H, J = 2.4 Hz),

1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =172.2, 168.9, 160.0, 156.8, 132.6, 131.5, 127.7, 125.8, 119.3, 118.9, 117.7, 114.3, 79.2, 72.3, 64.1, 55.3, 52.0, 37.7, 28.5; HRMS (ESI TOF (+)) calcd for [C₂₃H₂₆N₂O₄ + H⁺] 395.1965 found 395.1951

N-(2-(tert-butylamino)-1-(3,4-dimethoxyphenyl)-2-oxoethyl)-2-hydroxy-N-(prop-2-yn-1-

White solid; Yield 68%); Mp: 195-196°C; IR (KBr) v_{max} : 3415, 3020, 1635, 1260 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.57(br s, 1H), 7.57(d, 1H, *J* = 7.64Hz), 7.37-7.32(m, 1H), 7.00-6.98(m, 3H), 6.90-6.87(m, 2H), 5.75(s, 1H), 5.68(br s, 1H), 4.14-4.13(m, 2H), 3.91(s, 3H), 3.88(s, 3H), 2.07(t, 1H, *J* = 2.3 Hz), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.2, 168.8, 156.6, 149.5, 149.1, 132.5, 127.7, 126.0, 122.7, 119.2, 118.9, 117.6, 113.2, 111.1, 79.4, 72.3, 64.2, 55.9, 55.8, 52.0, 37.6, 28.5; ESI-MS: m/z 447 [M+Na]⁺.

N-(2-(tert-butylamino)-1-(naphthalen-1-yl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl) benzamide 5i

White solid; Yield 82%; Mp: 130-131°C; IR (KBr) v_{max} : 3417, 3307, 1632, 1217 cm¹;¹H NMR (400 MHz, CDCl₃) δ = 9.62(br s, 1H), 7.95-7.88(m, 3H), 7.68(d, 1H, *J* = 7.0 Hz), 7.61-7.50(m, 4H), 7.38-7.33(m, 1H), 7.04(d, 1H, *J* = 8.2 Hz), 6.86-6.82(m, 1H), 6.73(br s, 1H), 5.61(s, 1H), 4.28-4.07(m, 2H), 2.04(s, 1H), 1.41(s, 9H);¹³C NMR (100 MHz, CDCl₃) δ = 172.5, 169.3, 157.5, 133.6, 133.1, 132.9, 130.1, 128.8, 128.1, 127.8, 127.2, 126.2, 125.2, 122.9, 119.1, 118.2, 117.8, 78.8, 71.5, 59.5, 52.2, 37.6, 31.9, 28.6; ESI-MS: m/z 437 [M+Na]⁺.

N-(2-(tert-butylamino)-1-(3-chlorophenyl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl) benzamide 5j

White solid; Yield 84%; Mp: 121-122 °C; IR (KBr) v_{max} : 3421, 3019, 1647, 1216 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.36$ (br s, 1H), 7.60(dd, 1H, J = 1.1 Hz, J = 7.7 Hz), 7.48(s, 1H), 7.38-7.34(m, 4H), 7.01(dd, 1H, J = 0.8 Hz, J = 8.3 Hz), 6.92-6.88(m, 1H), 5.82(s, 1H), 5.70(s, 1H), 4.24-4.13(m, 2H), 2.11(t, 1H, J = 2.4), 1.38(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.4$, 168.0, 157.1, 136.0, 134.7, 132.9, 130.3, 130.1, 129.0, 128.0, 127.8, 119.4, 118.3, 117.8, 78.8, 72.8, 64.0, 52.2, 38.3, 28.5; ESI-MS: m/z 399 [M+H]⁺.

N-(2-(tert-butylamino)-1-(2-nitrophenyl)-2-oxoethyl)-2-hydroxy-N-(prop-2-yn-1-yl)

benzamide 5k

White solid; Yield 70%; Mp: 111-112 °C; IR (KBr) v_{max} : 3403, 3019, 1631, 1215 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.06$ (dd, 1H, J = 1.2 Hz, J = 8.1 Hz), 7.75(dd, 1H, J = 1.2 Hz, J = 7.8 Hz), 7.70-7.66(m, 1H), 7.59-7.55(m, 2H), 7.39-7.34(m, 1H), 7.02(dd, 1H, J = 0.9 Hz, J = 8.3 Hz), 6.89-6.86(m, 1H), 6.36(s, 1H), 5.90(br s, 1H), 4.29-4.28(m, 2H), 2.11(t, 1H, J = 2.4 Hz), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.9$, 167.0, 157.5, 150.1, 133.5, 133.2, 130.5, 129.7, 129.4, 127.8, 125.3, 119.4, 117.8, 117.7, 78.5, 72.9, 60.7, 52.2, 38.5, 28.4; ESI-MS: m/z 410 [M+H]⁺.

N-(1-(2-bromophenyl)-2-(tert-butylamino)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1yl)benzamide 5l

White solid; Yield 80%; Mp: 168-169 °C; IR (KBr) v_{max} : 3389, 1649, 1217, 1146 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.47$ (br s, 1H), 7.59-7.55(m, 3H), 7.38-7.33(m, 2H), 7.26(s, 1H), 7.0-

6.98(m, 1H), 6.87-6.84(m, 1H), 6.00(s, 1H), 5.82-5.75(m, 1H), 4.38-4.01(m, 2H), 1.93(s, 1H), 1.39(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.9, 168.3, 158.2, 133.8, 133.2, 133.0, 131.1, 130.6, 127.9, 127.8, 127.4, 118.9, 117.8, 117.6, 78.5, 77.3, 71.8, 63.4, 52.2, 37.6, 28.5; ESI-MS: m/z 443 [M+H]⁺.

N-(2-(tert-butylamino)-1-(furan-2-yl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl)benzamide 5m

White solid; Yield 86%; Mp: 105-106 °C; IR (KBr) ν_{max} : 3416, 3307, 1630, 1216 cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.45(br s, 1H), 7.59(s, 1H), 7.48(s, 1H), 7.36-7.33(m, 1H), 6.99(d, 1H, *J* = 6.4 Hz), 6.90-6.87(m, 1H), 6.61(s, 1H), 6.42(s, 1H), 5.92(s, 1H), 5.84(s, 1H), 4.31-4.21(m, 2H), 2.10(s, 1H), 1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =172.2, 166.4, 157.6, 147.5, 143.3, 133.0, 127.9, 119.2, 117.8, 117.8, 112.6, 111.1, 78.6, 57.4, 52.1, 38.0, 28.5; ESI-MS: m/z 355 [M+H]⁺.

N-(2-(tert-butylamino)-2-oxo-1-(pyridin-4-yl)ethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl) benzamide 5n

White solid; Yield 84%; Mp: 93-94 °C; IR (KBr) v_{max} : 3399, 3019, 1632, 1216 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.64(d, 2H, J = 5.1 \text{ Hz})$, 7.587(d, 1H, J = 7.4 Hz), 7.44(d, 2H, J = 5.6 Hz), 7.38-7.34(m, 1H), 7.00(dd, 1H, J = 0.8 Hz, J = 8.3 Hz), 6.94-6.90(m, 1H), 6.25(s, 1H), 5.64(s, 1H), 4.32-4.15(m, 2H), 2.19(t, 1H, J = 2.4 Hz), 1.38(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.3$, 166.9, 156.6, 149.6, 144.1, 132.9, 130.7, 128.0, 124.5, 119.7, 118.9, 117.6, 78.5, 73.5, 63.8, 52.2, 38.8, 28.5; ESI-MS: m/z 366 [M+H]⁺.

N-(2-(tert-butylamino)-1-(3,4-dimethoxyphenyl)-2-oxoethyl)-3-chloro-2-hydroxy-*N*-(prop-2 -yn-1-yl)benzamide 50

White solid; Yield 88%; Mp: 195-196 °C; IR (KBr) v_{max} : 3411, 3020, 1650, 1264, 1215, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.45$ (br s, 1H), 7.48(s, 1H), 7.27(s, 1H), 6.99(s, 2H), 6.92-6.87(m, 2H), 5.74(s, 1H), 5.65(s, 1H), 4.07(s, 2H), 3.90(s, 3H), 3.87(s, 3H), 2.08(s, 1H), 1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.6$, 168.9, 154.8, 149.8, 149.3, 132.3, 127.2, 125.6, 124.2, 122.9, 120.6, 119.2, 113.3, 111.2, 78.9, 72.5, 64.2, 55.9, 55.9, 52.3, 37.4, 28.5; ESI-MS: m/z 459 [M+H]⁺.

N-(2-(tert-butylamino)-1-(4-chlorophenyl)-2-oxoethyl)-2-hydroxy-3-methoxy-N-(prop-2-yn-

1-yl)benzamide 5p

White solid; Yield 82%; Mp: 65-67 °C; IR (KBr) v_{max} : 3406, 3020, 1644, 1216, 1073 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.30(m, 4H), 6.98-6.87(m, 3H), 6.27(s, 1H), 5.81(br s, 1H), 4.14-3.94(m, 2H), 3.90(s, 3H), 2.05(s, 1H), 1.38(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.3, 167.7, 147.3, 143.5, 134.5, 132.9, 131.2, 128.8, 120.7, 120.2, 119.7, 112.8, 78.9, 72.6, 63.4, 56.1, 51.9, 37.0, 28.5; ESI-MS: m/z 429 [M+H]⁺.

N-(1-(4-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl)-2-hydroxy-N-(prop-2-yn-1-

yl)benzamide 5q

White solid; Yield 85% (402 mg); Mp: 77-78 °C; IR (KBr) v_{max} : 3415, 3021, 1636, 1216 cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.34(br s, 1H), 7.53(d, 1H, *J* = 7.3 Hz), 7.42-7.30(m, 5H), 6.97(dd, 1H, *J* = 0.8 Hz, *J* = 8.3 Hz), 6.91-6.87(m, 1H), 6.05(br s, 1H), 5.78(s, 1H), 4.22-4.08(m, 2H),

3.87-3.79(m, 1H), 2.11(t, 1H, J = 2.3 Hz), 1.92-1.83(m, 2H), 1.69-1.57(m, 3H), 1.38-1.27(m, 2H), 1.19-1.11(m, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.4$, 168.0, 157.1, 135.0, 132.9, 132.5, 131.4, 129.1, 127.8, 119.4, 118.3, 117.8, 78.8, 72.9, 63.6, 49.0, 38.3, 32.7, 25.3, 24.7, 24.6 ESI-MS: m/z 425 [M+H]⁺.

N-(2-(cyclohexylamino)-1-(3,4-dimethoxyphenyl)-2-oxoethyl)-2-hydroxy-*N*-(prop-2-yn-1yl)benzamide 5r

White solid; Yield 88%; Mp: 218-219 °C; IR (KBr) v_{max} : 3410, 3261, 1650, 1627, 1269 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.37$ (br s, 1H), 7.56(d, 1H J = 7.6 Hz), 7.36-7.32(m, 1H), 7.07-6.98(m, 3H), 6.90-6.86(m, 2H), 5.81(s, 1H), 5.79(d, 1H J = 7.8 Hz), 4.19-4.08(m, 2H), 3.90-3.87(m, 7H), 2.11(t, 1H, J = 2.3 Hz), 1.96-1.92(m, 2H), 1.67-1.59(m, 3H), 1.41-1.32(m, 2H), 1.25-1.19(m,3H); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 167.2$, 152.4, 148.0, 147.8, 129.7, 127.2, 123.2, 120.4, 118.5, 115.2, 112.6, 110.8, 80.2, 78.6, 54.9, 54.8, 47.1, 31.6, 31.5, 24.6, 23.9, 23.9 ESI-MS: m/z 473 [M+Na]⁺.

N-(1-(4-chlorophenyl)-2-oxo-2-((2,4,4-trimethylpentan-2-yl)amino)ethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl)benzamide 5s

White solid; Yield 78%; Mp: 118-119 °C; IR (KBr) v_{max} : 3422, 3019, 1648,1215 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.40$ (br s, 1H), 7.50(d, 1H, J = 7.7 Hz), 7.44(d, 2H, J = 8.4 Hz), 7.36-7.26(m, 3H), 6.95(d, 1H, J = 8.3 Hz), 6.88(t, 1H, J = 7.5 Hz), 5.98(br s, 1H), 5.68(s, 1H), 4.14(s, 2H), 2.09(t, 1H, J = 2.4 Hz), 1.76-1.61(m, 2H), 1.42(s, 3H), 1.39(s, 3H), 0.92(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.1$, 167.8, 156.6, 134.8, 132.7, 132.6, 131.4, 129.0, 128.8, 127.8, 119.3, 118.7, 117.6, 78.7, 72.9, 64.1, 56.1, 52.2, 38.4, 31.4, 28.7, 28.3; ESI-MS: m/z 455 [M+H]⁺.

N-(1-(3,4-dimethoxyphenyl)-2-oxo-2-((2,4,4-trimethylpentan-2-yl)amino)ethyl)-2-hydroxy-*N*-(prop-2-yn-1-yl)benzamide 5t

White solid; Yield 74%; Mp: 166-167 °C; IR (KBr) v_{max} : 3409, 3024, 1637, 1215 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 9.49(br s, 1H), 7.56(dd, 1H, J = 1.2 Hz, J = 7.7 Hz), 7.36-7.32(m, 1H), 7.07-6.98(m, 3H), 6.90-6.86(m, 2H), 5.68(s, 2H), 4.16-4.15(m, 2H), 3.91(s, 3H), 3.88(s, 3H), 2.09(t, 1H, J = 2.3 Hz), 1.83(d, 1H, J = 14.9 Hz), 1.58(d, 1H, J = 14.9 Hz), 1.45(s, 3H), 1.41(s, 3H), 3.91(s, 3H), 3.91

3H), 0.94(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =172.1, 168.4, 156.9, 149.6, 149.2, 132.6, 127.7, 126.1, 122.9, 119.2, 118.8, 117.7, 113.2, 111.1, 79.2, 72.5, 64.7, 56.1, 55.9, 55.8, 52.4, 38.2, 31.5, 31.4, 28.8, 28.4; ESI-MS: m/z 481 [M+H]⁺.

N-(tert-butyl)-2-(4-chlorophenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)acetamide 6a

White solid; Yield 92%; Mp: 170-171 °C; IR (KBr) v_{max} : 3423, 3019, 1637, 1215, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.85(dd, 1H, *J* = 1.6 Hz, *J* = 7.8 Hz), 7.47-7.43(m, 1H), 7.39-7.33(m, 4H), 7.22-7.18(m, 1H), 7.02(dd, 1H, *J* = 0.8 Hz, *J* = 8.1 Hz), 6.32(s, 1H), 5.95(br s, 1H), 4.28(d, 1H, *J* = 1.4 Hz), 4.03(s, 2H), 3.46(d, 1H, *J* = 1.4 Hz), 1.37(s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ = 168.1, 158.2, 152.3, 134.6, 133.4, 133.3, 131.6, 130.8, 128.9, 125.2, 124.1, 120.7, 91.3, 60.1, 51.9, 45.1, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₃ClN₂O₃ + H⁺] 399.1470 found 399.1469

2-(4-bromophenyl)-*N*-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4 (5H)-yl)acetamide 6b

White solid; Yield 94% ; Mp: 135-136 °C; IR (KBr) v_{max} : 3423, 3020, 1632, 1215, 1156 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.85(dd, 1H, J = 1.6 Hz, J = 7.8 Hz), 7.52(d, 2H, J = 8.4 Hz), 7.47-7.43(m, 1H), 7.32(d, 2H, J = 8.4 Hz), 7.22-7.18(m, 1H), 7.03(d, 1H, J = 8.1 Hz), 6.29(s, 1H), 5.95(br s, 1H), 4.30(s, 1H), 4.03(s, 2H), 3.50(s, 1H), 1.37(s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ = 168.1, 168.0, 158.1, 152.3, 133.8, 133.4, 131.9, 131.6, 131.1, 128.6, 125.2, 124.1, 122.7, 120.8, 91.3, 60.3, 52.0, 45.1, 28.6; HRMS (ESI TOF (+)) calcd for[C₂₂H₂₃BrN₂O₃ + H⁺] 443.0965 found 443.0965

N-(tert-butyl)-2-(4-fluorophenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)acetamide 6c

White solid; Yield 90%; Mp: 205-206 °C; IR (KBr) v_{max} : 3423, 3322, 1632, 1335, 1219, cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.86(dd, 1H, J = 1.7 Hz, J= 7.8 Hz), 7.46-7.41(m, 3H), 7.21-7.17(m, 1H), 7.08-7.04(m, 2H), 7.02(dd, 1H, J = 1.0 Hz, J= 8.1 Hz), 6.33(s, 1H), 5.93(br s, 1H), 4.26(d, 1H, J = 1.5 Hz), 4.03(s, 2H), 3.43(d, 1H, J = 1.5 Hz), 1.37(s, 9H);¹³C NMR (100 MHz,

CDCl₃) δ = 168.3, 168.0, 164.0, 161.5, 158.3, 152.3, 133.3, 131.7, 131.4, 131.3, 130.6, 125.3, 124.1, 120.7, 115.8, 115.6, 91.1, 60.1, 52.0, 45.0, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₃FN₂O₃ + H⁺] 383.1765 found 383.1765

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(4-nitro phenyl)acetamide)acetamide 6d

White solid; Yield 80%; Mp: 169-170 °C; IR (KBr) v_{max} : 3424, 3019, 1648, 1215, 1071cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.24$ (d, 2H, J = 8.8 Hz), 7.88(dd, 1H, J = 1.6 Hz, J = 7.8 Hz), 7.64(d, 2H, J = 8.4 Hz), 7.51-7.47(m, 1H), 7.24-722(m, 1H), 7.06(dd, 1H, J = 0.9 Hz, J = 8.2 Hz), 6.38(s, 1H), 6.07(br s, 1H), 4.37(d, 1H, J = 1.5 Hz), 4.07(s, 2H), 3.64(d, 1H, J = 1.5 Hz), 1.40(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.4$, 167.2, 157.9, 152.3, 147.8, 142.0, 133.8, 131.6, 130.1, 124.9, 124.4, 123.7, 121.0, 92.0, 60.2, 52.2, 45.5, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₃N₃O₅ + H⁺] 410.1710 found 410.1710

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-phenyl acetamide 6e

White solid; Yield 86%; Mp: 165-166 °C; IR (KBr) v_{max} : 3420, 3021, 1637, 1328, 1216cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.88(dd, 1H, J = 1.7 Hz, J = 7.8 Hz), 7.45-7.36(m, 6H), 7.21-7.17(m, 1H), 7.01(dd, 1H, J = 0.8 Hz, J = 8.1 Hz), 6.36(s, 1H), 5.84(br s, 1H), 4.21(d, 1H, J = 1.4 Hz), 4.03(s, 2H), 3.33(d, 1H, J = 1.4 Hz), 1.38(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =168.5, 167.9, 158.2, 152.1, 134.8, 133.1, 131.7, 139.5, 129.5, 128.7, 128.5, 125.3, 123.9, 120.6, 90.7, 60.8, 51.8, 45.0, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₄N₂O₃ + H⁺] 365.1860 found 365.1862

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(p-tolyl) acetamide 6f

White solid; Yield 84%; Mp: 82-83 °C; IR (KBr) v_{max} : 3429, 3019, 1648,1215, 1157 cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.89(dd, 1H, *J* = 1.3 Hz, *J* = 6.3 Hz),7.45-7.41(m, 1H), 7.32(d, 2H,

J= 6.4 Hz), 7.21-7.18(m, 3H), 7.00(d, 1H, J = 6.5 Hz), 6.28(s, 1H), 5.71(br s, 1H), 4.22(d, 1H, J = 0.7 Hz), 4.05-3.96(m, 2H), 3.33(d, 1H, J = 0.8 Hz), 2.36(s, 3H), 1.38(s, 9H);¹³C NMR (100 MHz, CDCl₃) δ =168.7, 167.9, 158.3, 152.3, 138.5, 133.2, 131.8, 131.6, 129.6, 129.4, 125.4, 124.0, 120.6, 90.8, 60.9, 51.9, 45.0, 28.6, 21.1; HRMS (ESI TOF (+)) calcd for [C₂₃H₂₆N₂O₃ + H⁺] 379.2016 found 379.2019

N-(tert-butyl)-2-(4-methoxyphenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin -4(5H)-yl)acetamideCompound 6g

White solid; Yield 90%; Mp: 132-133 °C; IR (KBr) v_{max} : 3422, 3319, 1631,1334, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.88(dd, 1H, J = 1.6 Hz, J = 7.8 Hz), 7.45-7.41(m, 1H), 7.36(d, 2H, J = 8.5 Hz), 7.21-7.17(m, 1H), 7.01 (dd, 1H, J = 0.8 Hz, J = 8.1 Hz), 6.91(d, 2H, J = 8.7 Hz), 6.27(s, 1H), 5.76(br s, 1H), 4.23(s, 1H), 4.01(s, 2H), 3.82(s, 3H), 3.39(s, 1H), 1.37(s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ = 168.8, 167.8, 159.8, 158.4, 152.2, 133.1, 131.7, 130.9, 126.7, 125.4, 123.9, 120.6, 114.1, 90.8, 60.5, 55.3, 51.8, 44.9, 28.6;HRMS (ESI TOF (+)) calcd for [C₂₃H₂₆N₂O₄ + H⁺] 395.1965 found 395.1965

N-(tert-butyl)-2-(3,4-dimethoxyphenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4] oxazepin-4(5H)-yl)acetamide 6h

White solid; Yield 92% Mp: 157-158 °C; IR (KBr) v_{max} : 3323, 3016, 1632, 1261, 1220 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =7.90(d, 1H, J = 7.7 Hz), 7.46-7.42(m, 1H), 7.22-7.18(m, 1H), 7.02(d, 2H, J = 8.1 Hz), 6.93(s, 1H), 6.88 (d, 1H, J = 8.3 Hz), 6.24(s, 1H), 5.72(br s, 1H), 4.25(s, 1H), 4.03(s, 2H), 3.90(s, 3H), 3.85(s, 3H), 3.38(s, 1H), 1.39(s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ = 168.7, 167.9, 158.5, 152.3, 149.3, 149.1, 133.2, 131.7, 126.9, 125.4, 124.0, 121.8, 120.7, 112.9, 110.9, 90.7, 60.9, 55.9, 55.9, 51.8, 45.0, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₄H₂₈N₂O₅ + H⁺] 425.2071 found 425.2071

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(naphthalen-1-yl)acetamide 6i

White solid; Yield 92% ; Mp: 230-231 °C; IR (KBr) v_{max} : 3422, 3310, 1629, 1335,1217 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =7.98-7.94(m, 2H),7.92(d, 1H, J = 8.1 Hz), 7.88-7.84(m, 1H),

7.68(d, 1H, J = 7.0 Hz), 7.53-7.49(m, 3H), 7.43-7.39(m, 1H), 7.23-7.19(m, 1H), 7.00(s, 1H), 6.91-6.89(m, 1H), 5.64(s, 1H), 4.03(s, 2H), 3.63(d, 1H, J = 1.5 Hz), 2.64(d, 1H, J = 1.5 Hz), 1.42(s, 9H),¹³C NMR (100 MHz, CDCl₃) $\delta = 169.3$, 167.5, 157.7, 152.3, 133.5, 133.1, 132.7, 131.7, 131.1, 129.9, 128.7, 127.4, 127.2, 126.4, 125.3, 124.8, 123.9, 123.1, 120.6, 89.8, 57.9, 52.0, 44.9, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₆H₂₆N₂O₃ + H⁺] 415.2016 found 415.2016

N-(tert-butyl)-2-(3-chlorophenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)acetamide 6j

White solid; Yield 88%; Mp: 168-169 °C; IR (KBr) v_{max} : 3413, 3276, 1626, 1178 cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.87(dd, 1H, *J*= 1.3Hz, *J*= 6.2Hz), 7.47-7.44(m, 2H), 7.35-7.29(m, 3H), 7.22-7.19(m, 1H), 7.03(dd, 1H, *J* = 0.6 Hz, *J*= 6.5 Hz), 6.31(s, 1H), 5.91(br s, 1H), 4.32(d, 1H, *J* = 1.2 Hz), 4.08-4.01(m, 2H), 3.51(d, 1H, *J* = 1.2 Hz), 1.39(s, 9H);¹³C NMR (100 MHz, CDCl₃) δ = 168.1, 167.9, 158.2, 152.3, 136.8, 134.7, 133.4, 131.7, 130.0, 129.6, 128.7, 127.6, 125.2, 124.1, 120.8, 91.3, 60.3, 52.0, 45.2, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₃ClN₂O₃ + H⁺] 399.1470 found 399.1458

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(2nitrophenyl)acetamide 6k

White solid; Yield 76% Mp: 223-224 °C; IR (KBr) v_{max} : 3408, 3021, 1641, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02$ -7.8(m, 2H), 7.89-7.87(m, 4H), 7.24-7.06(m, 2H), 6.88(s, 1H), 6.04(s, 1H), 4.51(s, 1H), 4.06(s, 2H), 3.89(s, 1H), 1.36(s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.2$, 166.7, 157.6, 152.3, 149.9, 133.6, 132.9, 131.6, 130.1, 129.7, 129.2, 125.3, 124.9, 124.4, 120.9, 92.3, 59.3, 52.3, 45.6, 28.5; HRMS (ESI TOF (+)) calcd for [C₂₂H₂₃N₃O₅ + H⁺] 410.1710 found 410.1711

2-(2-bromophenyl)-*N*-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)acetamide 6l

White solid; Yield 90%; Mp: 225-226 °C; IR (KBr) v_{max} : 3418, 3293, 1722, 1316, cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.93(d, 1H, *J* = 5.8 Hz), 7.62-7.59(m, 2H), 7.45-7.38(m, 2H), 7.21(t, 2H, *J* = 5.6 Hz), 7.01(d, 1H, *J* = 6.3 Hz), 6.36(s, 1H), 5.75(br s, 1H), 4.16(s, 1H), 4.03(dd, 2H, *J* = 13.0 Hz, *J* = 36.7 Hz), 3.08(s, 1H), 1.39(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.5, 167.4,

158.2, 152.5, 134.2, 133.5, 133.3, 131.9, 130.7, 130.4, 127.5, 127.4, 125.2, 124.1, 120.8, 90.0, 61.3, 52.0, 45.1, 28.6; HRMS (ESI TOF (+)calcd for $[C_{22}H_{23}BrN_2O_3 + H^+]$ 443.0965 found 443.0961

N-(tert-butyl)-2-(furan-2-yl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)yl)acetamide 6m

White solid; Yield 86%; Mp: 123-124 °C; IR (KBr) v_{max} : 3412, 3019, 1633, 1382, 1215, 1069 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.86(dd, 1H, *J* = 1.7 Hz, *J* = 7.8 Hz), 7.47-7.43(m, 2H), 7.22-7.18(m, 1H), 7.03 (dd, 1H, *J* = 0.8 Hz, *J* = 7.4 Hz), 6.65(d, 1H, *J* = 3.3 Hz), 6.40-6.38(m, 1H), 6.34s, 1H), 5.93(br s, 1H), 4.39(d, 1H, *J* = 1.2 Hz), 4.14(dd, 2H, *J* = 16.0 Hz, *J* = 30.2 Hz), 3.71(d, 1H, *J* = 1.3 Hz), 1.35(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =167.8, 166.3, 157.9, 152.4, 148.5, 143.1, 133.4, 131.7, 125.0, 124.1, 120.8, 112.0, 110.5, 91.0, 55.1, 51.9, 44.9, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₀H₂₂N₂O₄ + H⁺] 355.1652 found 355.1642

N-(tert-butyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(pyridin-4-yl)acetamide 6n

White solid; Yield 78%; Mp: 192-193 °C; IR (KBr) v_{max} : 3422, 3019, 1682, 1637, 1215, 1071 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.63(br s, 2H), 7.86(dd, 1H, *J* = 1.7 Hz, *J* = 7.8 Hz), 7.50-7.46(m, 1H), 7.35(d, 2H, *J* = 3.9Hz), 7.24-7.20(m, 1H), 7.06(dd, 1H, *J* = 0.9 Hz, *J* = 8.1 Hz), 6.31(s, 1H), 6.16(br s, 1H), 4.38 (d, 1H, *J* = 1.5 Hz), 4.06(s, 2H), 3.67(d, 1H, *J* = 1.5 Hz), 1.39(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.4, 167.1, 157.8, 152.3, 150.1, 143.8, 133.6, 131.5, 124.9, 124.3, 120.9, 91.9, 59.9, 52.1, 45.5, 28.5; HRMS (ESI TOF (+)) calcd for [C₂₁H₂₃N₃O₃ + H⁺] 366.1812 found 366.1811

N-(tert-butyl)-2-(7-chloro-2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-2-(3,4-dimethoxyphenyl)acetamide 60

White solid; Yield 87%; Mp: 179-180 °C; IR (KBr) v_{max} : 3348, 3020, 1635, 1260, 1028° cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.84(s, 1H), 7.38-7.35(m, 1H), 6.99-6.85(m, 5H), 6.21(s, 1H), 5.78(s, 1H), 4.24(s, 1H), 4.02(d, 1H, *J* = 4.9 Hz), 3.88(s, 3H), 3.83(s, 3H), 3.36(s, 1H), 1.38(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =168.5, 166.5, 158.0, 150.8, 149.4, 149.1, 133.1, 131.3, 129.3, 126.6, 126.5, 122.2, 121.9, 112.9, 110.9, 91.3, 61.0, 56.0, 55.9, 51.9, 44.8, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₄H₂₇ClN₂O₅ + H⁺] 459.1681found 459.1691

N-(tert-butyl)-2-(4-chlorophenyl)-2-(9-methoxy-2-methylene-5-oxo-2, 3-dihydrobenzo-2-methylene-5-oxo-2, 3-dihydrobenzo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2, 3-dihydrobenzo-2-methylene-5-oxo-2-methylene-5-methylene-5-methylene-5-methylene-5-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-oxo-2-methylene-5-met

[f][1,4]oxazepin-4(5H)-yl)acetamide 6p

White solid; Yield 83%; Mp: 165-166 °C; IR (KBr) v_{max} : 3420, 3018, 1633, 1267, 1076 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.39-7.32(m, 5H), 7.16(t, 1H, *J* = 8.0 Hz), 7.06(dd, 1H, *J* = 1.4 Hz, *J*= 8.0 Hz), 6.31(s, 1H), 5.94(br s, 1H), 4.40(d, 1H, *J* = 1.6 Hz), 4.03(s, 2H), 3.85(s, 3H), 3.56(d, 1H, *J* = 1.6 Hz), 1.37(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.1, 168.0, 158.3, 150.8, 141.8, 134.5, 133.3, 130.7, 128.8, 126.7, 124.2, 122.5, 115.5, 91.7, 59.9, 56.4, 51.9, 45.2, 28.5; HRMS (ESI TOF (+)) calcd for [C₂₃H₂₅ClN₂O₄ + H⁺] 429.1576 found 429.1576

2-(4-chlorophenyl)-*N*-cyclohexyl-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4 (5H)-yl)acetamide 6q

White solid; Yield 91%; Mp: 188-189 °C; IR (KBr) v_{max} 3316, 3019, 1633, 1216, 1095cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.83(dd, 1H, J = 1.7 Hz, J = 7.8 Hz), 7.47-7.43(m, 1H), 7.38-7.32(m, 4H), 7.21(m, 1H), 7.03 (dd, 1H, J = 0.9 Hz, J = 8.1 Hz), 6.40(s, 1H), 6.20(d, 1H, J = 7.48 Hz), 4.31(d, 1H, J = 1.5 Hz), 4.04(s, 2H), 3.86-3.77(m, 1H), 3.53(d, 1H, J = 1.5 Hz), 1.93-1.89(m, 2H), 1.70-1.57(m, 3H), 1.36-1.28(m, 2H), 1.15-1.09(m, 3H; ¹³C NMR (100 MHz, CDCl₃) δ =168.1, 167.7, 158.1, 152.2, 134.5, 133.4, 133.2, 131.6, 130.7, 128.8, 125.1, 124.1, 120.8, 91.3, 59.7, 48.6, 45.1, 32.7, 32.6, 25.3, 24.7, 24.6; HRMS (ESI TOF (+)) calcd for [C₂₄H₂₅ClN₂O₃ + H⁺] 425.1626 found 425.1626

N-cyclohexyl-2-(3,4-dimethoxyphenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4] oxazepin-4(5H)-yl)acetamide 6r

White solid; Yield 88%; Mp: 246-247 °C; IR (KBr) v_{max} : 3420, 3021, 1633, 1216, cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.88(dd, 1H, *J* = 1.7 Hz, *J* = 7.8 Hz), 7.46-7.42(m, 1H), 7.22-7.18(m, 1H), 7.02-6.99(m, 2H), 6.94(d, 1H, *J* = 2.0Hz), 6.86(d, 1H, *J* = 8.3 Hz), 6.31(s, 1H), 5.87(d, 1H, *J* = 7.9 Hz), 4.28 (d, 1H, *J* = 1.3 Hz), 4.02(s, 2H), 3.89(s, 3H), 3.87-3.80(m, 4H), 3.45(dd, 1H, *J* = 1.4 Hz), 1.97-1.94(m, 2H), 1.73-1.59(m, 3H), 1.41-1.31(m, 2H), 1.22-1.12(m, 3H);¹³C NMR (100 MHz, CDCl₃) δ = 168.3, 168.0, 158.5, 152.2, 149.2, 149.0, 133.2, 131.6, 126.7, 125.4, 124.0, 121.7, 120.7, 112.8, 110.8, 90.8, 60.5, 55.9, 55.8, 48.5, 45.0, 32.8, 32.6, 25.3, 24.7, 24.6; HRMS (ESI TOF (+)) calcd for [C₂₆H₃₀N₂O₅ + H⁺] 451.2227 found 451.2227

2-(4-chlorophenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-N-

(2,4,4-trimethylpentan-2-yl)acetamide 6s

Semisolid; Yield 78%; IR (Neat) v_{max} : 3433, 3316, 1706, 1232 cm¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.85(d, 1H, J = 5.8 Hz), 7.45-7.20(m, 6H), 7.03(d, 1H, J = 6.2 Hz), 6.27(s, 1H), 6.00(br s, 1H), 4.32(s, 1H), 4.03(s, 2H), 3.53(s, 1H), 1.88(d, 1H, J = 11.8 Hz), 1.63(d, 1H, J = 11.7 Hz), 1.45(s, 3H), 1.42(s, 3H), 0.96(s, 9H); ¹³C NMR (100 MHz, CDCl₃) <math>\delta = 168.0, 167.6, 158.1, 152.3, 134.5, 133.4, 133.0, 131.6, 130.9, 128.8, 127.0, 125.2, 124.1, 120.8, 91.4, 60.3, 55.9, 51.9, 45.1, 31.6, 31.4, 29.6, 29.0, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₆H₃₁ClN₂O₃ + H⁺] 455.2096 found 455.2099$

2-(3,4-dimethoxyphenyl)-2-(2-methylene-5-oxo-2,3-dihydrobenzo[f][1,4]oxazepin-4(5H)-yl)-N-(2,4,4-trimethylpentan-2-yl)acetamide 6t

White solid; Yield 80%; Mp: 90-91 °C; IR (KBr) v_{max} : 3426, 3318, 1647,1178 cm¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.86(dd, 1H, J = 1.7 Hz, J = 7.8 Hz), 7.45-7.31(m, 1H), 7.21-7.17(m, 1H), 7.04-6.99(m, 2H), 6.95(s, 1H), 6.21(s, 1H), 5.86(br s, 1H), 4.26(d, 1H, J = 1.3 Hz), 4.08(dd, 2H, J = 16.2 Hz, J = 25.5 Hz), 3.88(s, 3H), 3.84(s, 3H), 3.43(d, 1H, J = 1.3 Hz), 1.92(d, 1H, J = 14.8 Hz), 1.61(d, 1H, J = 14.8 Hz), 1.46(s, 3H), 1.42(s, 3H), 0.97(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.2, 167.9, 158.5, 152.3, 149.2, 149.0, 133.2, 131.7, 126.7, 125.5, 124.0, 122.0, 120.7, 112.9, 110.9, 90.9, 61.0, 55.9, 55.9, 55.8, 52.1, 45.0, 31.6, 31.4, 29.0, 28.6; HRMS (ESI TOF (+)) calcd for [C₂₈H₃₆N₂O₅ + H⁺] 481.2697 found 481.2695

Crystallographic data for compound 6d

Figure 1 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **6d** determined at 293 K.

Crystallization: Crystals of compound **6d** were grown from the solvent ethyl acetate and hexane by slow evaporation method.

X-Ray Data Collection and Structure Refinement Details of 6d:

A good quality single crystal of size 0.41 x 0.22 x 0.13 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **6d** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24¹ software. Structure solution and refinement were performed by using SHELX-97²⁻³. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Compound	6d	
Empirical formula	$C_{22} H_{23} N_3 O_5$	
Formula weight	409.43	
Crystal System	Triclinic	
Space group	<i>P</i> -1	
<i>a</i> (Å)	8.573(6)	
<i>b</i> (Å)	11.482(7)	
<i>c</i> (Å)	12.279(9)	
α (°)	98.521(11)	
eta (°)	109.560(11)	

Table 1	Crystal	data and	structure	refinement	details	for	6d .
							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

γ (°)	92.004(7)
$V(Å^3)$	1121.7(13)
Ζ	2
$D_c (g/cm^3)$	1.212
F_{000}	432
μ (mm ⁻¹)	0.087
θ_{\max} (°)	25.36
Total reflections	8860
Unique reflections	4014
Reflections $[I > 2\sigma(I)]$	2170
Parameters	280
$R_{ m int}$	0.0301
Goodness-of-fit	1.008
$R[F^2 > 2\sigma(F^2)]$	0.0524
wR (F^2 , all data)	0.1648
CCDC No.	984887

Crystallographic data for compound 6i

Figure 2 ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **6i** determined at 293 K.

Crystallization: Crystals of compound **6i** were grown from the solvent ethyl acetate and hexane by slow evaporation method.

X-Ray Data Collection and Structure Refinement Details of 6i:

A good quality single crystal of size $0.54 \times 0.36 \times 0.28$ mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **6i** were collected on the Rigaku Kappa 3 circle diffractometer equipped with

the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24¹ software. Structure solution and refinement were performed by using SHELX-97². Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Compound	6i
Empirical formula	$C_{26}H_{26}N_2O_3$
Formula weight	414.49
Crystal System	Monoclinic
Space group	P 21/n
<i>a</i> (Å)	14.280(4)
<i>b</i> (Å)	21.368(5)
<i>c</i> (Å)	15.182(4)
α (°)	90.00
eta (°)	98.213(4)
γ (°)	90.00
$V(\dot{A}^3)$	4585(2)
Ζ	8
$D_{c} (g/cm^{3})$	1.201
F_{000}	1760
μ (mm ⁻¹)	0.079
θ_{\max} (°)	25.37
Total reflections	35715
Unique reflections	8343
Reflections $[I > 2\sigma(I)]$	6556
Parameters	563
$R_{\rm int}$	0.0385
Goodness-of-fit	1.101
$R[F^2 > 2\sigma(F^2)]$	0.0629
wR (F^2 , all data)	0.1587
CCDC No.	984705

Table 2 Crystal data and structure refinement details for 6i

Refrences

- 1. CrystalClear 2.1, Rigaku Corporation, Tokyo, Japan
- 2. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122.
- 3. Farrugia, L. J., Wingx suite for small-molecule single-crystal crystallography. *J. Appl. Crystallogr.*, 1999, **32**, 837–838.

¹H and ¹³C Spectrum of compound **5a**

¹H and ¹³C Spectrum of compound **5b**

 ^1H and ^{13}C Spectrum of compound 5c

¹H and ¹³C Spectrum of compound **5d**

¹H and ¹³C Spectrum of compound **5e**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of compound $\mathbf{5f}$

¹H and ¹³C Spectrum of compound **5g**

¹H and ¹³C Spectrum of compound **5h**

¹H and ¹³C Spectrum of compound 5j

 1 H and 13 C Spectrum of compound **5**k

 1 H and 13 C Spectrum of compound **5**l

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of compound $5\mathrm{m}$

¹H and ¹³C Spectrum of compound **50**

¹H and ¹³C Spectrum of compound **5p**

¹H and ¹³C Spectrum of compound **5**q

¹H and ¹³C Spectrum of compound **5r**

¹H and ¹³C Spectrum of compound **5**s

 1 H and 13 C Spectrum of compound 5t

¹H and ¹³C Spectrum of compound **6a**

¹H and ¹³C Spectrum of compound **6b**

¹H and ¹³C Spectrum of compound **6c**

¹H and ¹³C Spectrum of compound **6d**

¹H and ¹³C Spectrum of compound **6e**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of compound $\mathbf{6f}$

¹H and ¹³C Spectrum of compound **6g**

¹H and ¹³C Spectrum of compound **6h**

¹H and ¹³C Spectrum of compound 6i

¹H and ¹³C Spectrum of compound **6j**

 1 H and 13 C Spectrum of compound **6**k

¹H and ¹³C Spectrum of compound **6**l

 1 H and 13 C Spectrum of compound **6m**

¹H and ¹³C Spectrum of compound **6n**

¹H and ¹³C Spectrum of compound **60**

¹H and ¹³C Spectrum of compound **6p**

¹H and ¹³C Spectrum of compound **6q**

 1 H and 13 C Spectrum of compound **6r**

¹H and ¹³C Spectrum of compound **6s**

¹H and ¹³C Spectrum of compound 6t