Supporting Information for

CoPc-Catalyzed Selective Radical Arylation of Anilines with Arylhydrazines for Synthesis of 2-Aminobiaryls

Tao Jiang,^a Sheng-Yan Chen, ^a Guo-Yu Zhang,^a Run-Sheng Zeng, ^a and Jian-Ping Zou*^{a,b}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China; E-mail: <u>jpzou@suda.edu.cn</u>

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

Table of contents

- S-1 General information
- S-2 Experimental procedures and compound characterizations
- S-7 NMR Spectra

General information

All reactions were carried out in air. Solvents were dried by the standard procedures. ¹H and ¹³C NMR spectra were determined in CDCl₃ or DMSO-d₆ on a Varian-Inova 300MHz or 400 MHz spectrometer and chemical shifts were reported in ppm from internal TMS(δ). High resolution mass spectra were recorded on a MicroMass-TOF machine (EI). Column chromatography was performed with 300-400 mesh silica gel using flash column techniques. All of the reagents were used directly as obtained commercially unless otherwise noted.

General procedure for reaction between phenylhydrazine and arylamine

To a solution of arylamine (10 mmol) and CoPc (0.1 mmol) in acetonitrile (10 mL), phenylhydrazine (1 mmol) were added. The mixture was heated in an oil bath at 80°C for 24 h. After removal of solvent under reduced pressure, the residue was purified by flash silica gel column chromatography afforded the desired product 2-aminobiaryl.

General procedure for reaction between *p*-anisidine and arylhydrazine

To a solution of *p*-anisidine (10 mmol) and CoPc (0.1 mmol) in acetonitrile (10 mL), arylhydrazine hydrochloride (1 mmol) and triethylamine (3 mmol) were added. The mixture was heated in an oil bath at 80°C for 24 h. After removal of solvent under reduced pressure, the residue was purified by flash silica gel column chromatography afforded the desired product 2-aminobiaryl.

2-Aminobiphenyl (3a)^[1]

Brown solid; mp 49-50°C;

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.49 (m, 4H), 7.30-7.38 (m, 1H), 7.10-7.20 (m, 2H), 6.76-6.89 (m, 2H), 4.08 (br, s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 143.0, 139.4, 130.5, 129.1, 128.8, 128.5, 128.0, 127.2, 119.0, 115.9; ESI-MS: Anal. calcd for C₁₂H₁₂N 170.1 [(M+H)⁺], found 170.1 [(M+H)⁺].

5-Fluorobiphenyl-2-amine (3b)^[2]

Brown oil;

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.40 (m, 4H), 7.25-7.33 (m, 1H), 6.78-6.87 (m, 2H), 6.73 (dd, J = 5.6, 9.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 157.0 (d, J = 237.9 Hz), 138.2, 137.7, 129.0, 128.9, 127.8, 117.6 (d, J = 7.8 Hz), 116.8 (d, J = 22.5 Hz), 114.9 (d, J = 22.3 Hz). ESI-MS: Anal. Calcd for C₁₂H₁₁FN 188.1 [(M+H)⁺], found 188.1 [(M+H)⁺].

5-Chlorobiphenyl-2-amine (3c)^[3]

Brown solid; mp 50-51°C;

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.47 (m, 4H), 7.33-7.39 (m, 1H), 7.08-7.14 (m, 2H), 6.74 (d, *J* = 8.9 Hz, 1H), 4.20 (br, s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 141.1, 137.2, 128.9, 127.9, 127.8, 127.1, 126.6, 122.1, 115.6. ESI-MS: Anal. Calcd for C₁₂H₁₁ClN 204.1 [(M+H)⁺], found 204.1 [(M+H)⁺].

5-Bromobiphenyl-2-amine (3d)^[4]

Brown solid; mp 57-58°C;

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.52 (m, 5H), 7.18-7.27 (m, 2H), 6.64 (d, *J* = 8.7 Hz, 1H), 3.63 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 138.2, 132.8, 131.1, 129.5, 129.0, 128.9, 127.7, 117.1, 110.2. ESI-MS: Anal. Calcd for C₁₂H₁₁BrN 248.0 [(M+H)⁺], found 248.0 [(M+H)⁺].

5-Nitrobiphenyl-2-amine (3e)^[5]

Yellow solid; mp 125-126°C;

¹H NMR (300 MHz, CDCl₃): δ 8.00-8.11 (m, 2H), 7.46-7.53 (m, 2H), 7.38-7.46 (m, 3H), 6.72 (d, *J* = 9.1 Hz, 1H), 4.50 (br, s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 149.8, 139.1, 136.9, 129.3, 128.8, 128.3, 126.6, 126.3, 125.1, 114.0. EI-HRMS: Anal. calcd for C₁₂H₁₁N₂O₂ 215.0821 [(M+H)⁺], found 215.0810 [(M+H)⁺].

6-Aminobiphenyl-3-carbonitrile (3f) and 5-aminobiphenyl-2-carbonitrile (3f')

¹H NMR (300 MHz, CDCl₃): δ 7.30-7.60 (m, 13H), 6.69-6.79 (m, 3H), 4.36 (br, s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 147.0, 137.1, 134.4, 133.3, 132.6, 131.9, 129.2, 128.8, 128.2, 127.4, 120.0, 118.7, 118.5, 115.0, 101.0, 100.5. ESI-MS: Anal. Calcd for C₁₃H₁₁N₂ 195.1 [(M+H)⁺], found 195.1 [(M+H)⁺].

5-Methylbiphenyl-2-amine (3g)^[6]

Brown oil;

¹H NMR (300 MHz, CDCl₃): δ 740-7.46 (m, 4H), 7.30-7.36 (m, 1H), 6.95-7.01 (m, 2H), 6.74 (d, *J* = 7.9 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.7, 139.3, 131.0, 129.1, 129.0, 128.8, 128.5, 127.2, 116.5, 20.5. ESI-MS: Anal. Calcd for C₁₃H₁₄N 184.1 [(M+H)⁺], found 184.1 [(M+H)⁺].

4-Amino-3-phenylphenol (3h)^[7]

Brown solid; mp 117-118°C;

¹H NMR (300 MHz, CDCl₃): δ 7.32-7.42 (m, 4H), 7.25-7.33 (m, 1H), 6.55-6.66 (m, 3H), 4.40 (s, 1H), 3.44(s, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 149.4, 140.3, 137.4, 129.1, 129.0, 127.5, 127.1, 117.3, 116.8, 115.7. ESI-MS: Anal. Calcd for C₁₂H₁₂NO 186.1 [(M+H)⁺], found 186.1 [(M+H)⁺].

5-Methoxybiphenyl-2-amine (3i)^[6]

Brown oil;

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.43 (m, 4H), 7.24-7.31 (m, 1H), 6.66-6.80 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.5, 139.1, 135.2, 129.9, 129.1, 128.8, 127.4, 117.9, 115.8, 114.4, 55.8. ESI-MS: Anal. Calcd for C₁₃H₁₄NO 200.1 [(M+H)⁺], found 200.1 [(M+H)⁺].

4-Amino-3-phenyl-4'-amino biphenyl (3j)

Brown solid; mp 105-106°C;

¹H NMR (300 MHz, DMSO-*d*₆): δ 7.42-7.54 (m, 4H), 7.31-7.39 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 3H), 7.15 (s, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.59 (d, *J* = 7.7 Hz, 2H), 5.02 (br, s, 2H), 4.73 (br, s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 147.6, 143.6, 140.3, 130.2, 129.2, 129.1, 128.7, 127.6, 127.2, 126.2, 126.5, 125.9, 116.3, 114.8. EI-HRMS: Anal. calcd for C₁₈H₁₆N₂ 260.1313 (M⁺), found 260.1319 (M⁺).

2,5-Diamobiphenyl (3k)

¹H NMR (300 MHz, CDCl₃): δ 7.40-7.46 (m, 4H), 7.30-7.36 (m, 1H), 6.64-6.69 (m, 1H), 6.55-6.63 (m, 2H), 3.12 (br, s, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 140.1, 139.3, 135.2, 128.6, 127.3, 126.6, 117.0, 116.5, 115.4. CI-HRMS: Anal. calcd for C₁₂H₁₃N₂ 185.1079 [(M+H)⁺], found 185.1082 [(M+H)⁺].

4-Nitrobiphenyl-2-amine (31)^[3]

Yellow solid; mp 70-72°C;

¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 8.3 Hz, 1H), 7.59 (s, 1H), 7.46-7.52 (m, 2H), 7.38-7.46 (m, 3H), 7.22 (d, J = 8.3 Hz, 1H), 4.09 (br, s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 148.1, 144.5, 137.4, 133.4, 131.0, 129.2, 128.6, 128.4, 113.1, 109.6. ESI-MS: Anal. Calcd for C₁₂H₁₁N₂O₂ 215.1 [(M+H)⁺], found 215.1 [(M+H)⁺].

3-Nitrobiphenyl-4-amine (3n)^[5]

Yellow solid; mp 125-126°C;

¹H NMR (300 MHz, CDCl₃): δ 8.17 (s, 1H), 8.15 (d, *J* = 7.2 Hz, 2H), 7.50-7.52 (m, 1H), 7.48 (d, *J* = 7.2 Hz, 2H),

7.40-7.42 (m, 1H), 6.72 (d, J = 9.1 Hz, 1H), 6.27 (br, s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 142.7, 137.0, 136.4, 132.6, 131.2, 129.4, 129.2, 128.5, 125.7, 116.1. ESI-MS: Anal calcd for C₁₂H₁₁N₂O₂ 215.1 [(M+H)⁺], found 215.1 [(M+H)⁺].

5-Methoxy-4'-methylbiphenyl-2-amine (30)

Brown oil;

¹H NMR (300 MHz, CDCl₃): δ 7.35 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 7.3 Hz, 2H), 6.63-6.85 (m, 3H), 3.76 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 137.2, 136.0, 130.3, 129.5, 129.0, 118.2, 115.8, 114.1, 55.8, 21.2. EI-HRMS: Anal. calcd for C₁₄H₁₅NO 213.1154 (M⁺), found 213.1155 (M⁺).

4'-Chloro-5-methoxybiphenyl-2-amine (3q)

Taupe solid; mp 82-83°C;

¹H NMR (300 MHz, CDCl₃): δ 7.34-7.46 (m, 4H), 6.78-6.91 (m, 2H), 6.72 (s, 1H), 5.23 (br, s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 137.8, 136.4, 133.3, 130.4, 129.0, 127.8, 117.4, 115.7, 114.7, 55.8. EI-HRMS: Anal. calcd for C₁₃H₁₂CINO 233.0607 (M⁺), found 233.0614 (M⁺).

4'-Bromo-5-methoxybiphenyl-2-amine (3r)

Brown oil;

¹H NMR (300 MHz, CDCl₃): δ 7.52-7.60 (m, 2H), 7.30-7.37 (m, 2H), 6.70-6.82 (m, 2H), 6.65-6.70 (m, 1H), 3.76 (s, 3H), 3.15 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 138.2, 136.5, 132.4, 131.2, 128.2, 121.9, 117.8, 116.1, 115.2, 56.3; EI-HRMS: Anal. calcd for C₁₃H₁₂BrNO 277.0102 (M⁺), found 277.0098 (M⁺).

4'-Fluoro-5-methoxybiphenyl-2-amine (3s)

Brown oil;

¹H NMR (300 MHz, CDCl₃): δ 7.34-7.48 (m, 2H), 7.05-7.17 (m, 2H), 6.72-6.82 (m, 2H), 6.70 (s, 1H), 3.77 (s, 3H,); ¹³C NMR (100 MHz, CDCl₃): δ 163.4, 160.9, 153.1, 136.4, 135.2 (d, *J* = 3.3 Hz), 130.7 (d, *J* = 8.0 Hz), 128.2, 117.3, 115.8 (d, *J* = 3.1 Hz), 115.6, 114.5, 55.8. EI-HRMS: Anal. calcd for C₁₃H₁₂FNO 217.0890 (M⁺), found 217.0905 (M⁺).

3'-Chloro-5-methoxybiphenyl-2-amine (3v)

Brown oil;

¹H NMR (400 MHz, CDCl₃): δ 7.46 (s, 1H), 7.35-7.40 (m, 2H), 7.30-7.35 (m, 1H), 6.79 (dd, J = 8.7, 2.7 Hz, 1H), 6.72-6.76 (m, 1H), 6.70 (d, J = 2.7 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 141.2, 136.6, 134.6, 130.1, 129.2, 127.5, 127.3, 117.4, 115.5, 115.0, 55.8. ESI-HRMS: Anal. calcd for C₁₃H₁₃CINO 234.0686 [(M+H)⁺], found 234.0671 [(M+H)⁺].

3'-Methyl-5-methoxybiphenyl-2-amine (3w)

Brown oil;

¹H NMR (400 MHz, CDCl₃): δ 7.25 (t, *J* = 7.5 Hz, 1H), 7.18-7.21 (m, 2H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.68-6.72 (m, 2H), 6.65-6.67 (m, 1H), 3.70 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 139.1, 138.5, 137.0, 129.8, 128.7, 128.2, 126.1, 117.8, 115.7, 114.3, 55.8, 21.5. EI-HRMS: Anal. calcd for C₁₄H₁₅NO 213.1154 (M⁺), found 213.1157 (M⁺).

References

- D.-H. Lee, M. Choi, B.-W. Yu, R. Ryoo, A. Taher, S. Hossain, M.-J. Jin, *Adv. Synth. Catal.*, 2009, 351, 2912 -2920.
- 2. G. Pratsch, T. Wallaschkowski, M. R. Heinrich, Chem. Eur. J., 2012, 18, 11555 11559.
- T. Pirali, F.-Z. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, *Angew. Chem. Int. Ed.*, 2012, 51, 1006 1009.
- 4. US2012046467 (A1) , 2012.
- M. A. Kotharé, J. Ohkanda, J. W. Lockman, Y.-M. Qian, M. A. Blaskovich, S. M. Sebtib, A. D. Hamilton, *Tetrahedron*, 2000, 56, 9833 - 9841.
- B. J. Stokes, B. Jovanovic, H.-J. Dong, K. J. Richert, R. D. Riell, T. G. Driver, J. Org. Chem., 2009, 74, 3225 3228.
- D. Ménard, I. Niculescu-Duvaz, H. P. Dijkstra, D. Niculescu-Duvaz, M. J. M. Suijkerbuijk, A. Zambon, A. Nourry, E. Roman, L. Davies, H. A. Manne, F. Friedlos, R. Kirk, S. Whittaker, A. Gill, R. D. Taylor, R. Marais, C. J. Springer, *J. Med. Chem.*, 2009, **52**, 3881 3891.

3с

S10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3e

3h

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

-100

80 70 60 50 40 30 20 10 0 -10

31

3q

3w

90

80 70 60 50 40 30 20

. 0 10

-10