# SUPPLEMANTARY INFORMATIONS An experimental and Theoretical Study of Reaction

# Mechanism between Nitriles and Hydroxylamine

Attila Vörös,<sup>\* a,b</sup> Zoltán Mucsi,<sup>\*,b</sup> Zoltán Baán,<sup>a</sup> Géza Timári,<sup>a</sup> István Hermecz,<sup>a</sup> Péter

Mizsey,<sup>b</sup> Zoltán Finta<sup>a</sup>

<sup>a</sup>Sanofi, Budapest, Hungary

<sup>b</sup>Budapest University of Technology and Economics, Department of Chemical and Environmental

Process Engineering, Budapest, Hungary

attila.voros@sanofi.com, zoltanmucsi@gmail.com,

#### **Table of Contents:**

- 1. Experimental HPLC methods
- 2. Application of amidoximes
- 3. Experimental results
- 4. Row data table

## **1. Experimental HPLC methods**

All the reactions were tracked using appropriate HPLC methods on Agilent 1100 equipment, column temperature was 30 °C, the flow rate was 1.0 mL/min in each of the five methods below.

| Method No | Column                                        | Buffer                                                                               | Eluent               | Gradient                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------|--------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         |                                               | pH = 2.5                                                                             |                      | $10\% \rightarrow 90\%$ ACN, 5 min<br>90% ACN, 1 min<br>90% $\rightarrow 10\%$ ACN, 0.1<br>min 10% ACN, 3.9 min                                                                                                           |
| 2         | Waters<br>Symmetric C18<br>4.6x150mm, 5<br>µm | KH <sub>2</sub> PO <sub>4</sub> /H <sub>3</sub> PO <sub>4</sub>                      | ACN                  | $30\% \rightarrow 90\%$ ACN, 5 min<br>90% ACN, 1 min<br>90% $\rightarrow 30\%$ ACN, 0.1<br>min 30% ACN, 3.9 min                                                                                                           |
| 3         |                                               | -                                                                                    | H <sub>2</sub> O/ACN | $\begin{array}{c} 95\% \mbox{ ACN, 4 min} \\ 95\% \rightarrow 90\% \mbox{ ACN, 5 min} \\ 90\% \rightarrow 30\% \mbox{ ACN, 3 min} \\ 30\% \rightarrow 95\% \mbox{ ACN, 0.5} \\ min \mbox{ 95\% ACN, 4.5 min} \end{array}$ |
| 4         | Waters<br>Symmetric C18<br>4.6x250mm, 5<br>µm | pH = 2.5<br>0.01M<br>KH <sub>2</sub> PO <sub>4</sub> /H <sub>3</sub> PO <sub>4</sub> | ACN                  | 3% ACN, 2 min<br>$3\% \rightarrow 80\%$ ACN, 3 min<br>80% ACN, 1 min<br>$80\% \rightarrow 3\%$ ACN, 0.1 min<br>3% ACN, 3.9 min                                                                                            |
| 5         | LiChrospher 60<br>RP-select B,<br>5 µm        | pH = 8<br>0.01M<br>K <sub>2</sub> HPO <sub>4</sub> /H <sub>3</sub> PO <sub>4</sub>   | ACN                  | $10\% \rightarrow 80\%$ ACN, 5 min<br>80% ACN, 1 min<br>80% $\rightarrow 10\%$ ACN, 0.1<br>min 10% ACN, 3.9 min                                                                                                           |

Table S1. HPLC methods, developed to follow the reactions.

## 2. Application of amidoximes



Scheme S1. General reaction pathways starting from amidoximes (II) toward heterocycles and selected important functional groups



Scheme S2. Selected 1,2,4-oxadiazoles and amidines units introduced into drugs for human therapy

## 3. Experimental results

Table S2. 30 min reaction time in EtOH or [BMIM][OAc] with 1 eqv. or 2. eqv. Et<sub>3</sub>N at 50 °C

|       |                    |    |        | Et                   | OH     |                     |        | [BMIM]              | ][OAc]  |                   |
|-------|--------------------|----|--------|----------------------|--------|---------------------|--------|---------------------|---------|-------------------|
| Entry | BN                 |    | 1. eqv | v. Et <sub>3</sub> N | 2. eqv | . Et <sub>3</sub> N | 1. eqv | . Et <sub>3</sub> N | 2. eqv. | Et <sub>3</sub> N |
|       |                    |    | 2a–m   | 3a-m                 | 2a-m   | 3a-m                | 2a-m   | 3a-m                | 2a-m    | 3a-m              |
| 1     | BN                 | 1a | 76     | 1                    | 74     | 3                   | 98     | 1                   | 97      | 1                 |
| 2     | 4-Cl               | 1b | 90     | 3                    | 90     | 5                   | 97     | 3                   | 97      | 2                 |
| 3     | 4-F                | 1c | 85     | 1                    | 84     | 3                   | 98     | 1                   | 98      | 1                 |
| 4     | $4-NO_2$           | 1d | 99     | 1                    | 97     | 3                   | 100    | 0                   | 100     | 0                 |
| 5     | 4-MeO              | 1e | 45     | 2                    | 40     | 4                   | 83     | 2                   | 83      | 3                 |
| 6     | 4-Me               | 1f | 46     | 1                    | 40     | 2                   | 78     | 2                   | 87      | 2                 |
| 7     | 2-Cl               | 1g | 20     | 3                    | 13     | 2                   | 59     | 2                   | 61      | 1                 |
| 8     | $2-NO_2$           | 1h | 51     | 17                   | 41     | 23                  | 99     | 1                   | 98      | 1                 |
| 9     | 2-MeO              | 1i | 9      | 1                    | 7      | 1                   | 38     | 1                   | 40      | 1                 |
| 10    | 2-MeO <sup>a</sup> | 1i | 40     | 2                    | -      | _                   | 59     | 5                   | _       | _                 |
| 11    | 2-Me               | 1j | 10     | 1                    | 8      | 1                   | 58     | 1                   | 63      | 1                 |
| 12    | 2-Me <sup>a</sup>  | 1j | 33     | 5                    | _      | _                   | 86     | 2                   | _       | _                 |
| 13    | 4-Py               | 1k | 100    | 0                    | 99     | 1                   | 100    | 0                   | 100     | 0                 |
| 14    | 2-Py               | 11 | 100    | 0                    | 92     | 8                   | 100    | 0                   | 99      | 1                 |
| 15    | 2,6-Me             | 1m | 16     | 0                    | 11     | 0                   | 42     | 0                   | 42      | 0                 |

<sup>a</sup>in EtOH 20h/ in [BMIM][OAc] 10h

| Entry | Reaction condition |                                         |                               | Res | sults |
|-------|--------------------|-----------------------------------------|-------------------------------|-----|-------|
| Enuy  | Reactant           | Reagent / Base                          | Solvent / Temp                | BAO | BA    |
| 1     |                    | NH <sub>2</sub> OH.HCl/TEA <sup>a</sup> | EtOH / 80 °C                  | 95% | 5%    |
| 2     |                    | NH <sub>2</sub> OH.H <sub>2</sub> O     | EtOH / 80 °C                  | 80% | 20%   |
| 3     |                    | _                                       | H <sub>2</sub> O / 50 °C      | NO  | NO    |
| 4     | DN                 | _                                       | EtOH / 50 °C                  | NO  | NO    |
| 5     | DIN                | Na <sub>2</sub> CO <sub>3</sub>         | H <sub>2</sub> O / 50 °C      | NO  | NO    |
| 6     |                    | Na <sub>2</sub> CO <sub>3</sub>         | EtOH / 50 °C                  | NO  | NO    |
| 7     |                    | Na <sub>2</sub> CO <sub>3</sub>         | EtOH+H <sub>2</sub> O / 50 °C | NO  | NO    |
| 8     |                    | NH <sub>2</sub> OH.HCl/NaH              | ACN / 45 °C                   | NO  | 100%  |
| 9     |                    | -                                       | EtOH / 50 °C                  | -   | NO    |
| 10    |                    | Na <sub>2</sub> CO <sub>3</sub>         | EtOH / 50 °C                  | —   | NO    |
| 11    | BAO                | _                                       | EtOH+H2O / 50 °C              | _   | NO    |
| 12    |                    | Na <sub>2</sub> CO <sub>3</sub>         | EtOH+H2O / 50 °C              | _   | NO    |
| 13    |                    | NH2OH.HCl/TEA                           | EtOH / 50 °C                  | _   | NO    |

 Table S3. Variation of the different reaction conditions in molecular solvent (EtOH and/or water) and the results obtained for the mechanistic study.

<sup>a</sup>Normal preparation of BAO

Table S4A. Row HPLC integrals (A) of the HPLC peaks belong to the reaction components in Me-THF in the

function of time.

| Time (s) | A(BAO) | A(BA) | A(BN)  | A(toluene) |
|----------|--------|-------|--------|------------|
| 0        | 0      | 0     | 2246.2 | 553.9      |
| 135      | 0      | 0     | 2118.3 | 520.4      |
| 420      | 0      | 0     | 1990   | 470.5      |
| 550      | 10.5   | 7.5   | 2849.9 | 681.9      |
| 900      | 12.5   | 5     | 2385.5 | 580.2      |
| 1200     | 15.3   | 5     | 2406.1 | 568.1      |
| 2100     | 37.3   | 13.7  | 2581.4 | 628.3      |
| 3000     | 44.1   | 11.4  | 2281.4 | 528.6      |
| 5400     | 90.6   | 21.4  | 1968.1 | 460.1      |
| 9000     | 1317.3 | 213   | 2317.5 | 671.3      |
| 14400    | 1368.1 | 90.1  | 1908.9 | 554.3      |
| 57600    | 3252.3 | 375.9 | 826.7  | 623        |

**Table S4B. Relative concentrations** of the reaction components in Me-THF in the function of time. Relative concentration of X = A(X)/A(toluene).

|          | BAO      | BA       | BN       |
|----------|----------|----------|----------|
| Time (s) |          |          |          |
| 0        | 0        | 0        | 0.56711  |
| 135      | 0        | 0        | 0.569246 |
| 420      | 0        | 0        | 0.591485 |
| 550      | 0.002153 | 0.001538 | 0.584466 |
| 900      | 0.003013 | 0.001205 | 0.574979 |
| 1200     | 0.003766 | 0.001231 | 0.592296 |
| 2100     | 0.008302 | 0.003049 | 0.574564 |
| 3000     | 0.011667 | 0.003016 | 0.603565 |
| 5400     | 0.027538 | 0.006504 | 0.598198 |
| 9000     | 0.274421 | 0.044372 | 0.482784 |
| 14400    | 0.345162 | 0.022732 | 0.481602 |
| 57600    | 0.73005  | 0.084379 | 0.185571 |

| Time (s) | A(BAO) | A(BA) | A(BN)  | A(toluene) |
|----------|--------|-------|--------|------------|
| 0        | 59.2   | 3.3   | 1924   | 493.9      |
| 420      | 453    | 34.5  | 1695.8 | 472.9      |
| 550      | 495.8  | 20.7  | 390    | 145.2      |
| 900      | 2431.7 | 109   | 941.8  | 504.4      |
| 1200     | 3125.3 | 116.8 | 1041   | 624        |
| 2100     | 2973   | 104.5 | 506.8  | 449.3      |
| 3000     | 3806.3 | 128.5 | 231.9  | 466.9      |
| 5400     | 4773.9 | 158.3 | 92.8   | 538        |
| 9000     | 4801.1 | 163.3 | 22.2   | 516.7      |
| 14400    | 4011.3 | 135.3 | 15     | 434.9      |
| 57600    | 5081.3 | 180   | 33     | 480.5      |

**Table S5A**. Row HPLC integrals (A) of the HPLC peaks belong to the reaction components in n-PrOH in the function of time.

**Table S5B**. Relative concentrations of the reaction components in n-PrOH in the function of time. Relative concentration of X = A(X)/A(toluene).

| Time (s) | BAO      | BA       | BN       |
|----------|----------|----------|----------|
| 0        | 0.010878 | 0.000606 | 0.35355  |
| 420      | 0.086939 | 0.006621 | 0.325454 |
| 550      | 0.309902 | 0.012939 | 0.243771 |
| 900      | 0.437542 | 0.019613 | 0.16946  |
| 1200     | 0.454561 | 0.016988 | 0.151409 |
| 2100     | 0.600542 | 0.021109 | 0.102373 |
| 3000     | 0.739885 | 0.024978 | 0.045078 |
| 5400     | 0.805334 | 0.026704 | 0.015655 |
| 9000     | 0.84331  | 0.028684 | 0.003899 |
| 14400    | 0.862201 | 0.028235 | 0.00313  |
| 57600    | 0.959768 | 0.033999 | 0.006233 |

| Time (s) | A(BAO) | A(BA) | A(BN)  | A(toluene) |
|----------|--------|-------|--------|------------|
| 0        | 26.1   | 0.0   | 1948.3 | 496.0      |
| 420      | 178.7  | 10.7  | 1864.5 | 487.2      |
| 550      | 974.2  | 54.3  | 2020.7 | 623.1      |
| 900      | 1269.4 | 77.4  | 1844.4 | 618.0      |
| 1200     | 1380.9 | 76.0  | 1654.2 | 574.2      |
| 2100     | 2074.5 | 110.3 | 1243   | 542.4      |
| 3000     | 3384.0 | 152.9 | 768.6  | 547.4      |
| 5400     | 4552.1 | 176.2 | 134.9  | 527.3      |
| 9000     | 4676.1 | 173.6 | 24.3   | 517.2      |
| 14400    | 4686.4 | 170.1 | 0.0    | 540.6      |
| 57600    | 3948.4 | 148.1 | 0.0    | 396.9      |

Table S6A. Row HPLC integrals (A) of the HPLC peaks belong to the reaction components in i-PrOH in the function

of time.

Table S6B. Relative concentrations of the reaction components in i-PrOH in the function of time.

| Relative concentration of $X = A(X) / A(tol)$ | uene). |
|-----------------------------------------------|--------|
|-----------------------------------------------|--------|

| Time (s) | BAO      | BA       | BN       |
|----------|----------|----------|----------|
| 0        | 0.005098 | 0        | 0.380577 |
| 420      | 0.035537 | 0.002128 | 0.370786 |
| 550      | 0.151481 | 0.008443 | 0.314204 |
| 900      | 0.199011 | 0.012134 | 0.289158 |
| 1200     | 0.233006 | 0.012824 | 0.279121 |
| 2100     | 0.370563 | 0.019703 | 0.222034 |
| 3000     | 0.598954 | 0.027063 | 0.136039 |
| 5400     | 0.813856 | 0.032375 | 0.024787 |
| 9000     | 0.875978 | 0.032521 | 0.004552 |
| 14400    | 0.839907 | 0.030486 | 0        |
| 57600    | 0.963847 | 0.036153 | 0        |

| Time (s) | A(BAO) | A(BA) | A(BN)  | A(toluene) |
|----------|--------|-------|--------|------------|
| 0        | 0      | 0     | 831.4  | 248        |
| 420      | 72.7   | 10.7  | 1548.7 | 440        |
| 550      | 278.6  | 34.2  | 1561   | 470.4      |
| 900      | 486.7  | 53.2  | 2264.5 | 685.7      |
| 1200     | 510.3  | 53.3  | 1794.4 | 567.6      |
| 2100     | 818    | 84.3  | 1492.4 | 517.3      |
| 3000     | 1944.6 | 172   | 1400.9 | 659.2      |
| 5400     | 3619   | 292.9 | 746.7  | 698.6      |
| 9000     | 4327.5 | 310.5 | 238.4  | 622.7      |
| 14400    | 3981.4 | 263.1 | 35.8   | 509.5      |
| 57600    | 4554   | 302   | 0      | 531.5      |

**Table S7A**. Row HPLC integrals of the HPLC peaks (A) belong to the reaction components in t-BuOH in the function of time.

**Table S7B**. Relative concentrations of the reaction components in t-BuOH in the function of time. Relative concentration of X = A(X)/A(toluene).

| Time (s) | BAO      | BA       | BN       |
|----------|----------|----------|----------|
| 0        | 0        | 0        | 0.36693  |
| 420      | 0.018084 | 0.002662 | 0.385247 |
| 550      | 0.064824 | 0.007958 | 0.363212 |
| 900      | 0.077688 | 0.008492 | 0.361462 |
| 1200     | 0.098403 | 0.010278 | 0.34602  |
| 2100     | 0.173075 | 0.017837 | 0.315767 |
| 3000     | 0.322877 | 0.028559 | 0.232603 |
| 5400     | 0.567002 | 0.04589  | 0.116988 |
| 9000     | 0.760646 | 0.054577 | 0.041904 |
| 14400    | 0.855296 | 0.05652  | 0.007691 |
| 57600    | 0.937809 | 0.062191 | 0        |

| Time (s) | A(BAO)  | A(BA) | A(BN) | A(toluene) |
|----------|---------|-------|-------|------------|
| 135      | 739.1   | 50.2  | 623.1 | 188.2      |
| 550      | 1192.9  | 70.5  | 377.6 | 262.9      |
| 900      | 947.6   | 52.2  | 284.2 | 312.5      |
| 1200     | 2031.1  | 110.2 | 181.3 | 254.3      |
| 2100     | 2403.6  | 131.4 | 88.1  | 243.9      |
| 3000     | 2309.1  | 125.7 | 48.7  | 157.4      |
| 5400     | 1495.6  | 85.7  | 0     | 96         |
| 9000     | 1784.3  | 108.2 | 0     | 109.5      |
| 57600    | 10745.7 | 388.4 | 0     | 643.7      |
|          |         |       |       |            |

 Table S8A. Row HPLC integrals of the HPLC peaks (A) belong to the reaction components in [BMIM][OAc] in the

Table S8B. Relative concentrations of the reaction components in [BMIM][OAc] in the function of time.

function of time.

| Time (s) | BAO      | BA       | BN       |
|----------|----------|----------|----------|
| 135      | 0.227045 | 0.015421 | 0.191411 |
| 550      | 0.262326 | 0.015503 | 0.083037 |
| 900      | 0.175309 | 0.009657 | 0.052578 |
| 1200     | 0.461757 | 0.025053 | 0.041217 |
| 2100     | 0.569743 | 0.031147 | 0.020883 |
| 3000     | 0.848138 | 0.04617  | 0.017888 |
| 5400     | 0.900684 | 0.05161  | 0        |
| 9000     | 0.942068 | 0.057127 | 0        |
| 57600    | 0.965116 | 0.034884 | 0        |
|          |          |          |          |

#### 4. Row computational data

Table S9A. Row data of small compounds, computed at the B3LYP/6-31G(d,p) level of theory in MeCN. The E,

|         | E            | ZPE         | U         | Н         | G         | S      | Svib   |
|---------|--------------|-------------|-----------|-----------|-----------|--------|--------|
| H2      | -1.17853933  | -1.168363   | -1.166003 | -1.165058 | -1.179850 | 31.132 | 0.000  |
| BN      | -324.5073629 | -324.407997 | -324.402  | -324.401  | -324.438  | 78.516 | 10.895 |
| TMA     | -174.4881329 | -174.36768  | -174.362  | -174.361  | -174.395  | 70.776 | 8.347  |
| TMA+H+  | -174.9525533 | -174.815552 | -174.81   | -174.809  | -174.843  | 71.543 | 8.875  |
| NH2OH   | -131.7217604 | -131.681722 | -131.678  | -131.677  | -131.704  | 56.426 | 1.482  |
| NH2O-   | -131.1688842 | -131.143673 | -131.141  | -131.14   | -131.166  | 54.599 | 0.245  |
| NH–OH   | -131.1490263 | -131.125189 | -131.122  | -131.121  | -131.147  | 55.821 | 1.299  |
| NH3+OH  | -132.1600825 | -132.104625 | -132.101  | -132.1    | -132.127  | 56.777 | 1.348  |
| NH2OH2+ | -132.1170121 | -132.06376  | -132.06   | -132.059  | -132.087  | 57.364 | 1.833  |
| NH3+O-  | -131.6916621 | -131.650645 | -131.648  | -131.647  | -131.672  | 52.899 | 0.221  |
| NH2ONH2 | -187.0279304 | -186.971203 | -186.967  | -186.966  | -186.997  | 64.527 | 5.137  |
| NH2NHOH | -187.0563022 | -186.998655 | -186.995  | -186.994  | -187.024  | 62.988 | 3.52   |
| MeOH    | -115.7286955 | -115.677374 | -115.674  | -115.673  | -115.7    | 56.846 | 1.52   |
| MeO-    | -115.1854805 | -115.149921 | -115.147  | -115.146  | -115.171  | 52.697 | 0.151  |
| MeOH2+  | -116.1362709 | -116.071497 | -116.068  | -116.067  | -116.095  | 58.532 | 2.629  |
| BA      | -400.975869  | -400.848203 | -400.841  | -400.84   | -400.881  | 86.092 | 17.099 |
| BAO/1   | -456.2617832 | -456.118395 | -456.109  | -456.108  | -456.152  | 92.528 | 22.371 |
| BAO/2   | -456.2475815 | -456.103319 | -456.095  | -456.094  | -456.137  | 91.708 | 21.533 |
| BAO/3   | -456.248058  | -456.104184 | -456.096  | -456.095  | -456.138  | 90.884 | 20.731 |
| BCO     | -456.2495535 | -456.105356 | -456.096  | -456.096  | -456.14   | 94.084 | 23.947 |

ZPE, U, H and G values are given in Hartree, while S is given in J/mol/K.

Table S9B. Row data of compounds, computed at the B3LYP/6-31G(d,p) level of theory in MeCN. The E, ZPE, U,

H and G values are given in Hartree, while S is given in J/mol/K.

|            | E            | ZPE         | U        | Н        | G        | S        | Svib     |
|------------|--------------|-------------|----------|----------|----------|----------|----------|
| 7          | -456.2361763 | -456.095389 | -456.084 | -456.083 | -456.135 | 107.845  | 36.941   |
| TS(10->9)  | -456.2050313 | -456.063637 | -456.055 | -456.054 | -456.098 | 92.993   | 22.785   |
| 11         | -921.442387  | -920.98679  | -920.958 | -920.957 | -921.057 | 211.056  | 132.478  |
| TS(11->12) | -921.4088507 | -920.957996 | -920.931 | -920.93  | -921.018 | 186.416  | 109.011  |
| 12         | -921.4446698 | -920.987128 | -920.959 | -920.958 | -921.051 | 195.563  | 117.871  |
| TS(11->13) | -921.4159063 | -920.96298  | -920.935 | -920.934 | -921.024 | 189.472  | 111.766  |
| 13         | -921.4373343 | -920.979762 | -920.952 | -920.951 | -921.042 | 192.516  | 114.902  |
| TS(12->14) | -920.93188   | -920.93188  | -920.905 | -920.904 | -920.992 | 183.755  | 106.308  |
| 14         | -921.4347176 | -920.977029 | -920.95  | -920.949 | -921.039 | 188.795  | 111.16   |
| TS(14->15) | -921.4136002 | -920.962776 | -920.936 | -920.935 | -921.024 | 188.176  | 110.458  |
| 15         | -921.4454684 | -920.990682 | -920.963 | -920.962 | -921.053 | 192.064  | 114.265  |
| TS(15->16) | -819.4264589 | -819.138164 | -819.118 | -819.117 | -819.19  | 153.238  | 77.395   |
| 16         | -819.5020913 | -819.207498 | -819.186 | -819.185 | -819.263 | 163.223  | 87.298   |
| TS(15->17) | -819.4397821 | -819.147099 | -819.127 | -819.126 | -819.2   | 155.839  | 79.928   |
| 17         | -819.5233124 | -819.230629 | -819.21  | -819.209 | -819.283 | 155.7555 | 79.84447 |
| 18         | -913.9719652 | -913.717595 | -913.695 | -913.694 | -913.777 | 174.991  | 97.634   |
| TS(18->19) | -913.9571375 | -913.702397 | -913.682 | -913.681 | -913.757 | 160.558  | 83.709   |
| 19         | -913.9810301 | -913.724497 | -913.704 | -913.703 | -913.78  | 162.804  | 85.67    |
| TS(18->20) | -913.9580876 | -913.704291 | -913.684 | -913.683 | -913.759 | 159.686  | 82.962   |
| 20         | -913.975928  | -913.719201 | -913.698 | -913.697 | -913.776 | 165.625  | 88.97    |
| 21         | -587.9774045 | -587.790285 | -587.777 | -587.776 | -587.832 | 116.475  | 43.832   |
| TS(21->22) | -587.910455  | -587.725865 | -587.714 | -587.713 | -587.766 | 112.288  | 39.664   |
| 22         | -587.9298148 | -587.744731 | -587.732 | -587.731 | -587.785 | 114.301  | 41.7     |
| TS(21->23) | -587.910455  | -587.725865 | -587.714 | -587.713 | -587.766 | 112.288  | 39.664   |
| TS(24->25) | -587.8967833 | -587.712997 | -587.7   | -587.699 | -587.754 | 115.336  | 42.769   |
| 25         | -587.9879333 | -587.803572 | -587.79  | -587.789 | -587.846 | 118.936  | 46.204   |
| 27         | -587.8967833 | -587.712997 | -587.7   | -587.699 | -587.754 | 115.336  | 42.769   |
| TS(27->28) | -587.9879333 | -587.803572 | -587.79  | -587.789 | -587.846 | 118.936  | 46.204   |
| 28         | -587.9878678 | -587.801988 | -587.789 | -587.788 | -587.844 | 118.243  | 45.598   |

REFERENCES

(1) Mucsi, Z.; Viskolcz, B.; Csizmadia, I. G. J. Phys. Chem A. 2007, 111, 1123–1132.

(2) Mucsi, Z.; Körtvélyesi, T.; Viskolcz, B.; Csizmadia, I. G.; Novák, T.; Keglevich, G. Eur. J. Org. Chem. 2007, 1759–1767.

- (3) Mucsi, Z.; Viskolcz, B.; Hermecz, I.; Csizmadia, I. G.; Keglevich, G. Tetrahedron 2008, 64, 1868–1878.
- (4) Mucsi, Z.; Csizmadia, I. G. Cur. Org. Chem. 2008, 12, 83–96.
- (5) Mucsi, Z.; Chass, G. A.; Viskolcz, B.; Csizmadia, I. G. J. Phys. Chem. A. 2008, 112, 9153–9165.
- (6) Mucsi, Z.; Tsai, A.; Szori, M.; Chass, G. A.; Viskolcz, B.; Csizmadia, I. G. J. Phys. Chem. A. 2007, 111, 13245–13254.