Supporting Information

An indolocarbazole dimer as a new stereodynamic probe for chiral 1,2-diamines

Hae-Geun Jeon, Min Jun Kim and Kyu-Sung Jeong*
*Department of Chemistry, Yonsei University, Seoul 120-749, Korea
Fax: (+) 82-2-364-7050
Tel:(+) 82-2123-2643
Email: ksjeong@yonsei.ac.kr

General: Dichloromethane was purified by drying over CaH_{2}, followed by distillation. NMR spectra were recorded on Bruker (Avance II) 400 MHz spectrometer. The chemical shifts of NMR spectra were reported using the solvent signal as an internal reference DMSO- d_{6} (2.50 ppm for ${ }^{1} \mathrm{H}$ NMR, 39.5 ppm for ${ }^{13} \mathrm{C}$ NMR) and dichloromethane- d_{2} (5.32 ppm for ${ }^{1} \mathrm{H}$ NMR). FT-IR spectrum was recorded on Bruker (Vertex70). MALDI-TOF mass spectrum was recorded on a Bruker (LRF20). Melting point was determined with a Barnsted Electrochemical (IA9100). Circular dichroism (CD) spectra were conducted on a JASCO (J-815). The elemental analysis data were obtained from Center for research facilities at Yonsei University

1. ${ }^{1}$ H NMR spectra of cyclic diimines $\mathbf{3 b}-\mathbf{h}$

Fig. S1 Partial ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, r.t.) spectra of $\mathbf{1}, \mathbf{1}$ with acetate, and cyclic diimines 3b-h.
2. CD values of cyclic diimines 3b-h

Table S1 CD values at first and second Cotton effects of cyclic didimines 3b-h

Diamine	$\Delta \varepsilon(421 \mathrm{~nm}) / \mathrm{M}^{-1} \mathrm{~cm}^{-1}$	$\Delta \varepsilon(390 \mathrm{~nm}) / \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
$(R, R) \mathbf{- 3 b}$	+61	+137
$(S, S)-\mathbf{3 b}$	-60	-138
$(R, R) \mathbf{- 3 c}$	+45	+98
$(\mathrm{~S}, S)-\mathbf{3 c}$	-46	-96
$(R, R) \mathbf{- 3 d}$	+55	+120
$(S, S)-\mathbf{3 d}$	-54	-119
$(R, R) \mathbf{- 3 e}$	+51	+100
$(S, S)-\mathbf{3 e}$	-50	-100
$(R, R) \mathbf{- 3 f}$	+51	+91
$(S, S)-\mathbf{3 f}$	-50	-93
$(R, R) \mathbf{- 3 g}$	+29	+58
$(S, S)-\mathbf{3 g}$	-31	-56
$(R, R) \mathbf{- 3 h}$	+44	+82
$(S, S)-\mathbf{3 h}$	-44	-84

3. Calibration curves for the determination of enantiomeric excesses (ee's) (See Fig. 6) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions containing 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, $2: 8,1: 9$ and $0: 10$ ratios of (R, R) - and (S, S)-2b were prepared and the concentrations of $\mathbf{2 b}$ were 1 mM . The CD spectra were recorded and the CD intensities at four wavelengths ($328 \mathrm{~nm}, 363 \mathrm{~nm}, 390 \mathrm{~nm}$, and 421 nm) were plotted against the mole fraction of $(R, R)-\mathbf{2 b}$.

Fig. S2 Calibration curves of 3b at four wavelengths ($328 \mathrm{~nm}, 363 \mathrm{~nm}, 390 \mathrm{~nm}, 421 \mathrm{~nm}$).

4. Computer modeling

Energy-minimized structures of diimine 3b complexed with acetate anion were generated using MacroModeling 9.1 ${ }^{[1]}$ program. The structures were found with OPLS2005 force field ${ }^{[2]}$ in the gas phase via 3000 separated search steps in Monte Carlo conformation search. ${ }^{[3]}$ The generated structure is very similar to the crystal structure.

Fig. S3 Energy minimized structure of $(R, R) \mathbf{- 3 b}$ complexed with anionic acetate. P-helix (energy $=147.5 \mathrm{~kJ} / \mathrm{mol}$, left) and M-helix (energy $=188.6 \mathrm{~kJ} / \mathrm{mol}$, right).

Fig. S4 Terminal aryls and diimine bridge structures of P-helix (left) and M-helix (right) of (R, R)-3b. M-helix has more distorted dihedral angles then P-helix.

[^0]
[^0]: ${ }^{[1]}$ F. Mohamedi, N. G. T. Richards, W. C. H. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comp. Chem. 1990, 11, 440-467.
 ${ }^{[2]}$ G. A. Kaminski, R. A. Friesner, J. Tirado-Rives and W. J. Jorgensen, J. Phys. Chem. B 2001, 105, 6474-6487. ${ }^{[3]}$ M. Saunders, K. N. Houk, Y. D. Wu, W. C. Still, M. Lipton, G. Chang and W. C. Guida, J. Am. Chem. Soc. 1 990, 112, 1419-1427.

