Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

C3-Symmetric Chiral Trisimidazoline-Catalyzed Friedel-Crafts (FC)-Type Reaction

Shinobu Takizawa,*^a Shuichi Hirata,^a Kenichi Murai,*^b Hiromichi Fujioka,^b and Hiroaki Sasai^a

^aThe Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihoga-oka, Ibaraki-shi, Osaka 567-0047, Japan. E-mail: taki@sanken.osaka-u.ac.jp ^bGraduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita-shi, Osaka 565-0871, Japan E-mail: murai@phs.osaka-u.ac.jp

Contents of Electronic Supplementary Information

General information --- p2

Preparation of trisimidazoline 1b --- p2

General procedure for enantioselective Friedel–Crafts (FC)-type reactions of aldimines (2) with 2-naphthols (3) --- p3

Procedure for enantioselective Friedel–Crafts (FC)-type reaction of ketimine (2r) with 2-naphthol (3a) --- p8

Procedures for the deprotection of sulfonamide group --- p9

References --- p10

¹H-NMR and ¹³C-NMR charts --- p11

HPLC Chart --- p33

General information

¹H-, ¹³C- and ³¹P-NMR spectra were recorded with JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker AVANCE II (¹H-NMR 400, 500, 600 or 700 MHz, ¹³C-NMR 100, 126, 150 or 175 MHz). ¹H-NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of CHCl₃ at 7.26 ppm, ACETONE-D₆ at 2.09 ppm or DMSO-D₆ at 2.49 ppm, integration, multiplicities (s = singlet, d = doublet, q = quartet, t = triplet, m = multiplet), and coupling constants (Hz). ¹³C-NMR spectra reported in ppm relative to the central line of triplet for CDCl₃ at 77 ppm, septet for ACETONE-D₆ at 30 ppm or septet for DMSO-D₆ at 40 ppm. FT-MS spectra were obtained with LTQ Orbitrap XL (Thermo Fisher Scientific). ESI-MS spectra were obtained with JMS-T100LC (JEOL). FAB-MS spectra were obtained with JMS-700 (JEOL). Optical rotations were measured with JASCO P-1030 polarimeter. HPLC analyses were performed on a JASCO HPLC system (JASCO PU 980 pump and UV-975 UV/Vis detector) using a mixture of hexane and 2-propanol as eluents. FT-IR spectra were recorded on a JASCO FT-IR system (FT/IR4100). Mp was measured with SHIMADZU DSC-60. Column chromatography on SiO₂ was performed with Kanto Silica Gel 60 (40-100 µm). Commercially available organic and inorganic compounds were used without further purification except for the solvent, which was distilled from sodium/benzophenone or CaH₂. N-4-Nosyl imines 2 were prepared following the reported procedures.¹ The products 4b, 4d, 4o and 8 were identical in all respects with reported in the literature.^{2,6} Absolute configurations were assigned by comparison of optical rotation reported in the literature.²⁻⁶

Preparation of trisimidazoline 1b

1,3,5-Triformylbenzene (35.6 mg, 0.219 mmol) and (1*S*,2*S*)-1,2-bis(4-methoxyphenyl)ethane-1,2-diamine (185 mg, 0.680 mmol) was dissolved in dioxane (6.8 mL) and stirred for 2 h at rt under N₂. The resulting solution was added NBS (121 mg, 0.679 mmol) at 0 $^{\circ}$ C and stirred for 24 h at rt. After the reaction was completed, sat. Na₂S₂O₅ aq. and 5% NaOH aq. was added to the reaction mixture and the solution was extracted with CH₂Cl₂. Organic layer was dried over Na₂SO₄, and evaporated in vacuo. After the purification *via* SiO₂ column chromatography

(hexane/AcOEt/TEA = 1/2/0.3), the desired product **1b** was obtained as pale yellow solid. Mp: >260 °C; $[\alpha]_D^{24}$ = -96.9 (*c* 1.2, CHCl₃); ¹H-NMR (CDCl₃) δ : 8.61 (s, 3H), 7.16 (2H, d, *J* = 8.8 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 4.80 (brs, 6H), 3.78 (s, 18H); ¹³C-NMR (CDCl₃) δ : 161.6, 159.0, 135.1, 130.6, 128.5, 127.7, 114.0, 55.2; IR (KBr): v 3130, 3001, 2955, 2835, 1612, 1514, 1248, 1173, 1034 cm⁻¹; HRMS (FAB) calcd for C₅₇H₅₅N₆O₆ m/z = 919.4183 [(M+H⁺)], found m/z = 919.4175.

General procedure for enantioselective Friedel–Crafts (FC)-type reactions of aldimines (2) with 2-naphthols (3)

Under N₂ atmosphere, a test tube was charged with aldimine **2** (0.10 mmol), 2-naphthols **3** (0.15 mmol), and the catalyst **1** (0.005 mmol, 5 mol %) in toluene (0.4 mL). The reaction mixture was stirred at -5 °C. After the purification *via* SiO₂ column chromatography, the desired product **4** was obtained.

4a: 82% yield; ¹H-NMR (CDCl₃) δ : 7.76 (2H, d, J = 8.5 Hz), 7.76 (2H, d, J = 8.5 Hz), 7.68 (2H, d, J = 7.3 Hz), 7.45-7.41 (2H, m), 7.35-7.31 (2H, m), 7.15 (2H, d, J = 2.3 Hz), 7.10 (2H, dd, J = 8.7, 2.3 Hz), 6.57 (1H, d, J = 8.7 Hz), 4.97 (2H, bs); ¹³C-NMR (CDCl₃) δ : 155.7, 145.4, 139.0, 132.3, 132.0, 131.2, 130.4, 129.6, 129.4, 129.2, 128.8, 127.0, 123.1, 121.1, 119.9, 117.8, 114.2, 113.0, 61.5;

HRMS (ESI) calcd for C₂₃H₁₆BrClNO, m/z = 436.0104 [(M-H)⁻], found m/z = 436.0094; IR (KBr): v 3569, 3339, 2345, 1719, 1625, 1490, 1233, 913, 815 cm⁻¹; enantiomeric excess: *Rac*, determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 330 nm) first peak: $t_R = 6.7$ min, second peak: $t_R = 9.3$ min.

4b^{2b}: 17% yield; ¹H-NMR (ACETONE-D₆) δ : 9.30 (1H, bs), 8.14 (1H, d, *J* = 8.2 Hz), 7.89 (1H, d, *J* = 8.2 Hz), 7.85 (1H, d, *J* = 8.2 Hz), 7.53 (1H, t, *J* = 8.2 Hz), 7.39-7.30 (6H, m), 7.00 (1H, s), 3.27 (1H, bs), 1.47 (9H, s); ¹³C-NMR (CDCl₃) δ : 156.5, 153.6, 143.0, 133.4, 132.5, 130.6, 130.0, 129.7, 128.9, 128.8, 128.0, 124.0, 123.4, 120.2, 119.3, 79.6, 50.8, 28.6; enantiomeric excess: 17%, determined by HPLC (Chiralpak IB,

hexane/2-propanol = 95/5, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: $t_R = 7.6$ min, major peak: $t_R = 7.0$ min.

4c: 88% yield; ¹H-NMR (CDCl₃) δ : 7.71 (1H, d, J = 8.2 Hz), 7.65 (1H, d, J = 8.2 Hz), 7.50 (1H, d, J = 8.7 Hz), 7.45-7.40 (3H, m), 7.30 (1H, t, J = 7.3 Hz), 7.22 (2H, d, J = 8.7 Hz), 7.15 (2H, t, J = 4.4 Hz), 7.07 (1H, t, J = 7.3 Hz), 6.89-6.82 (4H, m), 6.66 (1H, bs), 6.40 (1H, d, J = 10.1 Hz); ¹³C-NMR (CDCl₃) δ :150.8, 139.2, 138.6, 133.1, 132.1, 130.2, 128.9, 128.6, 128.4 x 2, 128.1 x 2, 127.4, 126.4, 123.5, 121.6, 117.8, 116.9,

53.7; HRMS (ESI) calcd for $C_{23}H_{18}CINO_3SNa$, m/z = 446.0594 [(M+Na)⁺], found m/z = 446.0584; IR (KBr): v 3319, 1701, 1630, 1518, 1490, 1439, 1328, 1156, 1091, 1014, 751 cm⁻¹; enantiomeric excess: 22%, determined by HPLC (Chiralcel OD-3, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: t_R = 12.0 min, major peak: t_R = 16.3 min.

4d^{2a,3-5}: 70% yield; ¹H-NMR (CDCl₃) δ : 7.70 (1H, d, J = 9.2 Hz), 7.66 (1H, d, J = 8.7 Hz), 7.55 (1H, d, J = 8.7 Hz), 7.41 (1H, t, J = 7.8 Hz), 7.31 (2H, d, J = 8.2 Hz), 7.23 (2H, d, J = 8.7 Hz), 7.18 (2H, d, J = 8.2 Hz), 6.83 (1H, d, J = 8.7 Hz), 6.64 (2H, d, J = 7.8 Hz), 6.60 (1H, bs), 6.35 (1H, d, J = 10.1 Hz), 6.28 (1H, bs), 2.10 (3H, s); ¹³C-NMR (CDCl₃) δ : 151.1, 142.8, 138.7, 135.9, 132.9, 132.1, 129.8, 128.7, 128.6, 128.4, 128.3, 128.2, 127.2, 126.4, 123.3,

121.6, 117.9, 116.9, 53.7, 21.1; enantiomeric excess: 27%, determined by HPLC (Chiralpak IC, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 14.1$ min, major peak: $t_R = 16.1$ min.

4e: 65% yield; ¹H-NMR (CDCl₃) δ : 7.72 (1H, d, J = 8.7 Hz), 7.68 (1H, d, J = 8.1 Hz), 7.57 (1H, d, J = 8.7 Hz), 7.43 (1H, t, J = 7.3 Hz), 7.36-7.31 (3H, m), 7.23-7.18 (4H, m), 6.83 (1H, d, J = 8.7 Hz), 6.33 (3H, t, J = 8.1 Hz), 3.62 (3H, s); ¹³C-NMR (CDCl₃) δ : 162.3, 150.8, 138.7, 133.1, 132.3, 130.8, 130.0, 129.0, 128.7, 128.5, 128.4, 128.2, 127.4, 123.6, 121.8,

118.0, 117.4, 113.3, 55.3, 53.7; HRMS (ESI) calcd for $C_{24}H_{20}CINO_4SNa$, m/z = 476.0699 [(M+Na)⁺], found m/z = 476.0689; IR (KBr): v 3310, 2930, 1597, 1496, 1257, 1155, 1092, 910, 815, 731 cm⁻¹; enantiomeric excess: 30%, determined by HPLC (Chiralpak IA, hexane/2-propanol = 9/1, flow rate 1.0 mL/min, 25 °C, 335 nm) minor peak: t_R = 17.7 min, major peak: t_R = 22.6 min.

4f: 100% yield; ¹H-NMR (CDCl₃) δ : 7.74-7.71 (2H, m), 7.60 (1H, d, J = 8.7 Hz), 7.46 (1H, t, J = 7.5 Hz), 7.37 (1H, t, J = 7.5 Hz), 7.30-7.20 (8H, m), 6.77 (3H, d, J = 8.7 Hz), 6.40 (1H, s); ¹³C-NMR (CDCl₃) δ : 150.7, 138.4, 138.3, 137.7, 133.2, 130.2, 129.4, 128.7, 128.5, 128.1 x 2, 127.9, 127.8, 127.6, 123.8, 121.5, 117.7, 117.0, 53.8; HRMS (ESI) calcd for C₂₃H₁₇Cl₂NO₃SNa,

 $m/z = 480.0204 [(M+Na)^+]$, found m/z = 480.0193; IR (KBr): v 3414, 3318, 2345, 1718, 1629, 1578, 1509, 1323, 1273, 1152, 1091, 812, 752 cm⁻¹; enantiomeric excess: 48%, determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 21.1$ min, major peak: $t_R = 27.7$ min.

4g: 72% yield; ¹H-NMR (CDCl₃) δ : 7.73 (2H, d, J = 8.7 Hz), 7.61 (1H, d, J = 8.7 Hz), 7.46 (1H, t, J = 7.9 Hz), 7.37 (1H, t, J =7.9 Hz), 7.27-7.20 (6H, m), 6.93 (2H, d, J = 8.7 Hz), 6.79 (1H, d, J = 8.7 Hz), 6.54 (1H, bs), 6.39 (1H, bs), 5.73 (1H, bs); ¹³C-NMR (CDCl₃) δ : 150.5, 138.3 x 2, 133.3, 132.4, 131.1, 130.2, 128.8, 128.5, 128.1, 128.0, 127.9 x 2, 127.7, 126.9, 123.9,

117.6, 117.1, 53.7; HRMS (ESI) calcd for $C_{23}H_{17}BrClNO_3SNa$, m/z = 523.9699 [(M+Na)⁺], found

m/z = 523.9687; IR (KBr): v 3403, 3317, 3089, 2925, 2853, 2345, 1903, 1719, 1629, 1575, 1544, 1326, 1273, 1153, 1089 cm⁻¹; enantiomeric excess: 63%, determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 16.2$ min, major peak: $t_R = 22.2$ min.

4h: 89% yield; ¹H-NMR (DMSO-D₆) δ : 9.99 (1H, br s), 8.81 (1H, br s), 7.88 (2H, d, J = 8.7 Hz), 7.63 (2H, d, J = 8.7 Hz), 7.58 (2H, d, J = 8.2 Hz), 7.55 (1H, d, J = 9.2 Hz), 7.31 (2H, d, J = 8.7 Hz), 7.28-7.20 (3H, m), 7.16 (1H, t, J = 7.3 Hz), 6.96 (1H, d, J = 8.7 Hz), 6.52 (1H, s); ¹³C-NMR (DMSO-D₆) δ :153.0, 148.6, 145.9, 139.9, 131.3, 131.2, 129.7, 128.2, 128.1, 128.0, 127.4, 126.3, 123.1, 122.4, 117.6, 116.1, 51.9; HRMS (ESI) calcd

for C₂₃H₁₇ClN₂O₅SNa, m/z = 491.0444 [(M+Na)⁺], found m/z = 491.0432; IR (KBr): v 3432, 3315, 3112, 2548, 2375, 1730, 1628, 1586, 1521, 1320, 1280, 1154, 1080 cm⁻¹; enantiomeric excess: 96%, determined by HPLC (Chiralcel OD-3, hexane/2-propanol = 9/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 8.9$ min, major peak: $t_R = 10.9$ min; $[\alpha]_D^{22} = +16.9$ (*c* 1.8, CHCl₃).

4i: 92% yield; ¹H-NMR (DMSO-D₆) δ : 7.89 (2H, d, J = 9.2 Hz), 7.65 (2H, d, J = 9.2 Hz), 7.60 (2H, d, J = 7.8 Hz), 7.57 (1H, d, J = 8.7 Hz), 7.31-7.21 (4H, m), 7.17 (1H, t, J = 7.3 Hz), 7.13-7.09 (1H, m), 6.96 (1H, d, J = 8.7 Hz), 6.53 (1H, s); ¹³C-NMR (DMSO-D₆) δ : 153.1, 148.7, 146.0, 143.5, 132.8, 131.3, 130.0, 129.8, 128.3, 128.1, 127.5, 126.6, 126.4, 125.9, 125.0, 123.2, 122.9, 122.4, 117.7, 116.1, 52.1; HRMS (ESI) HRMS (ESI) calcd for C₂₃H₁₇ClN₂O₅SNa, m/z = 491.0444 [(M+Na)⁺], found m/z = 491.0436; IR (KBr): v 3443, 3310,

3108, 2377, 1629, 1581, 1522, 1432, 1323, 1275, 1156, 1081 cm⁻¹; enantiomeric excess: 98%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 56.1$ min, major peak: $t_R = 44.9$ min; $[\alpha]_D^{21} = +17.7$ (*c* 1.5, CHCl₃).

(KBr): v 3277, 3107, 3071, 2372, 1685, 1628, 1597, 1527, 1446, 1344, 1270, 1171, 1092 cm⁻¹; enantiomeric excess: 88%, determined by HPLC (Chiralpak IC-3, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 77.6$ min, major peak: $t_R = 61.2$ min; $[\alpha]_D^{22} = +92.7$ (*c* 1.8, MeOH).

4k: 100% yield; ¹H-NMR (ACETONE-D₆) δ : 7.85 (1H, d, J = 9.2 Hz), 7.78 (2H, d, J = 8.7 Hz), 7.69-7.66 (3H, m), 7.60 (1H, d, J = 8.7 Hz), 7.43 (1H, t, J = 7.6 Hz), 7.29 (3H, m), 7.11 (2H, d, J = 7.8 Hz), 7.04 (1H, d, J = 9.2 Hz), 6.58 (1H, s), 2.29 (3H, s); ¹³C-NMR (ACETONE-D₆) δ : 153.8, 150.4, 147.5, 138.9, 137.7, 133.6, 131.0, 130.1, 130.0, 129.7, 129.0, 128.1, 127.9, 125.5, 124.3, 124.2, 119.2, 118.4, 55.1, 21.4; HRMS (ESI) calcd for

 $C_{24}H_{20}N_2O_5SNa$, m/z = 471.0991 [(M+Na)⁺], found m/z = 471.0984; IR (KBr): v 3432, 3313, 3111, 2375, 1629, 1520, 1431, 1321, 1277, 1153, 1078 cm⁻¹; enantiomeric excess: 90%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 266 nm) minor peak: $t_R = 16.2$ min, major peak: $t_R = 21.1$ min; $[\alpha]_D^{23} = +42.4$ (*c* 1.2, CHCl₃).

41: 95% yield; ¹H-NMR (ACETONE-D₆) δ : 7.86 (1H, d, J = 8.2 Hz), 7.79 (2H, d, J = 8.7 Hz), 7.70-7.66 (3H, m), 7.61 (1H, d, J = 8.7 Hz), 7.44 (1H, t, J = 8.0 Hz), 7.32-7.26 (2H, m), 7.20-7.14 (2H, m), 7.09-7.01 (2H, m), 6.59 (1H, s), 2.27 (3H, s); ¹³C-NMR (ACETONE-D₆) δ : 153.3, 150.0, 147.1, 141.5, 138.4, 133.1, 130.6, 129.6, 129.2, 128.9, 128.6, 128.5, 128.0, 127.7, 124.6, 123.8, 123.8, 123.3, 118.7, 118.0, 54.7; HRMS (ESI) calcd for C₂₄H₂₀N₂O₅SNa, m/z = 471.0991 [(M+Na)⁺], found m/z = 471.0980; IR (KBr): v 3452, 3316, 3107,

1620, 1523, 1434, 1323, 1281, 1156, 1079 cm⁻¹; enantiomeric excess: 99%, determined by HPLC (Chiralpak IC-3, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 231 nm) minor peak: $t_R = 36.9$ min, major peak: $t_R = 41.0$ min; $[\alpha]_D^{24} = +29.5$ (*c* 2.0, CHCl₃).

4m: 98% yield; ¹H-NMR (CDCl₃) δ : 7.75 (2H, d, J = 8.7 Hz), 7.65-7.47 (2H, m), 7.35 (2H, t, J = 7.8 Hz), 7.25 (1H, m), 7.12 (2H, d, J = 7.8 Hz), 7.03 (1H, d, J = 10.1 Hz), 6.94 (2H, t, J = 7.8 Hz), 6.76 (2H, d, J = 8.7 Hz), 6.70 (1H, s), 6.43 (1H, d, J = 10.1 Hz), 5.73 (1H, s); ¹³C-NMR (ACETONE-D₆) δ : 164.8, 162.4, 153.4, 150.0, 147.0, 144.8, 133.0, 131.0, 130.9, 130.8, 129.6, 129.3, 128.7, 127.9, 123.9, 123.3, 118.6, 117.5, 114.6, 114.3, 114.1, 54.2; HRMS (ESI) calcd for C₂₃H₁₇FN₂O₅SNa, m/z = 475.0740 [(M+Na)⁺], found m/z =

475.0736; IR (KBr): v 3419, 3304, 2375, 1696, 1619, 1526, 1439, 1346, 1256, 1165, 1086 cm⁻¹; enantiomeric excess: 85%, determined by HPLC (Chiralpak IE, hexane/2-propanol = 7/1, flow rate 1.0 mL/min, 25 °C, 266 nm) minor peak: $t_R = 11.4$ min, major peak: $t_R = 8.6$ min; $[\alpha]_D^{14} = +12.6$ (*c* 1.5, CHCl₃).

128.2, 127.4, 126.3, 123.1, 122.4, 119.7, 117.6, 116.1, 52.0; HRMS (ESI) calcd for $C_{23}H_{17}BrN_2O_5SNa$, m/z = 534.9939 [(M+Na)+], found m/z = 534.9926; IR (KBr): v 3426, 3315, 3110, 2544, 2465, 2374, 1618, 1522, 1318, 1280, 1157, 1112 cm⁻¹; enantiomeric excess: 90%, determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 19/1, flow rate 1.0 mL/min, 25 °C, 250 nm) minor peak: t_R = 47.5 min, major peak: t_R = 61.2 min; $[\alpha]_D^{20} = +21.8$ (*c* 1.6, CHCl₃).

40^{2a}: 80% yield; ¹H-NMR (CDCl₃) δ : 8.12 (1H, s), 8.06 (1H, d, J = 7.8 Hz), 7.75-7.67 (3H, m), 7.59 (1H, d, J = 8.6 Hz), 7.45 (1H, t, J = 7.1 Hz), 7.39 (1H, t, J = 7.1 Hz), 7.34 (3H, d, J = 8.6 Hz), 6.85 (1H, d, J = 8.6 Hz), 6.68 (3H, d, J = 7.8 Hz), 6.45 (1H, d, J = 10.1 Hz), 5.99 (1H, s), 2.11 (3H, s); ¹³C-NMR (CDCl₃) δ : 151.2, 148.1, 143.0, 142.8, 135.8, 133.1, 132.0, 130.2, 129.1, 128.8, 128.7, 128.5, 127.5, 126.4, 123.5, 122.2, 121.6, 121.3, 117.8, 116.4, 53.5, 21.1; enantiomeric excess: 73%, determined by HPLC (Chiralpak IC-3,

hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 335 nm) minor peak: $t_R = 12.4$ min, major peak: $t_R = 15.4$ min.

4p: 100% yield; ¹H-NMR (ACETONE-D₆) δ : 7.87 (1H, d, J = 8.7 Hz), 7.81 (2H, d, J = 8.7 Hz), 7.70 (2H, d, J = 8.7 Hz), 7.69 (1H, d, J = 8.7 Hz), 7.63 (1H, d, J = 8.7 Hz), 7.46-7.41 (3H, m), 7.34-7.23 (4H, m), 7.04 (1H, d, J = 8.7 Hz), 6.64 (1H, s); ¹³C-NMR (ACETONE-D₆) δ : 153.3, 150.0, 147.0, 141.5, 133.1, 130.7, 129.6, 129.2, 129.0 x 2, 128.6, 127.8, 127.4, 123.8, 123.3, 118.6, 117.9, 54.7; HRMS (ESI) calcd for C₂₃H₁₈N₂O₅SNa, m/z = 457.0834 [(M+Na)⁺],

found m/z = 457.0827; IR (KBr): v 3305, 2359, 1698, 1528, 1430, 1348, 1312, 1162, 1090, 1028 cm⁻¹; enantiomeric excess: 73%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 7/1, flow rate 1.0 mL/min, 25 °C, 268 nm) minor peak: $t_R = 18.3$ min, major peak: $t_R = 21.4$ min; $[\alpha]_D^{20} = +22.4$ (*c* 2.3, CHCl₃).

4q: 100% yield; ¹H-NMR (ACETONE-D₆) δ : 7.99 (1H, d, J = 8.7 Hz), 7.86 (2H, d, J = 8.7 Hz), 7.72 (2H, d, J = 8.7 Hz), 7.68 (1H, d, J = 8.2 Hz), 7.62 (1H, d, J = 8.7 Hz), 7.48-7.42 (2H, m), 7.29 (1H, t, J = 7.5 Hz), 7.05 (1H, d, J = 8.7 Hz), 6.69 (1H, s), 6.34 (1H, dd, J = 3.2, 1.8 Hz), 6.23 (1H, d, J = 3.2 Hz); ¹³C-NMR (ACETONE-D₆) δ : 153.8, 153.7, 150.0, 147.1, 143.0, 132.9, 130.9, 129.6, 129.2, 128.6, 127.6, 123.8, 123.2, 118.6, 115.7, 111.2, 108.4, 50.0;

HRMS (ESI) calcd for C₂₁H₁₆N₂O₆SNa, m/z = 447.0627 [(M+Na)⁺], found m/z = 447.0617; IR (KBr): v 3396, 3324, 3162, 3104, 3067, 1702, 1614, 1525, 1411, 1345, 1310, 1281, 1160, 1078 cm⁻¹; enantiomeric excess: 72%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 7/1, flow rate 1.0 mL/min, 25 °C, 268 nm) minor peak: $t_R = 45.3$ min, major peak: $t_R = 25.6$ min; $[\alpha]_D^{20} = +37.0$ (*c* 3.9, CHCl₃).

4r: 90% yield;¹H-NMR (ACETONE-D₆) δ : 7.81 (2H, d, J = 9.2 Hz), 7.78-7.73 (1H, m), 7.69 (2H, d, J = 9.0 Hz), 7.50 (1H, d, J = 8.7 Hz), 7.38-7.34 (2H, m), 7.33-7.29 (2H, m), 7.13-7.08 (2H, m), 6.97 (1H, d, J = 9.2 Hz), 6.48 (1H, s), 3.85 (3H, s); ¹³C-NMR (ACETONE-D₆) δ :156.8, 151.6, 150.1, 146.9, 140.7, 133.2, 130.8, 129.6, 129.3, 129.1, 128.6, 128.1, 124.7, 123.8, 120.3, 119.1, 117.9, 107.6, 55.6, 54.4; HRMS (ESI)

calcd for C₂₄H₁₉ClN₂O₆SNa, m/z = 521.0550 [(M+Na)⁺], found m/z = 521.0533; IR (KBr): v 3453, 3268, 2371, 2350, 2336, 1609, 1523, 1432, 1341, 1234, 1162, 1083 cm⁻¹; enantiomeric excess: 77%, determined by HPLC (Chiralpak IC-3, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 369 nm) minor peak: $t_R = 8.8$ min, major peak: $t_R = 11.7$ min; $[\alpha]_D^{21} = +5.1$ (*c* 0.93, CHCl₃).

4s: 96% yield; ¹H-NMR (ACETONE-D₆) δ : 8.55 (1H, br s), 8.25 (2H, d, *J* = 7.8 Hz), 7.97 (2H, d, *J* = 7.8 Hz), 7.63 (1H, br s), 7.40-7.25 (4H, m), 6.60 (1H, s), 6.32 (1H, s), 6.02 (1H, s), 5.83 (1H, s), 5.81 (1H, s); ¹³C-NMR (ACETONE-D₆) δ : 150.5, 149.6, 148.3, 147.8, 141.6, 141.2, 133.2, 129.5, 129.2, 129.0, 124.5, 118.8, 108.3, 102.0, 98.3, 56.1; HRMS (ESI) calcd for C₂₀H₁₅ClN₂O₇SNa, m/z = 485.0186 [(M+Na)⁺], found m/z = 485.0175; IR (KBr): v 3286, 2924, 2371, 2350, 2336, 1695, 1531, 1447, 1346, 1168,

1087, 1038 cm⁻¹; enantiomeric excess: 84%, determined by HPLC (Chiralcel OD-3, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 260 nm) minor peak: $t_R = 9.3$ min, major peak: $t_R = 12.6$ min; $[\alpha]_D^{21} = -8.3$ (*c* 1.2, CHCl₃).

Procedure for enantioselective Friedel–Crafts (FC)-type reaction of ketimine (2r) with 2-naphthol (3a)

Under N₂ atmosphere, a test tube was charged with imine **2r** (0.10 mmol), 2-naphthol **3a** (0.15 mmol), and the catalyst **1b** (0.005 mmol, 5 mol %) in toluene (0.4 mL). The reaction mixture was stirred at -35 °C. After the purification *via* SiO₂ column chromatography (hexane/AcOEt = 3/1), the desired product **4** was obtained in 70% yield (33.6mg, 0.07 mmol) with 43% ee. **4t**: 70% yield; ¹H-NMR (CDCl₃) δ : 10.02 (1H, s), 7.68 (2H, dd, *J* = 7.8, 3.7 Hz), 7.34-7.16 (9H, m), 7.05 (1H, t, *J* = 7.8 Hz), 6.97 (1H, t, *J* = 7.8 Hz), 6.80 (2H, d, *J* = 7.8 Hz), 5.87 (1H, s), 5.18 (1H, d, *J* = 15.8 Hz), 4.87 (1H, d, *J* = 15.8 Hz), 1.31 (9H, s); ¹³C-NMR (CDCl₃) δ : 179.7, 153.8, 143.0, 138.6, 138.2, 135.0, 131.9, 130.7, 130.2, 129.6, 128.8 x 2, 127.6, 127.1, 125.5 x 2, 124.3, 123.5, 122.8, 121.5,

114.2, 110.0, 80.7, 65.5, 44.6, 28.1; HRMS (ESI) calcd for $C_{30}H_{28}N_2O_4Na$, m/z = 503.1947 $[(M+Na)^+]$, found m/z = 503.1932; IR (KBr): v 3269, 1696, 1610, 1490, 1349, 1274, 1161, 1048, 818, 738 cm⁻¹; enantiomeric excess: 43%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 231 nm) minor peak: t_R = 17.7 min, major peak: t_R = 36.9 min; $[\alpha]_D^{24} = +8.0$ (*c* 1.1, CHCl₃).

Procedures for the deprotection of sulfonamide group

To a solution of compound 4p (50 mg, 0.12 mmol) in MeOH (0.2 mL) and DCM (0.2 mL), TMSCHN₂ (2N solution in Et₂O, 0.44 mL, 1.0 mmol) was added in 10 portions over 1 h at rt. The reaction mixture was then stirred at 45 °C for 0.5 h. The solvent was evaporated in vacuo. After the purification via SiO₂ column chromatography (hexane/AcOEt = 2/1), the methyl-capped product was obtained (18 mg, 0.04 mmol, 40% yield); ¹H-NMR (CDCl₃) δ : 7.78 (1H, d, J = 8.4 Hz), 7.64 (2H, d, J = 9.2 Hz), 7.56 (2H, d, J = 8.4 Hz), 7.49-7.42 (3H, m), 7.35 (1H, t, J = 7.5 Hz), 7.28-7.20 (4H, m), 6.99 (1H, d, J = 9.2 Hz), 6.62 (1H, bs), 6.47 (1H, d, J = 10.5 Hz), 3.67 (3H, s); ¹³C-NMR (CDCl₃) & 154.3, 148.9, 145.4, 139.6, 132.0, 130.3, 128.8, 128.5, 128.3, 127.8, 127.6, 127.3, 126.3, 124.3, 122.7, 121.8, 120.4, 113.4, 56.5, 54.1; HRMS (ESI) calcd for $C_{24}H_{20}N_2O_5SNa$, m/z = 471.0991 [(M+Na)⁺], found m/z = 471.0966; IR (KBr): v 3435, 3302, 3104, 2917, 2352, 1523, 1348, 1156, 1022 cm⁻¹. Subsequently PhSH (44 µL, 0.43 mmol) was added to a solution of the methyl-capped product (10 mg, 0.022 mmol) and K₂CO₃ (55.2 mg, 0.040 mmol) in DMF (0.2 mL) and CH₃CN (0.2 mL). The mixture was stirred at 50 °C for 4 h. Water was added to the reaction mixture and the solution was extracted with AcOEt. The combined organic layer was back extracted with 1N HCl and then the aqueous layer was basified with NaOH and extracted with AcOEt. Organic layer was dried over Na₂SO₄, and evaporated in vacuo. After the purification via SiO₂ column chromatography (AcOEt), the desired product 8 was obtained (5.9 mg, 0.022 mmol, quant) without racemization. $[\alpha]_{D}^{23} = -145 (73\% \text{ ee}, c \ 0.85, \text{CHCl}_{3}) (\text{lit.}^{6} [\alpha]_{D}^{25} = +196 (> 99\% \text{ ee}, c \ 1.6,$ CHCl₃)); ¹H-NMR (CDCl₃) δ : 8.02 (1H, d, J = 8.7 Hz), 7.80 (2H, d, J = 8.7 Hz), 7.42-7.36 (3H, m), 7.34-7.22 (4H, m), 7.18-7.13 (1H, m), 6.13 (1H, s), 3.79 (3H, s), 2.15 (2H, br s); ¹³C-NMR (CDCl₃) δ: 154.8, 145.4, 132.0, 129.6, 129.2, 128.7, 127.9, 126.8, 126.6, 126.0, 125.9, 123.5, 123.4, 114.2, 56.5, 50.9.

References

- (a) Z. Xu and X. Lu, J. Org. Chem., 1998, 63, 5031; (b) T. Hayashi and M. Ishigedani, J. Am. Chem. Soc., 2000, 122, 976; (c) M. Yamanaka, A. Nishida and M. Nakagawa, J. Org. Chem., 2003, 68, 3112; (d) I. T. Raheem and E. N. Jacobsen, Adv. Synth. Catal., 2005, 347, 1701; (e) Y. Otomaru, N. Tokunaga, R. Shintani and T. Hayashi, Org. Lett., 2005, 7, 307; (f) Y. -X. Jia, J. -H. Xie, H. -F. Duan, L. -X. Wang and Q. -L. Zhou, Org. Lett., 2006, 8, 1621; (g) J. Esquivias, R. G. Arrayás and J. C. Carretero, Angew. Chem. Int. Ed., 2006, 45, 629; (h) S. Castellano, H. D. G. Fiji, S. S. Kinderman, M. Watanabe, P. de Leon, F. Tamanoi, and O. Kwon, J. Am. Chem. Soc., 2007, 129, 5843; (i) K. M. Partridge, M. E. Anzovino and T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 2920; (j) F. Tato, V. Reboul and P. Metzner, J. Org. Chem., 2008, 73, 7837; (k) S. M. DePorter, A. C. Jacobsen, K. M. Partridge, K. S. Williamson and T. P. Yoon, Tetrahedron Lett., 2010, 51, 5223. (l) D. -J. Dong, H. -H. Li and S. -K. Tian, J. Am. Chem. Soc., 2010, 132, 5018 (m) E. G. -Bengoa, M, Maestro, A. Mielgo, I. Otazo, C. Palomo and I. Velilla, Chem. Eur. J., 2010, 16, 5333; (n) A. S. Tsai, M. E. Tauchert, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2011, 133, 1248.
- 2) (a) P. Chauhan and S. S. Chimni, *Eur. J. Org. Chem.*, 2011, 1636; (b) J. Jaratjaroonphong, S. Krajangsri and V. Reutrakul, *Tetrahedron Lett.*, **2012**, *53*, 2476.
- 3) L.-F. Niu, Y.-C. Xin, R.-L. Wang, F. Jiang, P.-F. Xu and X.-P. Hui, Synlett, 2010, 765.
- 4) G. Liu, S. Zhang, H. Li, T. Zhang and W. Wang, Org. Lett., 2011, 13, 828.
- S. Takizawa, F. A. Arteaga, Y. Yoshida, J. Kodera, Y. Nagata and H. Sasai, *Dalton Trans.*, 2013, 42, 11787.
- 6) C. Cardellicchio, G. Ciccarella, F. Naso, E. Schingaro and F. Scordari, *Tetrahedron: Asymmetry*, 1998, **9**, 3667.

¹H-NMR and ¹³C-NMR charts

DFILE	8-21-3-rac.a	ls
COMNT	single_pulse	
DATIM	2012-09-20 23	1:11:
OBNUC	1H	
E XMOD	proton.jxp	
OBFRQ	399.78	MHz
OBSET	4.19	KHz
OBFIN	7.29	Hz
POINT	13107	
FREQU	6002.40	Hz
SCANS	8	
ACQTM	2.1837	sec
PD	5.0000	sec
PW1	6.05	usec
IRNUC	1H	
CTEMP	22.1	С
SLVNT	CDCL3	
EXREF	7.26	ppm
BF	0.10	Ηz
RGAIN	58	

FILE	8-21-2-check Carl
OMNT	single pulse decc
MITA	2014-05-22 13:27:
BNUC	13C
XMOD	carbon.jxp
BFRQ	100.53 MHz
BSET	5.35 KHz
BFIN	5.86 Hz
OINT	32767
REQU	31407.04 Hz
CANS	256
CQTM	1.0433 sec
D	2.0000 sec
W1	3.20 used
RNUC	1H
TEMP	18.6 c
LVNT	CDCL3
XREF	77.00 ppm
F	0.10 Hz
GAIN	50

DFILE	8-168-Boc Pro	oton-
COMNT	single pulse	
DATIM	2014-06-16 12	2:39:
OBNUC	1H	
E XMOD	proton.jxp	
OBFRO	399.78	MHz
OBSET	4.19	KHz
OBFIN	7.29	Hz
POINT	13107	
FREOU	6002.40	Hz
SCANS	8	
ACOTM	2.1837	sec
PD	5.0000	sec
PW1	6.05	used
IRNUC	1H	
CTEMP	20.8	с
SLVNT	ACETN	-
EXREF	2.09	mag
BF	0.10	Hz
RGATN	26	
	20	

DFILE	8-168-Boc Car	rbon-
COMNT	single pulse	deco
DATIM	2014-06-16 12	2:41:
OBNUC	13C	
E XMOD	carbon.jxp	
OBFRQ	100.53	MHz
OBSET	5.35	KHz
OBFIN	5.86	Hz
POINT	32767	
FREQU	31407.04	Hz
SCANS	250	
ACQTM	1.0433	sec
PD	2.0000	sec
PW1	3.20	used
I RNUC	1H	
CTEMP	21.2	С
SLVNT	ACETN	
EXREF	29.90	ppm
BF	0.10	Hz
RGAIN	60	

DFILE	8-51-2_Proton-1-1
COMNT	single_pulse
DATIM	2014-05-23 22:31:
OBNUC	1H
EXMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	8
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 used
IRNUC	1H
CTEMP	18.8 c
SLVNT	CDCL3
EXREF	0.00 ppm
BF	0.10 Hz
RGAIN	40

DFILE	8-51-2_Carbon-1-1
COMNT	single pulse deco
MITAC	2014-05-23 22:33:
BNUC	13C
E XMOD	carbon.jxp
DBFRQ	100.53 MHz
DBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	300
ACQTM	1.0433 sec
PD 0	2.0000 sec
PW1	3.20 used
I RNUC	1H
CTEMP	19.5 c
SLVNT	CDCL3
EXREF	77.00 ppm
BF	0.10 Hz
RGAIN	60

DFILE	sh4032-gpc3_1	Proto
COMNT	single_pulse	
DATIM	2012-11-21 1	7:31:
OBNUC	1H	
EXMOD	proton.jxp	
OBFRQ	399.78	MHz
OBSET	4.19	KHz
OBFIN	7.29	Hz
POINT	16384	
FREQU	7503.00	Hz
SCANS	8	
ACQTM	2.1837	sec
PD	5.0000	sec
PW1	5.50	usec
IRNUC	1H	
CTEMP	20.3	С
SLVNT	CDCL3	
EXREF	7.26	ppm
BF	0.10	Hz
RGAIN	46	

DFILE	8-54 Carbon-1-1.
COMNT	single pulse deco
DATIM	2014-05-24 17:04:
OBNUC	13C
EXMOD	carbon.jxp
OBFRQ	100.53 MHz
OBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	300
ACQTM	1.0433 sec
PD	2.0000 sec
PW1	3.20 used
IRNUC	1H
CTEMP	24.0 c
SLVNT	CDCL3
EXREF	77.00 ppm
BF	0.10 Hz
RGAIN	60

DFILE	sh4030a-gpc Proto
COMNT	single_pulse
DATIM	2012-11-20 21:02:
OBNUC	1H
E XMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	8
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	5.50 used
IRNUC	1H
CTEMP	20.6 c
SLVNT	CDCL3
EXREF	7.26 ppm
BF	0.10 Hz
RGAIN	48

DFILE	8-53 Carbon-1-1.
COMNT	single pulse deco
DATIM	2014-05-26 10:44:
OBNUC	13C
EXMOD	carbon.jxp
OBFRQ	100.53 MHz
OBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	300
ACQTM	1.0433 sec
PD	2.0000 sec
PW1	3.20 used
IRNUC	1H
CTEMP	19.0 c
SLVNT	CDCL3
EXREF	77.00 ppm
BF	0.12 Hz
RGAIN	60

DFILE	sh4040-gpc22_Prot
COMNT	single pulse
DATIM	2012-12-08 15:16:
OBNUC	1H
E XMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	8
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 used
IRNUC	1H
CTEMP	23.0 c
SLVNT	CDCL3
EXREF	7.26 ppm
BF	0.12 Hz
RGAIN	50

DEILE	8-58 Carbon-1-1.
COMNT	single pulse deco
DATIM	2014-05-26 11:09:
OBNUC	13C
E XMOD	carbon.jxp
OBFRQ	100.53 MHz
OBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	350
ACQTM	1.0433 sec
PD	2.0000 sec
PW1	3.20 used
I RNUC	1H
CTEMP	19.4 c
SLVNT	CDCL3
EXREF	77.00 ppm
BF	0.12 Hz
RGAIN	50

Т

50

Т

75

Т

200

. . . .

175

-

Т

150

-

Т

125

100

PPM

Т

0

Т

DFILE	3-F Proton-2-1.j
COMNT	single pulse
DATIM	2014-01-15 22:15
OBNUC	1H
EXMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	32
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 use
IRNUC	1H
CTEMP	25.0 c
SLVNT	CDCL3
EXREF	7.26 ppm
BF	1.20 Hz
RGAIN	58

DFILE	8-121-3-F_Carbon
COMNT	single pulse dec
DATIM	2014-02-06 14:32
OBNUC	13C
EXMOD	carbon.jxp
OBFRQ	100.53 MHz
OBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	512
ACQTM	1.0433 sec
PD	2.0000 sec
PW1	3.20 use
IRNUC	1H
CTEMP	21.0 c
SLVNT	ACETN
EXREF	29.80 ppm
BF	1.20 Hz
RGAIN	50

Т

100

Т

125

Т

150

DFILE	8-100.als
COMNT	single_pulse
DATIM	2013-06-25 15:28:
OBNUC	1H
EXMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	13107
FREQU	6002.40 Hz
SCANS	8
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 used
IRNUC	1H
CTEMP	22.1 c
SLVNT	CDCL3
EXREF	7.26 ppm
BF	0.12 Hz
RGAIN	50

DFILE	8-166-1_Carbo	on-1-
COMNT	single pulse	deco
DATIM	2014-06-13 10	5:23:
OBNUC	13C	
EXMOD	carbon.jxp	
OBFRQ	100.53	MHz
OBSET	5.35	KHz
OBFIN	5.86	Hz
POINT	32767	
FREQU	31407.04	Hz
SCANS	200	
ACQTM	1.0433	sec
PD	2.0000	sec
PW1	3.20	usec
IRNUC	1H	
CTEMP	20.7	с
SLVNT	CDCL3	
EXREF	77.00	ppm
BF	0.12	Hz
RGAIN	50	

PPM

Т

25

Т

50

Т

DFILE	Ph Proton-1-1.jdi
COMNT	single_pulse
DATIM	2014-03-05 19:05:
OBNUC	1H
E XMOD	proton.jxp
OBFRQ	399.78 MHz
OBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	16
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 used
IRNUC	1H
CTEMP	21.7 c
SLVNT	ACETN
EXREF	2.09 ppm
BF	1.20 Hz
RGAIN	46

OFILE	8-127 Carbon-1-1.
COMNT	single pulse deco
MITAC	2014-03-14 11:56:
DBNUC	13C
E XMOD	carbon.jxp
DBFRQ	100.53 MHz
DBSET	5.35 KHz
OBFIN	5.86 Hz
POINT	32767
FREQU	31407.04 Hz
SCANS	512
ACQTM	1.0433 sec
PD	2.0000 sec
PW1	3.20 used
I RNUC	1H
CTEMP	21.9 c
SLVNT	ACETN
EXREF	29.80 ppm
BF	1.20 Hz
RGAIN	60

DFILE	8-158-A Proton-1-
COMNT	single_pulse
MITAC	2014-05-27 15:11:
DBNUC	1H
EXMOD	proton.jxp
DBFRQ	399.78 MHz
DBSET	4.19 KHz
OBFIN	7.29 Hz
POINT	16384
FREQU	7503.00 Hz
SCANS	8
ACQTM	2.1837 sec
PD	5.0000 sec
PW1	6.05 used
I RNUC	1H
CTEMP	19.0 c
SLVNT	CDCL3
EXREF	7.26 ppm
BF	0.12 Hz
RGAIN	46

DFILE	8-158-A_Carbo	on-1-
COMNT	single pulse	deco
DATIM	2014-05-27 1	5:14:
OBNUC	13C	
EXMOD	carbon.jxp	
OBFRQ	100.53	MHz
OBSET	5.35	KHz
OBFIN	5.86	Hz
POINT	32767	
FREQU	31407.04	Hz
SCANS	400	
ACQTM	1.0433	sec
PD	2.0000	sec
PW1	3.20	usec
IRNUC	1H	
CTEMP	19.3	С
SLVNT	CDCL3	
EXREF	77.00	ppm
BF	0.12	Hz
RGAIN	60	

DFILE	sh5166-clomn	Prot
COMNT	single pulse	
DATIM	2014-06-14 1	5:56:
OBNUC	1H	
E XMOD	proton.jxp	
OBFRQ	399.78	MHz
OBSET	4.19	KHz
OBFIN	7.29	Hz
POINT	16400	
FREQU	7503.00	Hz
SCANS	8	
ACQTM	2.1837	sec
PD	5.0000	sec
PW1	5.50	usec
IRNUC	1H	
CTEMP	19.5	с
SLVNT	CDCL3	
EXREF	7.26	ppm
BF	0.12	Hz
RGAIN	46	

HPLC Chart

