Supplementary Information

Towards Aryl C-N bond formation in dynamic thin films

Michael N. Gandy,^{*a*} Colin L. Raston^{$b\star$} and Keith A. Stubbs^{$a\star$}

^a School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia.

E-mail: keith.stubbs@uwa.edu.au

^b School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, 5042,

Australia.

E-mail: colin.raston@flinders.edu.au

General Experimental

The design and operation of the vortex fluidic device (VFD) used herein is detailed elsewhere.¹

All starting materials were obtained commercially and used without further purification unless otherwise stated. 2-Chloropyrazine, morpholine, piperidine and tryptamine hydrochloride were obtained from Alfa Aesar, Unilab, Fluka and The British Drug Houses, respectively, and all other starting materials were obtained from Sigma-Aldrich. Thin layer chromatography (TLC) was conducted on Merck Kieselgel 60 F_{254} plates and products were visualised under shortwave UV light (254 nm). Infrared spectra for novel compounds were recorded using a PerkinElmer Spectrum One Fourier transform infrared spectrometer fitted with an attenuated total reflectance (ATR) attachment. ¹H- and ¹³C-nuclear magnetic resonance spectra were obtained using a Bruker ARX-500 spectrometer (500 MHz for ¹H or 125 MHz for ¹³C). Each sample was dissolved in chloroform-*d* and each spectrum was calibrated using the residual solvent peak (δ 7.26 for ¹H and δ 77.0 for ¹³C). Mass spectra were recorded with a Waters LCT Premier XE spectrometer, run in positive ionisation W-mode, using the electrospray ionisation technique.

Optimisation of reaction conditions for the coupling of 2-chloropyrazine and morpholine

Base and reaction time

A 10 mm NMR tube was charged with 2-chloropyrazine (143 μ L, 1.60 mmol), morpholine (139 μ L, 1.60 mmol), a base (3.20 mmol, omitted for no base control) and water (900 μ L). The tube was capped tightly then rotated in the VFD at 7000 rpm with a tilt angle of 45° and heated at 100 °C for either 6 or 12 h. After this time the reaction mixture was allowed to cool, diluted with EtOAc (30 mL) then washed with 0.1 M aqueous K₂CO₃ (40 mL). The aqueous layer was separated and extracted with additional EtOAc (30 mL). The organic layers were then combined, dried with MgSO₄, filtered and evaporated. Starting materials were removed from the sample by placing the residue under high vacuum until the sample remained a constant weight.

Tilt angle and rotation speed

Using the optimum base (K_3PO_4) and reaction time (12 h), a 10 mm NMR tube was charged with 2chloropyrazine (143 µL, 1.60 mmol), morpholine (139 µL, 1.60 mmol), K_3PO_4 (679 mg, 3.20 mmol) and water (900 µL). The tube was capped tightly then rotated in the VFD at 2000, 3500, 5000 or 7000 rpm with a tilt angle of 30, 45 or 60° and heated at 100 °C for 12 h. After this time the reaction mixture was allowed to cool, diluted with EtOAc (30 mL) then washed with 0.1 M aqueous K_2CO_3 (40 mL). The aqueous layer was separated and extracted with additional EtOAc (30 mL). The organic layers were then combined, dried with MgSO₄, filtered and evaporated. Starting materials were removed from the sample by placing the residue under high vacuum until the sample remained a constant weight.

General procedure for the coupling of 2-chloropyrazine to various amines

2-Chloropyrazine (1.60 mmol, 143 µL) and the appropriate amine (1.60 mmol) were added to a solution of K_3PO_4 (3.20 mmol, 580 mg) and water (900 µL) in a 10 mm NMR tube. The tube was capped tightly then rotated in the VFD at 3500 rpm with a tilt angle of 45° and heated at 100 °C for 12 h. The reaction mixture was allowed to cool, diluted with EtOAc (30 mL) then washed with 0.1 M aqueous K_2CO_3 (40 mL). The aqueous layer was separated and extracted with additional EtOAc (30 mL). The organic layers were then combined, dried with MgSO₄, filtered and evaporated. If necessary, the crude product was purified by flash chromatography using eluent specified. All reactions were conducted in triplicate with the average shown. Errors obtained were within \pm 3%.

4-(Pyrazin-2-yl)morpholine (Table 1, entry 1)

The reaction was conducted using morpholine as per the general procedure to obtain the title compound as a yellow crystalline material (202 mg, 76%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, *J* = 1.5 Hz, 1H, H3), 7.94 (dd, *J* = 2.5, 1.5 Hz, 1H, H5), 7.76 (d, *J* = 2.5 Hz, 1H, H6), 3.71–3.67 (m, 4H), 3.44–3.40 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 141.4, 133.2, 130.6, 66.1, 44.4.

2-(Pyrrolidin-1-yl)pyrazine (Table 1, entry 2)

The reaction was conducted using pyrrolidine as per the general procedure to obtain the title compound as a yellow crystalline material (217 mg, 91%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 8.00 (dd, *J* = 2.5, 1.5 Hz, 1H, H5), 7.86 (d, *J* = 1.5 Hz, 1H, H3), 7.74 (d, *J* = 2.5 Hz, 1H, H6), 3.51–3.44 (m, 4H, H2'+H5'), 2.07–1.99 (m, 4H, H3'+H4'). ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 142.7, 131.2, 130.8, 46.3, 25.4.

2-(Piperidin-1-yl)pyrazine (Table 1, entry 3)

The reaction was conducted using piperidine as per the general procedure to obtain the title compound as a yellow crystalline solid (218 mg, 78%). The ¹H NMR spectrum was consistent with that found in the literature.³ ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J* = 1.5 Hz, 1H, H3), 8.02 (dd, *J* = 2.5, 1.5 Hz, 1H, H5), 7.76 (d, *J* = 2.5 Hz, 1H, H6), 3.62–3.54 (m, 4H), 1.73–1.61 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 155.1, 141.7, 132.0, 131.1, 45.6, 25.3, 24.5.

1-(Pyrazin-2-yl)azepane (Table 1, entry 4)

The reaction was conducted using azepane as per the general procedure and the crude material was purified using flash chromatography (3:7 EtOAc/hexanes) to obtain the title compound as a tan oil (231 mg, 82%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 7.97–7.95 (m, 1H, H5), 7.95–7.93 (m, 1H, H3), 7.68 (d, *J* = 3.0 Hz, 1H, H6), 3.61–3.56 (m [app t], 4H, H2' and H') 1.78–1.72 (m, 4H, H3' and H6') 1.55–1.49 (m, 4H, H4' and H5'). ¹³C NMR (125 MHz, CDCl₃): δ 153.9, 141.8, 130.9, 129.6, 47.0, 27.4, 27.0.

N,*N*-Dibutylpyrazin-2-amine (Table 1, entry 5)

The reaction was conducted using dibutylamine as per the general procedure and the crude material was purified using flash chromatography (1:4 EtOAc/hexanes) to obtain the title compound as a yellow oil (29 mg, 9%): IR (ATR) \bar{v}_{max} (cm⁻¹): 1574 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.99–7.96 (m, 1H, H5), 7.92–7.90 (m, 1H, H3), 7.68 (d, *J* = 2.5 Hz, 1H, H6), 3.45–3.39 (m [app t], 4H, H1'), 1.62–1.53 (m, 4H, H2'), 1.49–1.40 (m [app sextet], 4H, H3'), 0.98–0.91 (m [app t], 6H, H4'). ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 141.9, 130.7, 129.8, 48.1, 29.6, 20.2, 13.9. HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₂H₂₂N₃, 208.1814; found, 208.1816.

1-(Pyrazin-2-yl)piperidin-3-ol (Table 1, entry 6)

The reaction was conducted using 3-hydroxypiperidine as per the general procedure to obtain the title compound as a brown solid (212 mg, 74%). IR (ATR) \bar{v}_{max} (cm⁻¹): 3231 (m, N–H + O–H), 1583 (s). ¹H NMR (500 MHz, CDCl₃): δ 8.08 (d, *J* = 1.0 Hz, 1H, H3), 7.98–7.95 (m, 1H, H5), 7.72 (d, *J* = 2.5 Hz, 1H, H6), 3.91 (dd, *J* = 13.0, 3.5 Hz, 1H, H2'a), 3.83–3.76 (m [app septet], 1H), 3.72 (ddd, *J* = 13.0, 6.0, 4.0 Hz, 1H, H6'a), 3.68 (br s, 1H, OH), 3.29–3.22 (m, 2H), 1.98–1.91 (m, 1H), 1.87–1.80 (m, 1H), 1.63–1.48 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 155.1, 141.6, 131.9, 131.0, 65.8, 51.4, 44.8, 32.6, 22.0. HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₉H₁₄N₃O, 180.1137; found, 180.1144.

2-(4-Phenylpiperazin-1-yl)pyrazine (Table 1, entry 7)

The reaction was conducted using *N*-phenylpiperazine as per the general procedure and the crude material was purified using flash chromatography (2:3 EtOAc/hexanes) to obtain the title compound as an off white powder (276 mg, 81%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 8.20 (d, *J* = 1.5 Hz, 1H, H3), 8.10–8.08 (m [app t], 1H, H5), 7.88 (d, *J* = 3.0 Hz, 1H, H6), 7.33–7.27 (m, 2H, H3' and H5'), 7.00–6.96 (m [app d], 2H, H2' and H6'), 6.93–6.89 (m [app t], 1H, H4'), 3.78–3.74 (m, 4H), 3.34–3.29 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 154.9, 151.0, 141.7, 133.2, 131.1, 129.2, 120.3, 116.4, 49.0, 44.5.

N-hexylpyrazin-2-amine (Table 1, entry 8)

The reaction was conducted using hexylamine as per the general procedure and the crude material was purified using flash chromatography (Et₂O) to obtain the title compound as a yellow oil (158 mg, 55%): IR (ATR) \bar{v}_{max} (cm⁻¹): 3287 (m, N–H), 1592 (s). ¹H NMR (500 MHz, CDCl₃): δ 7.96 (dd, J = 2.5, 1.5 Hz, 1H, H5), 7.86 (d, J = 1.5 Hz, 1H, H3), 7.77 (d, J = 2.5 Hz, 1H, H6), 4.61 (br s, 1H, NH), 3.35–3.29 (m [app dt], 2H, H1'), 1.66–1.58 (m, 2H, H2'), 1.43–1.27 (m, 6H, H3'+H4'+H5'), 0.92–0.85 (m, 3H, H6'). ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 142.0, 132.6, 131.7, 41.6, 31.5, 29.4, 26.6, 22.5, 14.0. HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₀H₁₈N₃, 180.1501; found, 180.1504.

N-Cyclopropylpyrazin-2-amine (Table 1, entry 9)

The reaction was conducted using cyclopropylamine as per the general procedure and the crude material was purified using flash chromatography (Et₂O) to obtain the title compound as a brown solid (26 mg, 12%): IR (ATR) \bar{v}_{max} (cm⁻¹): 3189 (m, N–H), 1584 (m). ¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, J = 1.5 Hz, 1H, H3), 7.95 (dd, J = 2.5, 1.5 Hz, 1H, H5), 7.86 (d, J = 2.5 Hz, 1H, H6), 5.43 (s, 1H, NH), 2.58–2.52 (m, 1H, H1'), 0.88–0.76 (m, 2H), 0.61–0.51 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 155.4, 142.0, 133.8, 130.7, 23.5, 7.6. HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₇H₁₀N₃, 136.0875; found, 136.0871.

N-Cyclobutylpyrazin-2-amine (Table 1, entry 10)

The reaction was conducted using cyclobutylamine as per the general procedure and the crude material was purified using flash chromatography (1:1 EtOAc/hexanes) to obtain the title compound as a pale yellow solid (68 mg, 29%). ¹H NMR and ¹³C NMR were consistent with literature values.³ ¹H NMR (500 MHz, CDCl₃): δ 7.95 (dd, *J* = 2.5, 1.5 Hz, 1H, H5), 7.80 (d, *J* = 1.5 Hz, 1H, H3), 7.79 (d, *J* = 2.5 Hz, 1H, H6), 4.86 (br s, 1H), 4.27–4.18 (m, 1H), 2.48–2.40 (m, 2H), 1.94–1.72 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 141.9, 132.4, 131.3, 46.5, 31.0, 15.0.

N-Cyclohexylpyrazin-2-amine (Table 1, entry 11)

The reaction was conducted using cyclohexylamine as per the general procedure and the crude material was purified using flash chromatography (2:3 EtOAc/hexanes) to obtain the title compound as a white powder (56 mg, 20%). ¹H NMR and ¹³C NMR were consistent with literature values. ² ¹H NMR (500 MHz, CDCl₃): δ 7.92 (dd, *J* = 2.5, 1.5 Hz, 1H, H5), 7.81 (d, *J* = 1.5 Hz, 1H, H3), 7.72 (d, *J* = 2.5 Hz,

1H, H6), 4.60 (br s, 1H, NH), 3.70–3.60 (m, 1H), 2.07–1.98 (m, 2H), 1.79–1.70 (m, 2H), 1.68–1.59 (m, 1H), 1.45–1.33 (m, 2H), 1.27–1.14 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 154.0, 142.0, 132.2, 132.0, 49.6, 33.1, 25.6, 24.8.

N-Benzylpyrazin-2-amine (Table 1, entry 12)

The reaction was conducted using benzylamine as per the general procedure and the crude material was purified using flash chromatography (3:2 EtOAc/hexanes) to obtain the title compound as a white crystalline solid (96 mg, 32%). ¹H NMR and ¹³C NMR were consistent with literature values.⁴ ¹H NMR (500 MHz, CDCl₃): δ 8.02 (dd, J = 2.5, 1.5 Hz, 1H, H5), 7.91 (d, J = 1.5 Hz, 1H, H3), 7.84 (d, J = 2.5 Hz, 1H, H6), 7.40–7.28 (m, 5H, H2'–H6'), 5.06 (br s, 1H, NH), 4.73–4.43 (m [AB quartet], 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃): δ 154.4, 141.9, 138.4, 133.1, 132.1, 128.7, 127.54, 127.51, 45.5.

N-(4-Methoxybenzyl)pyrazin-2-amine (Table 1, entry 13)

The reaction was conducted using 4-methoxybenzylamine as per the general procedure and the crude material was purified using flash chromatography (1:1 EtOAc/hexanes) to obtain the title compound as a pale yellow powder (129 mg, 38%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 8.01 (dd, *J* = 3.0, 1.5 Hz, 1H, H5), 7.89 (d, *J* = 1.5 Hz, 1H, H3), 7.83 (d, *J* = 3.0 Hz, 1H, H6), 7.31–7.27 (m, 2H, H2" and H6"), 6.92–6.88 (m, 2H, H3" and H5"), 5.00 (br s, 1H, NH), 4.51–4.48 (m [app d], 2H, H1'), 3.82 (s, 3H, OMe). ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 154.4, 141.9, 133.0, 132.1, 130.4, 128.9, 114.1, 55.3, 45.0.

N-(2-(1H-Indol-3-yl)ethyl)pyrazin-2-amine (Table 1, entry 14)

Tryptamine was prepared by shaking tryptamine hydrochloride (1.60 mmol) with 1 M NaOH (50 mL) solution followed by extraction with Et₂O (3 × 50 mL) and removal of the solvent *in vacuo*. The reaction was conducted using freshly prepared tryptamine as per the general procedure and the crude material was purified using flash chromatography (7:3 EtOAc/hexanes) to obtain the title compound as a tan powder (210 mg, 55%). ¹H NMR and ¹³C NMR were consistent with literature values.² ¹H NMR (500 MHz, CDCl₃): δ 8.22 (br s, 1H), 7.99 (dd, *J* = 3.0, 1.5 Hz, 1H, H4), 7.80 (d, *J* = 1.5 Hz, 1H, H3), 7.79 (d, *J* = 3.0 Hz, 1H, H6), 7.64–7.61 (m [app dq], 1H), 7.37 (ddd, *J* = 8.0, 1.0, 1.0 Hz, 1H), 7.22 (ddd. *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.14 (ddd. *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.05–7.02 (m, 1H), 4.68 (br t, 1H), 3.73–3.68 (m [app q], 2H), 3.13–3.08 (m [app d], 2H). ¹³C NMR (125 MHz, CDCl₃): δ 154.6, 142.0, 136.4, 132.6, 132.2, 127.3, 122.24, 122.15, 119.5, 118.7, 112.9, 111.3, 41.5, 25.1.

¹H-NMR spectra for known adducts

¹H NMR for Table 1, entry 4

¹H NMR for Table 1, entry 10

¹H NMR for Table 1, entry 12

¹H NMR for Table 1, entry 14

¹H- and ¹³C-NMR spectra for novel adducts

¹³C NMR for Table 1, entry 6

¹³C NMR for Table 1, entry 8

¹³C NMR for Table 1, entry 9

References

- [1] L. Yasmin, X. Chen, K. A. Stubbs and C. L. Raston, Sci. Rep., 2013, 3, 2282.
- [2] K. Walsh, H. F. Sneddon and C. J. Moody, ChemSusChem, 2013, 6, 1455–1460.
- [3] D. E. Jones and M. S. South, Tetrahedron, 2010, 66, 2570–2581.
- [4] P. Jeanjot, F. Bruyneel, A. Arrault, S. Gharbi, J.-F. Cavalier, A. Abels, C. Marchand, R. Touillaux, J.-F. Rees and J. Marchand-Brynaert, *Synthesis*, 2003, 2003, 513–522.