Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

One-Pot Synthesis of Polysubstituted 3-Acylpyrroles Using Cooperative Catalysis

Hai-Lei Cui and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

ftanaka@oist.jp

1. General	S 1
2. Synthesis of Propargylated Amines	S 2
3. Synthesis of 2,5-Dihydropyrroles	S 4
4. One-Pot Synthesis of 3-Acylpyrroles	S 8
5. Synthesis of 2,5-Dihydrofuran and 3-Acylfuran	S 15
6. Transformations of 3-Acylpyrroles	S 16
7. References	S 17
8. NMR Spectra	S 18

1. General

TLC was performed using Merck silica gel 60 F254 TLC aluminum sheets. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400. Chemical shifts are reported in ppm from CDCl₃ as an internal standard. High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap mass spectrometer. Melting points were measured on a Yanaco MP J3 melting point apparatus and recorded in °C.

 α,α,α -Trifluorotoluene was purchased from TCI and stored over molecular sieves 4Å under argon. Solvents used for reactions were purchased as anhydrous or low water content and used as such. All other chemicals were purchased and used without further purification.

2. Synthesis of Propargylated Amines

Propargylated amines were synthesized by reported procedures.¹⁻⁶

```
4-Methoxy-N-(prop-2-yn-1-yl)aniline (2a)<sup>1</sup>
```

Prepared by the reported procedure² and purified by flash column chromatography (Hexane/EtOAc = 6:1); yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.85-6.81 (m, 2H), 6.71-6.67 (m, 2H), 3.91 (d, *J* = 2.4 Hz, 2H), 3.77 (s, 3H), 3.64 (brs, 1H), 2.23 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 140.9, 115.1, 114.8, 81.4, 71.2, 55.7, 34.6.

N-(Prop-2-yn-1-yl)aniline²

Prepared by the reported procedure² and purified by flash column chromatography (Hexane/EtOAc = 8:1); yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.21 (m, 2H), 6.83-6.79 (m, 1H), 6.72-6.69 (m, 2H), 3.96 (d, *J* = 2.4 Hz, 2H), 3.89 (brs, 1H), 2.23 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.9, 129.3, 118.7, 113.5, 81.0, 71.3, 33.7.

4-Chloro-N-(prop-2-yn-1-yl)aniline³

Prepared by the reported procedure¹ and purified by flash column chromatography (Hexane/EtOAc = 8:1); yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.17 (m, 2H), 6.64-6.62 (m, 2H), 3.93-3.92 (m, 3H), 2.23 (t, *J* = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 129.1, 123.4, 114.7, 80.5, 71.5, 33.7.

N-Benzylprop-2-yn-1-amine⁴

Prepared by the reported procedure⁴ and purified by flash column chromatography (Hexane/EtOAc = 6:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.26 (m, 5H), 3.90 (s, 2H), 3.45 (d, *J* = 2.4 Hz, 2H), 2.28 (t, *J* = 2.4 Hz, 1H), 1.60 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 139.4, 128.5, 128.4, 127.2, 82.1, 71.6, 60.4, 37.3.

Β'n

N-Benzyl-3-phenylprop-2-yn-1-amine⁵

Prepared by the reported procedure⁴ and purified by flash column chromatography (Hexane/EtOAc = 4:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.29 (m, 10H), 3.98 (s, 2H), 3.69 (s, 2H), 1.70 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 139.5, 131.7, 128.5, 128.2, 128.1, 127.2, 123.2, 87.5, 83.8, 52.5, 38.3.

N-Benzylbut-3-yn-2-amine⁶

Prepared by the reported procedure⁶ and purified by flash column chromatography (Hexane/EtOAc = 4:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.25 (m, 5H), 4.04 (d, *J* = 12.8 Hz, 1H), 3.83 (d, *J* = 12.8 Hz, 1H), 3.51 (dq, *J* = 6.8, 2.4 Hz, 1H), 2.34 (d, *J* = 2.0 Hz, 1H), 1.44 (brs, 1H), 1.40 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 128.43, 128.40, 127.1, 86.3, 70.8, 51.4, 44.3, 22.3.

3. Synthesis of 2,5-Dihydropyrroles

General Procedure for the aza-Michael/Carbocyclization.

A mixture of Cu(OTf)₂ (0.01 mmol, 3.6 mg) and PPh₃ (0.04 mmol, 10.5 mg) in PhCF₃ (0.2 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, enone 1 (0.2 mmol), propargylated amine 2 (0.3 mmol) and pyrrolidine (0.04 mmol, 3.4 μ L) were added. The resulting mixture was stirred at the same room temperature under Ar until enone 1 was consumed (monitored by TLC). The reaction mixture was directly purified by flash column chromatography on silica gel (Hexane/EtOAc or Hexane/Acetone) to give 3.

^{a)} Reaction of **1** (0.2 mmol) and **2** (0.3 mmol) was performed using pyrrolidine (0.04 mmol, 20 mol% to **1**), PPh₃ (0.04 mmol, 20 mol% to **1**), and Cu(OTf)₂ (0.01 mmol, 5 mol% to **1**) in PhCF₃ (0.2 mL, concentration of **1**: 1 M) at rt (25 °C). ^{b)} Reaction in PhCF₃ (1.0 mL, concentration of **1**: 0.2 M). ^{c)} Reaction in MeOH instead of in PhCF₃. ^{d)} Reaction at 40 °C. ^{e)} Reaction at 60 °C. ND = not detected.

Compound 3a

Purified by flash column chromatography (Hexane/EtOAc = 7:1); yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.89-6.86 (m, 2H), 6.64-6.60, (m, 2H), 4.49-4.41 (m, 1H), 4.31 (dd, *J* = 15.6 Hz, 6.0 Hz, 1H), 4.05 (ddq, *J* = 15.6 Hz, 4.0 Hz, 0.8 Hz, 1H), 3.78 (s, 3H), 2.66-2.53 (m, 2H), 2.36-2.27 (m, 1H), 2.09 (s, 3H), 2.08-2.01 (m, 1H), 1.92-1.80 (m, 1H), 1.51-1.42 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 151.7, 144.0, 141.9, 133.5, 115.1, 113.3, 67.3, 62.3, 55.9, 40.8, 31.8, 20.9, 13.3. ESI-HRMS: calcd for C₁₆H₂₀NO₂ ([M+H]⁺) 258.1489, found 258.1494.

Compound 3b

Purified by flash column chromatography (Hexane/EtOAc = 9:1); pale yellow solid; mp 136-138. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.18 (m, 2H), 6.57-6.53, (m, 2H), 4.52-4.40 (m, 1H), 4.28 (dd, *J* = 15.6 Hz, 6.0 Hz, 1H), 4.06 (ddq, *J* = 15.6 Hz, 3.6 Hz, 1.2 Hz, 1H), 2.65-2.54 (m, 2H), 2.36-2.27 (m, 1H), 2.09-2.02 (m, 4H), 1.92-1.82 (m, 1H), 1.45 (dt, *J* = 12.8 Hz, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 145.5, 143.3, 133.5, 129.1, 121.8, 113.4, 67.0, 61.5, 40.7, 31.3, 20.8, 13.2. ESI-HRMS: calcd for C₁₅H₁₇CINO ([M+H]⁺) 262.0993, found 262.0970.

Compound 3c

Purified by flash column chromatography (Hexane/EtOAc = 3:1 to 2:1); colorless solid; mp 188-190. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.31-4.24 (m, 1H), 4.13 (dd, J = 16.0 Hz, 5.6 Hz, 1H), 4.10-3.97 (m, 1H), 2.72-2.62 (m, 1H), 2.49-2.43 (m, 1H), 2.45 (s, 3H), 2.29-2.17 (m, 1H), 2.07-1.98 (m, 1H), 1.90 (d, J = 0.8 Hz, 2H), 1.79-1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 144.0, 142.2, 133.2, 131.9, 129.9,

127.7, 67.6, 59.3, 40.5, 33.2, 21.5, 20.9, 12.9. ESI-HRMS: calcd for $C_{16}H_{20}NO_3S$ ([M+H]⁺) 306.1158, found 306.1165.

Compound 3d

Purified by flash column chromatography (Hexane/EtOAc = 5:1); yellow gum; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.17 (m, 5H), 3.98 (d, *J* = 12.8 Hz, 1H), 3.58-3.50 (m, 1H), 3.48-3.43 (m, 2H), 3.17 (ddq, *J* = 15.6 Hz, 6.0 Hz, 1.6 Hz, 1H), 2.41-2.33 (m, 1H), 2.23-2.13 (m, 1H), 2.06-2.00 (m, 1H), 1.95 (d, *J* = 0.8 Hz, 3H), 1.93-1.87 (m, 1H), 1.68-1.56 (m, 1H), 1.45-1.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 148.6, 139.0, 133.1, 128.8, 128.4, 127.2, 70.9, 64.4, 58.3, 40.6, 31.2, 21.2, 14.0. ESI-HRMS: calcd for C₁₆H₂₀NO ([M+H]⁺) 242.1539, found 242.1538.

Compound 3e

Purified by flash column chromatography (Hexane/Acetone = 9:1); pale yellow solid; mp 123-125. ¹H NMR (400 MHz, CDCl₃): δ 6.90-6.86 (m, 2H), 6.63-6.59, (m, 2H), 4.68-4.60 (m, 1H), 4.32 (dd, J = 15.6 Hz, 5.6 Hz, 1H), 4.04 (dd, J = 15.2 Hz, 3.6 Hz, 1H), 3.78 (s, 3H), 2.42-2.33 (m, 2H), 2.22 (d, J = 16.4 Hz, 1H), 2.06 (s, 3H), 1.48 (t, J = 12.0 Hz, 1H), 1.16 (s, 3H), 1.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 151.8, 143.4, 142.1, 132.8, 115.1, 113.5, 64.3, 62.8, 55.9, 54.9, 44.8, 33.0, 31.9, 27.3, 13.1. ESI-HRMS: calcd for C₁₈H₂₄NO₂ (([M+H]⁺) 286.1804, found 286.1784.

Compound 3f

Purified by flash column chromatography (Hexane/EtOAc = 10:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.24, (m, 5H), 4.23 (d, *J* = 14.0 Hz, 1H), 3.71-3.65 (m, 2H), 3.59 (d, *J* =

14.0 Hz, 1H), 3.29-3.22 (m, 1H), 2.39-2.35 (m, 2H), 1.97 (s, 3H), 1.74-1.56 (m, 2H), 1.13 (s, 3H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 147.7, 140.4, 131.5, 129.4, 127.9, 126.8, 80.1, 66.7, 61.9, 37.2, 36.4, 35.7, 28.4, 18.5, 13.4. ESI-HRMS: calcd for C₁₈H₂₄NO ([M+H]⁺) 270.1858, found 270.1853.

Compound 3g

Purified by flash column chromatography (Hexane/EtOAc = 8:1); colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.25 (m, 5H), 4.10 (d, *J* = 13.2 Hz, 1H), 3.83-3.75 (m, 1H), 3.63 (dd, *J* = 16.4 Hz, 4.4 Hz, 1H), 3.51 (d, *J* = 13.2 Hz, 1H), 3.28 (ddd, *J* = 16.4 Hz, 4.8 Hz, 0.8 Hz, 1H), 2.55-2.42 (m, 2H), 2.14-2.07 (m, 1H), 2.04 (s, 3H), 2.02-1.92 (m, 2H), 1.62-1.43 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.6, 150.9, 139.2, 136.3, 128.6, 128.4, 127.1, 71.7, 64.6, 58.0, 46.0, 36.5, 28.4, 25.6, 14.4. ESI-HRMS: calcd for C₁₇H₂₂NO ([M+H]⁺) 256.1696, found 256.1698.

Compound 3h

Purified by flash column chromatography (Hexane/EtOAc = 1:1); yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26, (m, 5H), 3.78 (s, 2H), 3.76-3.73 (m, 2H), 3.60-3.57 (m, 2H), 2.23 (s, 3H), 2.07 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 150.0, 138.8, 133.6, 128.6, 128.5, 127.2, 66.3, 60.7, 60.0, 30.1, 14.7. ESI-HRMS: calcd for C₁₄H₁₈NO ([M+H]⁺) 216.1383, found 216.1381.

Compound 3i

Purified by flash column chromatography (Hexane/EtOAc = 3:1); yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.24, (m, 5H), 4.58-4.55 (m, 1H), 3.97 (d, *J* = 13.2 Hz, 1H), 3.91-3.85 (m, 1H), 3.78 (d, *J* = 13.2 Hz, 1H), 3.69 (s, 3H), 3.54 (ddq, *J* = 16.4 Hz, 3.2 Hz, 0.8 Hz, 1H), 2.32 (s, 3H), 2.10 (d, *J* = 0.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.1, 172.6, 151.7, 138.2, 134.3, 128.7, 128.4, 127.3, 73.1, 65.9, 57.6, 52.0, 30.0, 14.7. ESI-HRMS: calcd for C₁₆H₂₀NO₃ ([M+H]⁺)

Compound 3j

Purified by flash column chromatography (Hexane/Acetone = 1:1); brown solid. ¹H NMR (400 MHz, CDCl₃): δ 8.55 (d, *J* = 6.0 Hz, 2H), 7.30-7.16, (m, 7H), 4.86-4.84 (m, 1H), 3.82 (dd, *J* = 16.4, 4.8 Hz, 1H), 3.78 (d, *J* = 13.0 Hz, 1H), 3.53 (d, *J* = 13.0 Hz, 1H), 3.48 (ddq, *J* = 16.4, 4.4, 0.8 Hz, 1H), 2.11 (d, *J* = 0.8 Hz, 3H), 2.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 151.4, 150.0, 149.7, 138.4, 137.3, 128.5, 128.3, 127.2, 123.8, 74.2, 64.8, 56.8, 30.5, 14.6. ESI-HRMS: calcd for C₁₉H₂₁N₂O ([M+H]⁺) 293.1648, found 293.1648.

Compound 3k

Purified by flash column chromatography (Hexane/EtOAc = 3:1); 8.7:1 dr; colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 2H), 7.35-7.32 (m, 2H), 7.28-7.24 (m, 1H), 3.95-3.91 (m, 2H), 3.78-3.74 (m, 2H), 2.25 (dd, *J* = 16.4 Hz, 2.0 Hz, 1H), 2.20 (dd, *J* = 16.4 Hz, 2.0 Hz, 1H), 2.00 (d, *J* = 1.6 Hz, 3H), 1.94-1.87 (m, 1H), 1.47 (t, *J* = 12.0 Hz, 1H), 1.05 (s, 3H), 1.02 (d, *J* = 6.8 Hz, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 153.0, 139.4, 133.6, 128.4, 128.3, 126.9, 65.6, 64.2, 54.7, 51.4, 43.9, 33.1, 32.0, 26.7, 13.4, 11.7. ESI-HRMS: calcd for C₁₉H₂₆NO ([M+H]⁺) 284.2014, found 284.2007.

4. One-Pot Synthesis of 3-Acylpyrroles

General Procedure for the One-Pot aza-Michael/Carbocyclization-Oxidation (Table 2).

A mixture of Cu(OTf)₂ (3.6 mg, 0.01 mmol) and PPh₃ (10.5 mg, 0.04 mmol) in PhCF₃ (0.2 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, enone **1** (0.2 mmol),

propargylated amine 2 (0.3 mmol), and pyrrolidine (3.4 μ L, 0.04 mmol) were added. The resulting mixture was stirred at the same room temperature or 40 °C as indicated under Ar until enone 1 was consumed (monitored by TLC). To the mixture, MnO₂ (4.0 mmol) and CH₂ClCH₂Cl (DCE) (2 mL) were added. The mixture was stirred at 40 °C until dihydropyrrole **3** was consumed. The mixture was filtered through Celite. The filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel to give product **4**. When the dihydropyrrole was synthesized in MeOH, the solvent was removed before addition of MnO₂ and DCE.

Compound 4a

Synthesis of dihydropyrrole at rt for 23 h; oxidation in CH₂Cl₂ at rt for 5 h; flash column chromatography (Hexane/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.19 (m, 2H), 6.99-6.96 (m, 2H), 6.50 (m, 1H), 3.86 (s, 3H), 2.69 (t, *J* = 6.4 Hz, 2H), 2.48 (t, *J* = 6.4 Hz, 2H), 2.35 (d, *J* = 0.8 Hz, 3H), 2.08 (pentet, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 195.5, 158.9, 143.5, 131.8, 126.2, 121.0, 119.7, 119.5, 114.5, 55.6, 38.5, 24.0, 23.1, 11.5. ESI-HRMS: calcd for C₁₆H₁₈NO₂ ([M+H]⁺) 256.1332, found 256.1313.

Gram-scale synthesis of **4a**: A mixture of Cu(OTf)₂ (180.8 mg, 0.5 mmol) and PPh₃ (524.6 mg, 2.0 mmol) in PhCF₃ (10.0 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, cyclohexanone (0.971 mL, 10.0 mmol), propargylated amine **2a** (1.93 g, 12.0 mmol), and pyrrolidine (165.4 μ L, 2.0 mmol) were added. The resulting mixture was stirred at the room temperature until the enone was consumed (monitored by TLC, 51 h). To the mixture, MnO₂ (2.6 g, 30.0 mmol) and CH₂ClCH₂Cl (DCE) (30.0 mL) was added. The mixture was stirred at 40 °C until dihydropyrrole was consumed (68 h). The mixture was cooled to rt, diluted with EtOAc and filtered through Celite. The filtrate was washed with water (x 2) and brine (x 2), dried over Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1) to give **4a** (1.69 g, 66%) as a pink solid. Recrystallization (Hexane/EtOAc = 16 mL/6 mL) gave **4a** (1.24 g) as pale pink crystals; mp 106-108.

Compound 4b

Synthesis of dihydropyrrole at rt for 45 h; oxidation at 40 °C for 44 h; flash column chromatography (Hexane/EtOAc = 3:1); pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (m, 2H), 7.40-7.36 (m, 1H), 7.31-7.28 (m, 2H), 6.57 (m, 1H), 2.75 (t, *J* = 6.4 Hz, 2H), 2.49 (dd, *J* = 6.4 Hz, 6.0 Hz, 2H), 2.36 (d, *J* = 0.8 Hz, 3H), 2.09 (dq, *J* = 6.0 Hz, 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 195.6, 143.2, 138.8, 129.4, 127.5, 124.8, 120.7, 120.1, 119.9, 38.6, 24.1, 23.4, 11.5. ESI-HRMS: calcd for C₁₅H₁₆NO ([M+H]⁺) 226.1226, found 226.1230.

Compound 4c

Synthesis of dihydropyrrole at rt for 67 h; oxidation at 40 °C for 31 h; flash column chromatography (Hexane/EtOAc = 2:1); yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.26-7.22 (m, 2H), 6.53 (q, *J* = 0.8 Hz, 1H), 2.73 (t, *J* = 6.0 Hz, 2H), 2.49 (dd, *J* = 7.2 Hz, 6.0 Hz, 2H), 2.35 (d, *J* = 0.8 Hz, 3H), 2.10 (dq, *J* = 7.2 Hz, 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 195.5, 143.1, 137.3, 133.3, 129.6, 126.0, 120.5, 120.3, 38.5, 24.0, 23.3, 11.5. ESI-HRMS: calcd for C₁₅H₁₅NOCl ([M+H]⁺) 260.0837, found 260.0844.

Compound 4d

Synthesis of dihydropyrrole at rt for 24 h; oxidation at 40 °C for 24 h; flash column chromatography (Hexane/EtOAc = 2:1); pale yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.28 (m, 3H), 7.06-7.05 (m, 2H), 6.36 (s, 1H), 4.97 (s, 2H), 2.64 (t, *J* = 6.0 Hz, 2H), 2.43 (dd, *J* = 6.4 Hz, 6.0 Hz, 2H), 2.31 (d, *J* = 1.2 Hz, 3H), 2.10 (dq, *J* = 6.0 Hz, 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 195.1, 143.4, 136.8, 128.9, 127.9, 126.6, 120.4, 119.4, 119.3, 50.2,

Compound 4e⁷

Synthesis of dihydropyrrole at 40 °C for 22 h; oxidation at 40°C for 66 h; flash column chromatography (Hexane/EtOAc = 1:1); colorless solid; mp 124-126. ¹H NMR (400 MHz, CDCl₃): δ 6.28 (s, 1H), 3.48 (s, 3H), 2.69 (t, *J* = 6.0 Hz, 2H), 2.42 (dd, *J* = 6.8 Hz, 6.2 Hz, 2H), 2.28 (d, *J* = 0.8 Hz, 3H), 2.12 (dq, *J* = 6.8 Hz, 6.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.9, 143.5, 120.8, 118.96, 118.93, 38.3, 33.1, 23.6, 21.7, 11.4. ESI-HRMS: calcd for C₁₀H₁₄NO ([M+H]⁺) 164.1070, found 164.1070.

Compound 4f

Synthesis of dihydropyrrole at rt for 24 h; oxidation in CH_2Cl_2 at rt for 25 h; flash column chromatography (Hexane/EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.18 (m, 2H), 6.99-6.49 (m, 2H), 6.49 (m, 1H), 3.86 (s, 3H), 2.55 (s, 2H), 2.34 (s, 2H), 2.34 (s, 3H), 1.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 194.8, 158.9, 142.4, 131.8, 126.3, 121.3, 119.3, 118.6, 114.5, 55.6, 52.6, 37.0, 35.5, 28.5, 11.4. ESI-HRMS: calcd for $C_{18}H_{22}NO_2$ ([M+H]⁺) 284.1645, found 284.1646.

Gram-scale synthesis of **4f**: A mixture of Cu(OTf)₂ (180.8 mg, 0.5 mmol) and PPh₃ (524.6 mg, 2.0 mmol) in PhCF₃ (10.0 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, 3,3-dimethylcyclohexenone (1.24 g, 10.0 mmol), propargylated amine **2a** (1.93 g, 12.0 mmol), and pyrrolidine (165.4 μ L, 2.0 mmol) were added. The resulting mixture was stirred at the room temperature until the enone was consumed (monitored by TLC, 54 h). To the mixture, MnO₂ (2.6 g, 30.0 mmol) and CH₂ClCH₂Cl (DCE) (30.0 mL) was added. The mixture was stirred at 40 °C until dihydropyrrole was consumed (50 h). The mixture was cooled to rt, diluted with EtOAc, and filtered through Celite. The filtrate was washed with water (x 2) and brine (x 2), dried over Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) to give **4f** (2.30 g, 80%) as an orange solid. Recrystallization (Hexane/EtOAc = 20 mL/5 mL) gave **4f** (1.46 g) as pale yellow crystals; mp: 160-162.

Compound 4g

Synthesis of dihydropyrrole at rt for 20 h; oxidation at 40°C for 43 h; flash column chromatography (Hexane/EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.26 (m, 3H), 7.05-7.04 (m, 2H), 6.22 (m, 1H), 5.19 (s, 2H), 2.50 (t, *J* = 6.4 Hz, 2H), 2.28 (d, *J* = 0.8 Hz, 3H), 1.95 (t, *J* = 6.4 Hz, 2H), 1.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 195.4, 148.9, 137.5, 128.8, 127.7, 126.4, 122.3, 119.2, 118.4, 51.5, 41.2, 35.6, 32.6, 27.4, 11.7. ESI-HRMS: calcd for C₁₈H₂₂NO ([M+H]⁺) 268.1701, found 268.1695.

Gram-scale synthesis of **4g**: A mixture of Cu(OTf)₂ (180.8 mg, 0.5 mmol) and PPh₃ (524.6 mg, 2.0 mmol) in PhCF₃ (10.0 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, 4,4-dimethylcyclohexenone (1.3 mL, 10.0 mmol), *N*-benzylprop-2-yn-1-amine (1.74 g, 12.0 mmol), and pyrrolidine (165.4 μ L, 2.0 mmol) were added. The resulting mixture was stirred at the room temperature until the enone was consumed (monitored by TLC, 69 h). To the mixture, MnO₂ (4.3 g, 50.0 mmol) and CH₂ClCH₂Cl (DCE) (30.0 mL) was added. The mixture was stirred at 40 °C. After 72 h, another portion of MnO₂ (4.3 g, 50.0 mmol) was added. The mixture was stirred at 60 °C for 24 h, then cooled to rt, diluted with EtOAc, and filtered through Celite. The filtrate was washed with water (x 2) and brine (x 2), dried over Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) to give **4g** (1.64 g, 61%) as a yellow solid. Recrystallization (Hexane/EtOAc/Toluene = 5 mL/1 mL) gave **4g** (1.04 g) as pale yellow crystals; mp: 79-81.

Compound 4h

Synthesis of dihydropyrrole in MeOH at rt for 55 h; oxidation at 40 °C for 24 h; flash column chromatography (Hexane/EtOAc = 4:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 3H), 7.01-7.00 (m, 2H), 6.39 (q, *J* = 0.8 Hz, 1H), 5.02 (s, 2H), 2.74 (t, *J* = 6.0 Hz, 2H), 2.69-2.66 (m, 2H), 2.28 (d, *J* = 0.8 Hz, 3H), 1.85-1.75 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 198.8, 139.9, 137.3, 128.9, 127.7, 126.2, 122.6, 121.0, 120.6, 50.5, 43.1, 25.1, 24.8, 22.1, 12.4. ESI-HRMS: calcd for C₁₇H₂₀NO ([M+H]⁺) 254.1539, found 254.1539.

Compound 4i

Synthesis of dihydropyrrole at rt for 47 h; oxidation at 40 °C for 7 h; flash column chromatography (Hexane/EtOAc = 4:1); pale yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.33 (m, 3H), 7.24 (d, *J* = 2.0 Hz, 1H), 7.17-7.15 (m, 2H), 6.43 (m, 1H), 5.00 (s, 2H), 2.36 (s, 3H), 2.29 (d, *J* = 0.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.0, 136.7, 128.9, 128.1, 127.7, 127.2, 124.2, 121.7, 121.6, 53.7, 27.8, 12.3 ppm; ESI-HRMS: calcd for C₁₄H₁₆NO ([M+H]⁺) 214.1226, found 214.1229.

Compound 4j

Synthesis of dihydropyrrole at rt for 48 h; oxidation at 40 °C for 30 h; flash column chromatography (Hexane/EtOAc = 4:1); pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.27 (m, 3H), 7.13-7.11 (m, 2H), 6.61 (d, J = 0.8 Hz, 1H), 5.41 (s, 2H), 3.77 (s, 3H), 2.44 (s, 3H), 2.06 (d, J = 0.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.8, 161.0, 137.4, 132.4, 128.7, 127.7, 127.0, 126.6, 120.2, 118.4, 52.0, 51.5, 31.9, 10.4. ESI-HRMS: calcd for C₁₆H₁₈NO₃ ([M+H]⁺) 272.1281, found 272.1292.

Compound 4k

Synthesis of dihydropyrrole at 40 °C for 22 h; oxidation at 40 °C for 66 h; flash column chromatography (Hexane/EtOAc = 3:1); yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.26 (q, *J* = 0.8 Hz, 1H), 3.49 (s, 3H), 2.88-2.84 (m, 2H), 2.42 (s, 3H), 2.25 (d, *J* = 0.8 Hz, 3H), 1.60-1.54 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.2, 140.9, 120.9, 120.6, 118.8, 33.1, 31.0, 27.8, 22.6, 14.2, 13.8. ESI-HRMS: calcd for C₁₁H₁₈NO ([M+H]⁺) 180.1383, found 180.1385.

Compound 41

Synthesis of dihydropyrrole in MeOH at 40 °C for 52 h; oxidation at 40 °C for 42 h; flash column chromatography (Hexane/EtOAc = 5:1); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 6.28 (brq, J = 0.8 Hz, 1H), 3.47 (s, 3H), 2.74 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 2.26 (d, J = 0.8 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 136.0, 121.1, 120.4, 118.5, 35.5, 33.3, 13.8, 12.2, 8.4. ESI-HRMS: calcd for C₁₀H₁₆NO ([M+H]⁺) 166.1226, found 166.1227.

Compound 4m

Synthesis of dihydropyrrole at 40 °C for 20 h; oxidation at 40 °C for 46 h; flash column chromatography (Hexane/EtOAc = 8:1); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (m, 3H), 7.35-7.32 (m, 2H), 6.45 (brq, J = 0.8 Hz, 1H), 3.32 (s, 3H), 2.32 (d, J = 0.8 Hz, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 138.7, 133.1, 130.7, 128.8, 128.6, 122.9, 121.3, 121.0, 34.3, 30.3, 12.7. ESI-HRMS: calcd for C₁₄H₁₆NO ([M+H]⁺) 214.1232, found 214.1236.

Compound 4n

Synthesis of dihydropyrrole at rt for 49 h; oxidation at 40 °C for 25 h; flash column chromatography (Hexane/Acetone = 1:1); pale yellow solid; mp 106-108. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (m, 2H), 7.29-7.26 (m, 3H), 7.17 (m, 2H), 6.90-6.88 (m, 2H), 6.56 (m, 1H), 4.81 (s, 2H), 2.32 (d, *J* = 0.4 Hz, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.2, 149.9, 141.2, 136.9, 135.1, 128.8, 127.9, 126.5, 125.5, 123.9, 122.0, 121.4, 50.8, 30.7, 12.6. ESI-HRMS: calcd for C₁₉H₁₉N₂O ([M+H]⁺) 291.1492, found 291.1496.

Compound 4o

Synthesis of dihydropyrrole at rt for 24 h; oxidation at 50 °C for 38 h; flash column chromatography (Hexane/EtOAc = 2:1); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.25 (m, 3H), 6.92-6.90 (m, 2H), 5.01 (s, 2H), 2.50 (s, 2H), 2.32 (s, 2H), 2.28 (s, 3H), 1.73 (s, 3H), 1.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 141.6, 137.1, 128.9, 127.5, 126.4, 125.6, 117.4, 114.4, 52.7, 47.0, 36.1, 35.1, 10.4, 9.1. ESI-HRMS: calcd for C₁₉H₂₄NO ([M+H]⁺) 282.1858, found 282.1853.

5. Synthesis of 2,5-Dihydrofuran and 3-Acylfuran

Synthesis of 5 (Scheme 1)

A mixture of Cu(OTf)₂ (3.6 mg, 0.01 mmol) and PPh₃ (10.5 mg, 0.04 mmol) in PhCF₃ (0.2 mL) was stirred at room temperature (25 °C) for 5 min under Ar. To the mixture, enone **1a** (19.4 μ L, 0.2 mmol), propargyl alcohol (23.6 μ L, 0.4 mmol), and pyrrolidine (3.4 μ L, 0.04 mmol) were added. The resulting mixture was stirred at the same room temperature under Ar for 24 h until **1a** was consumed (monitored by TLC). The mixture was directly purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) to give **5** as a colorless solid (26.0 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 4.91-4.84 (m, 1H), 4.67-4.61 (m, 1H), 4.57-4.50 (m, 1H), 2.51-2.45 (m, 1H), 2.32-2.20 (m, 2H), 2.03 (m, 3H), 2.03-1.98 (m, 1H), 1.77-1.65 (m, 1H), 1.63-1.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 146.1, 132.8, 86.0, 78.1, 40.5, 32.2, 19.7, 11.6. ESI-HRMS: calcd for C₉H₁₃O₂ ([M+H]⁺) 153.0910, found 153.0911.

Synthesis of 6 (Scheme 1)

To a mixture of **5** (60.8 mg, 0.4 mmol) in dioxane (2.0 mL, anhydrous) was added a solution of DDQ (136.2 mg, 0.6 mmol) in dioxane. The mixture was stirred at 40 °C for 46 h under Ar. The mixture was diluted with CH_2Cl_2 , washed with 1 M NaOH, water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1) to give **6** as a colorless solid (27.3 mg, 46%). ¹H NMR (400 MHz, CDCl₃): δ 7.07 (m, 1H), 2.84 (t, *J* = 6.4 Hz, 2H), 2.49-2.46 (m, 2H), 2.20 (d, *J* = 1.6 Hz, 3H), 2.19-2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 167.4, 138.9, 120.4, 119.1, 38.3, 23.6, 22.7, 9.1. ESI-HRMS: calcd for C₉H₁₁O₂ ([M+H]⁺) 151.0759, found 151.0752.

6. Transformations of 3-Acylpyrroles

According to the reported indole C-H functionalization procedure,⁸ 3-acylpyrroles **4d** and **4h** were transformed to **7** and **8**, respectively.

Synthesis of 7 (Scheme 2)

A mixture of 3-acylpyrrole **4d** (20.0 mg, 0.084 mmol, 1 equiv), methyl acrylate (22.8 μ L, 0.25 mmol, 3 equiv to **4d**), Cu(OAc)₂ (30.5 mg, 0.17 mmol, 2 equiv), and Pd(OAc)₂ (1.9 mg, 0.008 mmol, 0.1 equiv) in DMF/DMSO (9:1, concentration of **4d**: 0.4 M) was stirred at 40 °C for 42 h. The mixture was cooled to rt, diluted with AcOEt, added to water, and extracted with EtOAc. Organic layers were combined, washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography on silica gel (Acetone/Hexane = 1/2) to gave **7** as a pale yellow solid (21.1 mg, 78%); mp: 114-116. ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 16.0 Hz, 1H), 7.37-7.29 (m, 3H), 6.97-6.96 (m, 2H), 6.03 (d, *J* = 16.0 Hz, 1H), 5.20 (s, 2H), 3.73 (s, 3H), 2.70 (t, *J* = 6.4 Hz, 2H), 2.57 (s, 3H), 2.49 (t, *J* = 6.4 Hz, 2H), 2.11 (pentet, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 194.1, 166.9, 145.4, 134.9, 130.6, 128.1, 126.9, 125.8, 124.6, 124.1, 116.9, 113.8, 50.5, 46.7, 37.8, 22.0, 21.3, 11.2. ESI-HRMS: calcd for C₂₀H₂₂NO₃ ([M+H]⁺) 324.1594, found 324.1594.

Synthesis of 8 (Scheme 2)

Compound **8** was synthesized from **4h** (19.0 mg, 0.075 mmol) by the procedure used for the synthesis of **7** from **4d** but at 60 °C for 19 h. Purification by flash column chromatography on silica gel (EtOAc/Hexane = 1/2) gave **8** as a pale green solid (23.2 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.54 (m, 2H), 7.39-7.31 (m, 5H), 7.01-6.99 (m, 2H), 6.95 (d, *J* = 16.0 Hz, 1H), 6.62 (d, *J* = 16.0 Hz, 1H), 5.23 (s, 2H), 2.82-2.79 (m, 2H), 2.73-2.70 (m, 2H), 2.50 (s, 3H), 1.91-1.98 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 142.2, 141.8, 136.9, 132.4, 129.2, 128.2, 127.8, 127.6, 126.3, 125.5, 123.4, 122.1, 120.3, 119.1, 110.0, 47.7, 43.1, 25.0, 24.8, 21.9, 12.6. ESI-HRMS: calcd for C₂₆H₂₅N₂O ([M+H]⁺) 381.1961, found 381.1958.

7. References

- (1) González-Gómez, Á; Anorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J. *Eur. J. Org. Chem.* **2008**, 1370.
- (2) Dinges, J.; Albert, D. H.; Arnold, L. D.; Ashworth, K. L.; Akritopoulou-Zanze, I.; Bousquet, P. F.; Bouska, J. J.; Cunha, G. A.; Davidsen, S. K.; Diaz, G. J.; Djuric, S. W.; Gasiecki, A. F.; Gintant, G. A.; Gracias, V. J.; Harris, C. M.; Houseman, K. A.; Hutchins, C. W.; Johnson, E. F.; Li, H.; Marcotte, P. A.; Martin, R. L.; Michaelides, M. R.; Nyein, M.; Sowin, T. J.; Su, Z.; Tapang, P. H.; Xia, Z.; Zhang, H. Q. J. Med. Chem. 2007, 50, 2011.
- (3) Zhang, Z.; Zhang, Q.; Ni, Z.; Liu, Q. Chem. Commun. 2010, 46, 1269.
- (4) Lafe, R. G.; Kuo, J. L.; Hochstatter, D. G.; Saga, T.; Turner, J. W.; Merlic, C. A. Org. Lett. **2013**, *15*, 582.
- (5) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076.
- (6) Wipf, P.; Hopkins, C. R. J. Org. Chem. 1999, 64, 6881.
- (7) (a) Barraja, P.; Diana, P.; Montalbano, A.; Carbone, A.; Cirrincione, G.; Viola, G.; Salvador, A.; Vedaldi, D.; Dall'Acqua, F. *Bioorg. Med. Chem.* 2008, *16*, 9668. (b) Luis, C.; Alfonso, G.-O.; Rodrigo, N.; Mónica, P.; María, C. Synthesis 2005, 3152.
- (8) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125.

	7 6.901 7 6.892 7 6.886	<pre> 6.870 6.870 6.860 7.6.631 6.621</pre>	6.616 6.604 6.599 6.599 7.4.659	- 4.649 - 4.649 - 4.644 - 637	4.633 4.628 4.628 4.628 4.342 4.342 4.328 4.328 4.303 4.289 4.289	4.024	2.419 2.419 2.407 2.407 2.407	-2.386 -2.382 -2.372 -2.333 -2.333	2.239	
									Current NAME EXPNO PROCNO	Data Parameters 25062013-Cui 20 1
	3								F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 MCREST MCWRK ======== NUC1 P1 PL1 SF01 F2 - Pro SI SF WDW SSB LB GB PC	<pre>quisition Parameters</pre>
10	9	8	7	6	5 4 000000000000000000000000000000000000	3	2 3.01 3.01	1 .04 3.13	ppm	

4 M M M M Z Z 1 1 T. l

1

7.285 7.285 7.285 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.261	3.780 3.765 3.765 3.765 3.761 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.756 3.7776 3.776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.7776 3.77776 3.7776 3.7776 3.7776 3.7777777777	
		Current Data Parameters NAME 12072013-Cui EXPNO 10 PROCNO 1
O V N 3h Bn		$\begin{array}{cccc} F2 & - \ Acquisition \ Parameters \\ Date_ 20130712 \\ Time 11.34 \\ INSTRUM avance400 \\ PROBHD 5 mm QNP 1H/13 \\ PULPROG 2G30 \\ TD 65536 \\ SOLVENT CDC13 \\ NS 16 \\ DS 22 \\ SWH 8250.825 \ Hz \\ FIDRES 0.125898 \ Hz \\ AQ 3.9715922 \ sec \\ RG 181 \\ DW 60.600 \ usec \\ DE 6.00 \ usec \\ DE 297.4 \ K \\ D1 1.00000000 \ sec \\ MCREST 0.01500000 \ sec \\ MCWRK 0.01500000 \ sec \\ \end{array}$
		CHANNEL f1 NUC1 1H P1 15.00 usec PL1 2.70 dB SF01 400.2324716 MHz
		F2 - Processing parameters SI 32768 SF 400.2300015 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
9 8 7 6 1885 1885 1997 1885 1997 1997 1997 1997 1997 1997 1997 199	1 1 1 1 1 1 1 1	ppm

J J 1 J

S74

