Synthesis and Characterization of Bisoxazolines- and Pybox-Copper(II) Complexes and Their Application in the Coupling of α -Carbonyls with Functionalized Amines

Wei-Guo Jia^a*, Dan-Dan Li^a, Yuan-Chen Dai^a, Hui Zhang^a, Li-Qin Yan^a, En-Hong Sheng^a*, Yun Wei^a, Xiao-Long Mu^a, Kuo-Wei Huang^b*

a: College of Chemistry and Materials Science, Center for Nano Science and Technology, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China

b: Division of Chemical and Life Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

General procedure for the synthesis α-amination of ketones and esters

[Cu] 1 (25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 - 0.5 mL), then appropriate ketone (0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of second amine (1.5 mmol, 3.0 equiv). The reaction was stirred for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the products.

1. Experimental Data for Products of α-Amination

2-Morpholino-1-phenylpropan-1-one (1a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then propiophenone (67 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (105mg, 96% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, J = 7.20 Hz, 2H), 7.49 (t, J = 7.20 Hz 1H), 7.40 (t, J = 7.20 Hz, 2H), 4.00 (q, J = 6.75 Hz, 1H), 3.63 (m, 4H), 2.52 (m, 4H), 1.22 (d, J = 6.75 Hz, 3H).

2-Morpholino-1-phenylbutan-1-one (2a):²

[Cu] 1(25mg, 0.05mmol, 0.1equiv) was dissolved in DMSO (0.5 mL), then Butyrophenone(75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (110 mg, 94% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 7.20 Hz, 2H), 7.54 (t, J = 7.20 Hz, 1H), 7.43 (t, J = 7.20 Hz 2H), 3.99 (q, J = 4.80 Hz, 1H), 3.63 (m, 4H), 2.59 (m, 4H), 1.88 (m, 1H), 1.74 (m, 1H), 0.84 (t, J = 7.53 Hz, 3H).

1-(1-p-tolyl)-2-morpholinopropan-1-one (3a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methylpropiophenone (75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (110 mg, 94% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, J = 7.90 Hz, 2H), 7.19 (d, J = 7.89 Hz, 2H), 3.99 (m, 1H), 3.63 (m, 4H), 2.54 (m, 4H), 2.35 (s, 3H), 1.22 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.19, 144.24, 133.86, 129.44, 129.20, 67.40, 64.92, 50.43, 21.96, 12.36. HRMS (APCI) Calcd. for C₁₄H₁₉NO₂ [M + H]⁺ 234.1489, found 234.1483.

1-(4-Methoxyphenyl)-2-morpholinopropan-1-one (4a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methoxypropiophenone (82 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (116mg, 93% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, J = 8.70 Hz, 2H), 6.99 (d, J = 8.70 Hz, 2H), 3.96 (q, J = 6.90 Hz, 1H), 3.82 (s, 3H), 3.64 (m, 4H), 2.54 (m, 4H), 1.24 (d, J = 6.90 Hz, 3H).

1-(4-chlorophenyl)-2-morpholinopropan-1-one (5a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 4chloropropiophenone (84mg, 0.5mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 10°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (123 mg, 97% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, J = 8.10 Hz, 2H), 7.41 (d, J = 8.10 Hz, 2H), 4.00 (q, J = 6.90 Hz, 1H), 3.66 (m, 4H), 2.57 (m, 4H), 1.29 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.29, 139.79, 134.60, 130.70, 129.06, 67.39, 65.36, 50.23, 11.49. HRMS (APCI) Calcd. for C₁₃H₁₆ClNO₂ [M + H]⁺254.0942, found 254.0940.

Methyl 2-morpholino-2-phenylacetate (6a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then Methyl phenylacetate (71 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the pale yellow liquid (81 mg, 69% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.36 (m, 2H), 7.24 (m, 3H), 3.90 (s, 1H), 3.64 (m, 4H), 3.60 (s, 3H), 2.37 (m, 4H).

Ethyl 2-morpholino-2-phenylacetate (7a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then Eethyl phenylacetate (80 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the pale yellow liquid (81 mg, 65% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.37 (m, 2H), 7.24 (m, 3H), 4.07 (m, 2H), 3.88 (s, 1H), 3.65 (m, 4H), 2.38 (m, 4H), 1.12 (t, J = 7.05 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.52, 135.75, 129.18, 128.91, 128.76, 74.83, 67.12, 61.28, 51.91, 14.41. HRMS (APCI) Calcd. for C₁₄H₁₉NO₃ [M + H]⁺ 250.1438, found 250.1440.

2-morpholino-1-(thiophen-2-yl)butan-1-one (8a):

[Cu] 1 (25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 2-Butyrylthiophene (72 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of morpholine (130 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (111 mg, 93% Yield). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 3.50 Hz, 1H), 7.57 (d, J = 3.50 Hz, 1H), 7.07 (t, J = 3.5, Hz, 1H), 3.64 (m, 4H), 3.51 (m, 1H), 2.61 (m, 2H), 2.54 (m, 2H), 1.75 (m, 2H), 0.94 (t, J = 4.25 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 193.30, 142.76, 133.97, 132.85, 127.74, 73.04, 67.03, 50.59, 20.48, 10.90. HRMS (APCI) Calcd. for C₁₂H₁₇NO₂S [M + H]⁺ 240.1053, found 240.1051.

1-Phenyl-2-thiomorpholinopropan-1-one (9a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then propiophenone (67 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine(150 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (106mg, 90% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 7.20 Hz, 2H), 7.47 (t, J = 7.20 Hz, 1H), 7.37 (t, J = 7.20 Hz, 2H), 4.09 (q, J = 6.60 Hz, 1H), 2.80 (m, 4H), 2.52 (m, 4H), 1.19 (d, J = 6.60 Hz, 3H).

phenyl-2-thiomorpholinobutan-1-one (10a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then Butyrophenone (75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine (150 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room

temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (111mg, 89% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 7.23 Hz, 2H), 7.54 (t, J = 7.25 Hz, 1H), 7.43 (t, J = 7.24 Hz, 2H), 3.93 (m, 1H), 2.88 (m, 4H), 2.56 (m, 4H), 1.87 (m, 1H), 1.69 (m, 1H), 0.86 (t, J = 7.35 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.62, 137.66, 133.23, 128.82, 128.77, 70.94, 52.28, 28.85, 18.91, 11.64. HRMS (APCI) Calcd. for C₁₄H₁₉NOS [M + H]⁺250.1260, found 250.1261.

2-thiomorpholino-1-p-tolylpropan-1-one (11a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methylpropiophenone (75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine(150 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (102 mg, 82% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.10 Hz, 2H), 7.15 (d, J = 8.10 Hz, 2H), 4.03 (m, 1H), 2.77 (m, 4H), 2.50 (m, 4H), 2.32 (s, 3H), 1.15 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.45, 143.45, 133.45, 128.80, 128.78, 64.76, 51.37, 28.17, 21.45, 9.89. HRMS (APCI) Calcd. for C₁₄H₁₉NOS [M + H]⁺250.1260, found 250.1256.

1-(4-methoxyphenyl)-2-thiomorpholinopropan-1-one (12a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methoxypropiophenone (82 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine(150 µL, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (106 mg, 80% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 9.00 Hz, 2H), 6.89 (d, J = 9.00 Hz, 2H), 4.05 (q, J = 6.60 Hz, 1H), 3.84 (s, 3H), 2.83 (m, 4H), 2.57 (m, 4H), 1.21 (d, J = 6.60 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 198.80, 163.54, 131.51, 129.35, 113.67, 65.23, 55.67, 51.83, 28.63, 10.39. HRMS (APCI) Calcd. for C₁₄H₁₉NO₂S [M + H]⁺ 266.1209, found 266.1213.

1-(4-chlorophenyl)-2-thiomorpholinopropan-1-one (13a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 4chloropropiophenone (84 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine(150 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 10°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (99 mg, 74% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 8.40 Hz, 2H), 7.39 (d, J = 8.40 Hz, 2H), 4.05 (q, J = 6.90 Hz, 1H), 2.81 (m, 4H), 2.58 (m, 4H), 1.22 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.15, 139.58, 134.72, 130.81, 128.94, 65.78, 51.83, 28.68, 9.77. HRMS (APCI) Calcd. for C₁₃H₁₆CINOS [M + H]⁺270.0714, found 270.0712.

2-thiomorpholino-1-(thiophen-2-yl)butan-1-one (14a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 2-Butyrylthiophene(72 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of Thiomorpholine(150 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (107 mg, 84% Yield). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 4.00 Hz, 1H), 7.58 (d, J = 4.00 Hz, 1H), 7.08 (t, J = 4.00 Hz, 1H), 3.61 (m, 1H), 2.89 (m, 4H), 2.62 (m, 4H), 1.83 (m, 1H), 1.69 (m, 1H), 0.88 (t, J = 5.00 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 192.09, 142.19, 133.01, 132.08, 126.93, 72.67, 51.51, 27.54, 18.45, 10.77. HRMS (APCI) Calcd. for C₁₂H₁₇NOS₂ [M + H]⁺ 256.0824, found 256.0823.

1-Phenyl-2-(piperidin-1-yl)propan-1-one (15a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then propiophenone (67 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (103 mg, 95% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.09 (m, 2H), 7.51(m, 1H), 7.43 (m, 2H), 4.13 (q, J = 6.90 Hz, 1H), 2.56 (m, 4H), 1.54 (m, 4H), 1.40 (m, 2H), 1.26 (d, J = 6.90 Hz, 3H).

1-phenyl-2-(piperidin-1-yl)butan-1-one (16a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMF(0.5 mL), then Butyrophenone(75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (110 mg, 95% Yield). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.00 Hz, 2H), 7.50(d, J =7.00 Hz, 1H), 7.42 (m, J = 7.00 Hz, 2H), 3.89 (q, J = 7.50 Hz, 1H), 2.57 (m, 2H), 2.49 (m, 2H), 1.87 (m, 1H), 1.70 (m, 1H), 1.49 (m, 4H), 1.36 (m, 2H), 0.83 (t, J = 7.50 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 200.41, 137.87, 132.78, 128.61, 128.43, 70.58, 51.03, 26.52, 24.57, 19.49, 11.29. HRMS (APCI) Calcd. for C₁₅H₂₁NO [M +

H]⁺232.1696, found 232.1696.

2-(piperidin-1-yl)-1-p-tolylpropan-1-one (17a):

0.05mmol, 0.1equiv) was dissolved in DMSO [Cu] 1(25mg, (0.1 mL), then 4-Methylpropiophenone (75µL, 0.5mmol, 1.0equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149µL, 1.5mmol, 3.0equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (109mg, 94% Yield). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.93 (d, J = 8.10 \text{ Hz}, 2H)$, 7.16 (d, J = 8.10 Hz, 2H), 4.06 (q, J = 6.90 Hz, 1H), 2.49 (m, 4H), 2.32 (s, 3H), 1.49 (m, 4H), 1.34 (m, 2H), 1.20 (d, J = 6.90 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.48, 143.75, 133.88, 129.08, 129.05, 64.82, 50.80, 26.16, 24.35, 21.72, 11.84, 11.79. HRMS (APCI) Calcd. for C₁₅H₂₁NO [M + H]⁺ 232.1696, found 232.1696.

1-(4-methoxyphenyl)-2-(piperidin-1-yl)propan-1-one (18a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methoxypropiophenone (82 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (114 mg, 92% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, J = 8.70 Hz, 2H), 6.90 (d, J = 8.70 Hz, 2H), 4.00 (q, J = 6.90 Hz, 1H), 3.85 (s, 3H), 2.52 (m, 4H), 1.51 (m, 4H), 1.41 (m, 2H), 1.24 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.98, 163.59, 131.62, 129.82, 113.74, 65.50, 55.76, 51.18, 26.67, 24.78, 11.94. HRMS (APCI) Calcd. for C₁₅H₂₁NO₂ [M + H]⁺ 248.1645, found

248.1647.

1-(4-chlorophenyl)-2-(piperidin-1-yl)propan-1-one (19a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4chloropropiophenone (84 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 10°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (122 mg, 97% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 8.40 Hz, 2H), 7.39 (d, J = 8.40 Hz, 2H), 4.01 (q, J = 6.90 Hz, 1H), 2.51 (m, 4H), 1.51 (m, 4H), 1.39 (m, 2H), 1.23 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 200.04, 139.42, 134.98, 130.88, 128.86, 65.85, 50.95, 26.58, 24.63, 10.82. HRMS (APCI) Calcd. for C₁₄H₁₈CINO [M + H]⁺252.1150, found 252.1150.

methyl 2-phenyl-2-(piperidin-1-yl)acetate (20a):²

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then Methyl phenylacetate (71 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (101 mg, 87% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.36 (m, 2H), 7.23 (m, 3H), 3.90 (s, 1H), 3.59 (s, 3H), 2.29 (m, 4H), 1.51 (m, 4H), 1.35 (m, 2H).

Ethyl 2-(piperidin-1-yl)-2-phenylacetate (21a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then Eethyl phenylacetate (80 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (104 mg, 84% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.36 (m, 2H), 7.23 (m, 3H), 4.06 (m, 2H), 3.87 (s, 1H), 2.31 (m, 4H), 1.50 (m, 4H), 1.35 (m, 2H), 1.11 (t, J = 7.20 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.06, 136.65, 129.08, 128.65, 128.34, 75.23, 60.94, 52.62, 26.06, 24.64, 14.39. HRMS (APCI) Calcd. for C₁₅H₂₁NO₂ [M + H]⁺ 248.1645, found 248.1643.

2-(piperidin-1-yl)-1-(thiophen-2-yl)butan-1-one (22a)

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 2-Butyrylthiophene(72 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of piperidine(149 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (110 mg, 93% Yield). ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 4.00 Hz, 1H), 7.56 (d, J = 4.00 Hz, 1H), 7.09 (t, J =4.00 Hz, 1H), 3.53 (m, 1H), 2.59 (m, 2H), 2.50 (m, 2H), 1.82 (m, 1H), 1.74 (m, 1H), 1.55 (m, 4H), 1.39 (m, 2H), 0.86 (t, J = 7.50 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.49, 143.32, 133.97, 133.08, 127.82, 73.85, 51.66, 26.52, 24.79, 20.54, 11.71. HRMS (APCI) Calcd. for C₁₃H₁₉NOS [M + H]⁺238.1260, found 238.1257.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-1-phenylpropan-1-one (23a):1

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then propiophenone (67 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (125 mg, 94% Yield). ¹H NMR (300MHz, CDCl₃) δ 8.06 (m, 2H), 7.46 (m, 1H), 7.35 (m, 2H), 6.99 (m, 4H), 4.24 (q, J = 6.90 Hz, 1H), 3.81 (d, J = 15.0 Hz, 1H), 3.76 (d, J = 15.0 Hz, 1H), 2.77 (m, 4H), 1.31 (d, J = 6.90 Hz, 3H).

2-(3,4-dihydroisoquinolin-2(1H)-yl)-1-phenylbutan-1-one (24a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then Butyrophenone(75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (133 mg, 95% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.00 (m, 2H), 7.43 (m, 1H), 7.33 (m, 2H), 6.96 (m, 4H), 4.06 (q, J = 4.80 Hz, 1H), 3.80 (d, J = 15.0 Hz, 1H), 3.72 (d, J = 15.0 Hz, 1H), 2.80 (m, 2H), 2.72 (m, 2H), 1.92 (m, 1H), 1.75 (m, 1H), 0.82 (d, J = 7.20 Hz, 3H). ¹³C NMR (75MHz, CDCl₃) δ 200.59, 137.84, 135.45, 135.00, 133.45, 129.19, 129.07, 128.99, 126.97, 126.44, 125.97, 70.12, 52.76, 47.70, 30.27, 19.89, 11.68. HRMS (APCI) Calcd. for C₁₉H₂₁NO [M + H]⁺ 280.1696, found

280.1695.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-1-p-tolylpropan-1-one (25a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.1 mL), then 4-Methylpropiophenone (75 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (130 mg, 93% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.95 (m, 2H), 7.13 (m, 2H), 6.97 (m, 4H), 4.19 (q, J = 6.90 Hz, 1H), 3.80 (d, J = 14.7 Hz, 1H), 3.70 (d, J = 14.7 Hz, 1H), 2.75 (m, 4H), 2.29 (s, 3H), 1.28 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 200.57, 144.09, 135.16, 134.78, 133.99, 129.42, 129.35, 126.87, 126.29, 125.84, 64.39, 52.38, 47.51, 29.91, 21.97, 11.98. HRMS (APCI) Calcd. for C₁₉H₂₁NO [M + H]⁺ 280.1696, found 280.1696.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-1-(4-methoxyphenyl)propan-1-one (26a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO(0.1 mL), then 4-Methoxypropiophenone (82 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (136 mg, 92% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.08 (m, 2H), 6.98 (m, 4H), 6.90 (m, 2H), 4.15 (q, J = 6.90 Hz, 1H), 3.80 (d, J = 14.7 Hz, 1H), 3.79 (s, 3H), 3.75 (m, 2H), 2.76 (m, 4H), 1.28 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl3) δ 199.46, 163.65, 135.16, 134.76, 131.61, 129.37, 128.97, 126.86, 126.27, 125.82, 113.81, 64.55, 55.67, 52.39, 47.52, 29.90, 11.99. HRMS (APCI) Calcd. for C₁₉H₂₁NO₂ [M + H]⁺296.1645, found 296.1643.

1-(4-chlorophenyl)-2-(3,4-dihydroisoquinolin-2(1H)-yl)propan-1-one (27a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO (0.5 mL), then 4chloropropiophenone (84 mg, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 10°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (130 mg, 87% Yield). ¹H NMR (300 MHz, CDCl₃) δ 8.02 (m, 2H), 7.27 (m, 2H), 6.97 (m, 4H), 4.14 (q, J = 6.90 Hz, 1H), 3.77 (d, J = 14.7 Hz, 1H), 3.69 (d, J = 14.7 Hz, 1H), 2.72 (m, 4H), 1.28 (d, J = 6.90 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.61, 139.61, 134.91, 134.64, 130.85, 129.05, 128.98, 126.87, 126.43, 125.94, 64.94, 52.23, 47.38, 29.89, 11.02. HRMS (APCI) Calcd. for C₁₈H₁₆CINO [M + H]⁺ 300.1150, found 300.1144.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-1-(thiophen-2-yl)butan-1-one (28a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO(0.5 mL), then 2-Butyrylthiophene(72 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at room temperature for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (127 mg, 89%)

Yield). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (m, 1H), 7.57 (m, 1H), 7.11 (m, 4H), 7.01 (m, 1H), 3.96 (m, 1H), 3.83 (m, 2H), 2.90 (m, 4H), 1.98 (m, 1H), 1.92 (m, 1H), 0.96 (d, J = 7.50 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.03, 143.28, 135.02, 134.73, 134.32, 133.30, 129.03, 128.08, 126.86, 126.39, 125.90, 72.71, 52.84, 48.03, 29.77, 20.93, 11.58. HRMS (APCI) Calcd. for C₁₇H₁₉NOS [M + H]⁺ 286.1260, found 286.1263.

Methyl 2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylacetate (29a):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO(0.5 mL), then Methyl phenylacetate (71 μ L, 0.5 mmol, 1.0 equiv)was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a column of silica gel and purified by column chromatography to give the yellow liquid (121 mg, 86% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (m, 2H), 7.37 (m, 3H), 7.10 (m, 3H), 6.95 (m, 1H), 4.25 (s, 1H), 3.74 (s, 3H), 3.70 (m, 2H), 2.82 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 172.45, 136.36, 134.58, 129.16, 129.05, 128.86, 127.04, 126.57, 126.06, 73.91, 54.26, 52.51, 48.72, 29.20. HRMS (APCI) Calcd. for C₁₈H₁₉NO₂ [M + H]⁺ 282.1489, found 282.1487.

Ethyl 2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylacetate (**30a**):

[Cu] 1(25 mg, 0.05 mmol, 0.1 equiv) was dissolved in DMSO(0.5 mL), then Eethyl phenylacetate (80 μ L, 0.5 mmol, 1.0 equiv) was added. This was stirred for 10 minutes at room temperature before the addition of 1,2,3,4,-Tetrahydroisoquinoline(188 μ L, 1.5 mmol, 3.0 equiv). The reaction was stirred at 50°C for 10 hours, after which the crude reaction mixture was loaded directly onto a

column of silica gel and purified by column chromatography to give the yellow liquid (119 mg, 81% Yield). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (m, 2H), 7.37 (m, 3H), 7.10 (m, 3H), 6.94 (m, 1H), 4.19 (m, 2H), 4.18 (s, 1H), 3.70 (m, 2H), 2.80 (m, 4H), 1.24 (t, J = 7.08 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.79, 136.33, 134.56, 134.48, 129.00, 128.89, 128.82, 128.59, 126.88, 126.38, 125.82, 73.77, 61.18, 54.01, 48.55, 29.06, 14.37. HRMS (APCI) Calcd. for C₁₉H₂₁NO₂ [M + H]⁺ 296.1645, found 296.1647.

References

- 1 R. W. Evans, J. R. Zbieg, S. Zhu, W. Li and D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 16074-16077.
- 2 M. Lamani and K. R. Prabhu, Chem. Eur. J., 2012, 18, 14638-14642.
- 3 T. Miura, M. Morimoto and M. Murakami, Org. Lett., 2012, 14, 5214-5217.

¹H NMR spectrum of **2a**

¹³C NMR spectrum of **3a**

¹H NMR spectrum of 5a

0.5

0.0 -0

¹H NMR spectrum of **6a**

¹³C NMR spectrum of 7a

¹³C NMR spectrum of 8a

¹H NMR spectrum of 10a

¹³C NMR spectrum of **10a**

¹H NMR spectrum of **11a**

¹H NMR spectrum of 12a

¹H NMR spectrum of 13a

¹H NMR spectrum of 14a

¹H NMR spectrum of 15a

¹³C NMR spectrum of **16a**

¹³C NMR spectrum of 17a

¹³C NMR spectrum of 18a

¹³C NMR spectrum of 19a

¹³C NMR spectrum of **20a**

¹³C NMR spectrum of **21a**

¹³C NMR spectrum of **22a**

¹³C NMR spectrum of **24a**

¹H NMR spectrum of 25a

¹³C NMR spectrum of 25a

¹H NMR spectrum of 26a

¹³C NMR spectrum of 26a

¹H NMR spectrum of 27a

¹H NMR spectrum of **28a**

¹H NMR spectrum of 29a

¹H NMR spectrum of 30a

¹³C NMR spectrum of **30a**

Table S1. Selected Bond Distances and Angles for [Cu] 1 and 3a

Bond distance (Å) in 1			
Cu(1)-N(1)	2.0429(15)	Cu(1)-N(2)	2.1144(16)
Cu(1)-Cl(1)	2.2299(6)	Cu(1)-Cl(2)	2.2660(5)
Cu(1)-Cl(2A)	2.6241(6)		
Bond angle (deg) in 1			
N(1)-Cu(1)-N(2)	79.46(6)	N(1)-Cu(1)-Cl(1)	93.34(5)
N(1)-Cu(1)-Cl(2)	171.46(5)	N(1)-Cu(1)-Cl(2A)	87.53(5)
N(2)-Cu(1)-Cl(1)	139.85(5)	N(2)-Cu(1)-Cl(2)	95.75(4)
N(2)-Cu(1)-Cl(2A)	97.06(5)	Cl(1)-Cu(1)-Cl(2)	94.84(2)
Bond distance (Å) in 2			
Cu(1)-N(1)	2.031(7)	Cu(1)-N(2)	2.116(6)
Cu(1)-Br(1)	2.3751(16)	Cu(1)-Br(2)	2.3712(17)
Bond angle (deg) in 2			
N(1)-Cu(1)-N(2)	80.0(3)	N(1)-Cu(1)-Br(1)	94.73(18)
N(1)-Cu(1)-Br(2)	165.45(18)	N(2)-Cu(1)-Br(1)	149.39(18)
N(2)-Cu(1)-Br(2)	96.8(2)	Br(1)-Cu(1)-Br(2)	95.05(6)

Bond distance (Å) in 3			
Cu(1)-N(1)	2.001(2)	Cu(1)-N(2)	2.102(2)
Cu(1)-N(3)	2.071(2)	Cu(1)-Br(1)	2.3686(5)
Cu(1)-Br(2)	2.5805(4)		
Bond angle (deg) in 3			
N(1)-Cu(1)-N(2)	77.20(9)	N(1)-Cu(1)-N(3)	77.37(8)
N(1)-Cu(1)-Br(1)	151.67(6)	N(1)-Cu(1)-Br(2)	96.97(6)
N(2)-Cu(1)-N(3)	153.90(8)	N(2)-Cu(1)-Br(1)	100.41(6)
N(2)-Cu(1)-Br(2)	92.71(6)	N(3)-Cu(1)-Br(1)	99.15(6)
N(3)-Cu(1)-Br(2)	96.09(6)	Br(1)-Cu(1)-Br(2)	111.361(16)
Bond distance (Å) in 3 a	I		
N(1)-C(1)	1.457(2)	N(1)-C(4)	1.456(2)
N(1)-C(5)	1.474(2)	C(1)-C(2)	1.508(3)
C(3)-C(4)	1.503(3)	C(5)-C(6)	1.523(2)
C(5)-C(14)	1.519(2)	C(6)-C(7)	1.491(3)
C(7)-C(8)	1.384(3)	C(7)-C(12)	1.384(2)
C(8)-C(9)	1.371(3)	C(9)-C(10)	1.381(3)
C(10)-C(11)	1.377(3)	C(10)-C(13)	1.508(3)
C(11)-C(12)	1.381(3)	O(1)-C(2)	1.415(2)
O(1)-C(3)	1.416(2)	O(2)-C(6)	1.219(2)
Bond angle (deg) in 3a			
C(1)-N(1)-C(4)	110.02(14)	C(1)-N(1)-C(5)	114.28(13)
C(1)-C(2)-O(1)	111.21(16)	C(2)-C(1)-N(1)	109.65(15)
C(2)-O(1)-C(3)	109.72(14)	C(3)-C(4)-N(1)	109.85(15)
C(4)-N(1)-C(5)	112.27(14)	C(4)-C(3)-O(1)	111.50(16)
C(5)-C(6)-C(7)	119.81(16)	C(5)-C(6)-O(2)	120.18(18)
C(6)-C(7)-C(8)	118. 14(17)	C(6)-C(5)-N(1)	107.43(14)
C(6)-C(7)-C(12)	123.69(18)	C(6)-C(5)-C(14)	111.53(15)
C(7)-C(6)-O(2)	120.00(18)	C(7)-C(8)-C(9)	120.6(2)
C(7)-C(12)-C(11)	120.48(19)	C(8)-C(9)-C(10)	121.7(2)
C(8)-C(7)-C(12)	118.17(19)	C(9)-C(10)-C(11)	117.5(2)
C(9)-C(10)-C(13)	121.3(2)	C(10)-C(11)-C(12)	121.5(2)
C(11)-C(10)-C(13)	121.2(2)	C(14)-C(5)-N(1)	116.32(15)