Electronic Supplementary Material for

Regioselective synthesis of 3,4,5-trisubstituted 2-aminofurans

Thi Ngoc Tram Huynh,^{a,b} Pascal Retailleau,^c Clément Denhez,^a* Kim Phi Phung Nguyen^b and Dom Guillaume^a

^{*a*} ICMR UMR7312-CNRS Université de Reims Champagne Ardenne. 51 rue Cognacq Jay, 51100 Reims France.

^{*b*} Department of Organic Chemistry, University of Science, National University – Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, 748355 Ho Chi Minh City, Vietnam.

^c ICSN, UPR2301-CNRS, 1 Avenue de la Terrasse, 91190 Gif sur Yvette, France.

Table of Contents

Synthesis	
X-ray Crystallography Experiments	
Computational Details	
NMR Spectra	

Synthesis

All reagents were purchased from Sigma-Aldrich and Alfa-Aesar. Analytical thin-layer chromatography (TLC) was carried out on pre-coated silica gel aluminum plate (Merck silica gel 60, F254, 0.25 mm). Silica gel CHROMAGEL[®] 60 (35-70 μ m, Merck) was used for flash column chromatography. NMR spectra were recorded on BRUKER DPX 300 using TMS as internal reference. FT-IR spectra were recorded on SPECTRUM BX / RX PERKIN ELMER FT-IR spectrometer at 4000-400 cm-1 of wave numbers. High resolution mass spectra (HRMS) were acquired using a MSQ THERMOFINNIGAN spectrometer (ThermoFisher scientific Inc.).

A. General procedure for the synthesis of 4-oxo-2-butynoates

4-Oxo-2-butynoates derivatives **1**, **2** and **3** were prepared using modified Norman's procedure.¹ To a magnetically stirred suspension of CuI (190 mg, 1mM), methyl propiolate (888 μ L, 10 mM) and DIEA (1.741 mL, 10 mM) in anhydrous CH₂Cl₂ under an argon atmosphere, appropriate acyl chloride (1 Eq.) was added. The mixture was then stirred at RT for 12 h. Reactive suspension was then filtered through a pad of CeliteTM and concentrated under reduce pressure. The residue was then column chromatographied over silica gel using mixture of petroleum ether and ethyl acetate (95:5) as eluent to give pure 4-oxo-2-butynoates derivatives **1**, **2** and **3**.

Methyl 5,5-dimethyl-4-oxohex-2-ynoate, 1.

Yield 95%. ¹H NMR (300 MHz, CDCl₃) δ 3.86 (s, 3H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 192.09, 152.61, 79.64, 79.58, 53.28, 44.99, 25.41. HRMS ESI-TOF: *m/z*: 169.0863 ([M]+H, C₉H₁₃O₃, calc. 169.0865) IR (film): 2971, 1726, 1682, 1434, 1248 cm⁻¹.

¹ J.F. Normant, M. Bourgain *Tetrahedron Letters* 1970, **31**, 2659-2662.

Methyl 4-oxo-4-phenylbut-2-ynoate, 2.

Yield 65%.

¹H NMR (300 MHz, CDCl₃) δ 8.07 (dd, J = 8.3, 1.4 Hz, 2H), 7.65 (tt, J = 7.0, 1.3 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.88 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 175.43, 152.10, 134.99, 134.83, 129.19, 128.53, 79.61, 79.41, 52.98.

HRMS ESI-TOF: *m/z*: 211.0369 ([M]+Na, C₁₁H₈ONa, calc. 211.0371) IR (film): 1723, 1651, 1449, 1434, 1261 cm⁻¹.

Methyl 4-oxo-4-(thiophen-2-yl)but-2-ynoate, 3.

Yield 55%.

¹H NMR (300 MHz, CDCl₃) δ 7.98 (dd, J = 3.9, 1.3 Hz, 1H), 7.82 (dd, J = 4.9, 1.4 Hz, 1H), 7.21 (dd, *J* = 4.8, 4.0 Hz, 1H), 3.89 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.38, 152.42, 143.15, 136.98, 136.81, 128.66, 79.17, 78.32, 53.36.

HRMS ESI-TOF: *m/z*: 195.0119 ([M]+H, C₉H₇O₃S, calc. 195.0116) IR (film): 1708, 1615, 1431, 1248, 935 cm⁻¹.

B. General procedure for the synthesis of tert-butyloxy aromatic aldehydes

The pivaloyl esters of 2-, 3- or 4-hydroxybenzaldehyde were prepared using the procedure described by Jiménez-González et al.²

C. General procedure for the synthesis of 3,4,5-trisubstituted-2-aminofurans

Major regioisomer

Minor regioisomer

To a magnetically stirred solution of aromatic aldehyde (1 mmol) and alkyne (1 mmol) in anhydrous CH₂Cl₂ (5 mL) under an argon atmosphere *tert*-butyl isocyanide (1 mmol) was

² L. Jiménez-González, S. García-Muñoz, M. Álvarez-Corral, M. Muñoz-Dorado and I. Rodríguez-García, Chemistry 2007, 13, 557-568.

added. The mixture was then stirred for 24 h at 70° C in a sealed tube. After cooling, the solvent was removed under reduced pressure and the residue was subjected to column chromatography over silica gel using petroleum ether / ethyl acetate (80:20) as eluent.

Methyl 2-(tert-butylamino)-5-phenyl-4-pivaloylfuran-3-carboxylate, 5a

Yield 72%. ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.28 (m, 5H), 6.86 (s, 1H), 3.73 (s, 3H), 1.49 (s, 9H), 1.10 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 210.54, 165.13, 161.79, 138.11, 130.13, 128.47, 127.40,

125.15, 119.29, 89.27, 52.69, 50.71, 46.32, 29.85, 27.08.

HRMS EI-TOF: *m/z*: 357.1947 ([M]⁺, C₂₁H₂₇NO₄⁺, calc. 357.1940)

IR (film): 3338, 2966, 1767, 1604, 1470, 1217, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(4-nitrophényl)-4-pivaloylfuran-3-carboxylate, 5b

Yield 93%. ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 9.0 Hz, 2H), 7.53 (d, *J* = 9.3 Hz, 2H), 7.02 (s, 1H), 3.76 (s, 3H), 1.52 (s, 9H), 1.15 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 209.92, 164.60, 161.97, 147.40, 145.74, 135.75, 135.30, 124.43, 124.06, 90.20, 52.97, 50.94, 46.45, 29.69, 27.02.

HRMS EI-TOF: *m*/*z*: 402.1803 ([M]⁺, C₂₁H₂₆N₂O₆⁺, calc. 402.1791)

IR (film): 3331, 2971, 2355, 1682, 1592, 1330, 1216, 1105 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(3-nitrophenyl)furan-3-carboxylate, 5c

Yield 92%. ¹H NMR (300 MHz, CDCl₃) δ 8.27 (t, *J* = 2.3 Hz, 1H), 8.05 (ddd, *J* = 8.1, 2.4, 1.0 Hz, 1H), 7.70 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.49 (t, *J* = 8.1 Hz, 1H), 6.96 (s, 1H), 3.76 (s, 3H), 1.52 (s, 9H), 1.15 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 210.06, 164.84, 161.88, 148.49, 135.47, 131.57, 130.10, 129.60, 122.10, 121.53, 119.20, 89.67, 52.99, 50.96, 46.44, 29.86, 27.08.

HRMS EI-TOF: m/z: 402.1802 ([M]⁺, C₂₁H₂₆N₂O₆⁺, calc. 402.1791)

IR (film): 3344, 2966, 2360, 1680, 1607, 1531, 1346, 1214 cm⁻¹.

Methyl 5-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-4-pivaloylfuran-3-carboxylate, 5d

Yield 53%. ¹H NMR (300 MHz, CDCl₃) δ 7.00 – 6.86 (m, 2H), 6.82 (s, 1H), 6.77 (d, *J* = 8.6 Hz, 1H), 5.97 (s, 2H), 3.72 (s, 3H), 1.47 (s, 9H), 1.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 210.42, 165.06, 161.50, 147.69, 147.08, 138.07, 124.30, 119.53, 118.20, 108.39, 105.95, 101.12, 89.07, 52.62, 50.61, 46.21, 29.84, 27.00. HRMS EI-TOF: *m/z*: 401.1846 ([M]⁺, C₂₂H₂₇NO₆⁺, calc. 401.1838) IR (film): 3341, 2966, 1673, 1602, 1457, 1211, 1091 cm⁻¹.

Methyl 2-(tert-butylamino)-4-pivaloyl-5-(*p*-tolyl)furan-3-carboxylate, **5e**

Yield 61%. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 6.83 (s, 1H), 3.73 (s, 3H), 2.33 (s, 3H), 1.48 (s, 9H), 1.10 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 210.79, 166.20, 161.89, 138.61, 137.54, 129.34, 127.57, 125.38, 65.68, 52.81, 50.81, 46.44, 30.02, 27.24, 21.37.

HRMS EI-TOF: *m/z*: 371.2102 ([M]⁺, C₂₂H₂₉NO₄⁺, calc. 371.2097) IR (film): 3336, 2962, 1675, 1607, 1469, 1216, 1091 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(4-fluorophenyl)-4-pivaloylfuran-3-carboxylate, 5f

Yield 50%. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (dd, J = 8.9, 5.2 Hz, 2H), 7.02 (t, J = 8.8 Hz, 2H), 6.84 (S, 1H), 3.73 (s, 3H), 1.48 (s, 9H), 1.09 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 210.47, 165.09, 163.69, 161.74, 160.41, 137.33, 127.14, 127.04, 126.45, 119.18, 115.76, 115.47, 89.25, 52.74, 50.75, 46.31, 29.89, 27.02. HRMS EI-TOF: *m/z*: 357.1849 ([M]⁺, C₂₁H₂₆NO₄F⁺, calc. 357.1846) IR (film): 3336, 2966, 1673, 1607, 1469, 1216, 1088 cm⁻¹.

Methyl 2-(tert-butylamino)-4-pivaloyl-5-(2-(pivaloyloxy)phenyl)furan-3-carboxylate, 5g

Yield 60%. ¹H NMR (300 MHz, CDCl₃) δ 7.46 – 7.32 (m, 2H), 7.20 (td, *J* = 7.7, 1.3 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.76 (s, 1H), 3.73 (s, 3H), 1.41 (s, 9H), 1.28 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 209.45, 176.48, 165.04, 162.47, 149.94, 134.54, 132.38, 130.35, 125.64, 123.33, 122.93, 122.55, 89.15, 53.02, 50.72, 45.35, 38.96, 30.07, 26.85, 26.36. HRMS EI-TOF: *m/z*: 4457.2450 ([M]⁺, C₂₆H₃₅NO₆⁺, calc. 457.246) IR (film): 3331, 2966, 2360, 1751, 1678, 1604, 1453, 1214, 1110cm⁻¹.

Methyl 2-(tert-butylamino)-4-pivaloyl-5-(3-(pivaloyloxy)phenyl)furan-3-carboxylate, 5h

Yield 53%. ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.07 (t, *J* = 2.0 Hz, 1H), 6.93 (dt, *J* = 7.4, 2.0 Hz, 1H), 6.87(s, 1H), 3.73 (s, 3H), 1.48 (s, 9H), 1.36 (s, 9H), 1.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 210.18, 176.73, 164.90, 161.65, 151.16, 137.03, 131.32, 129.37, 122.14, 120.45, 120.11, 117.91, 89.29, 52.63, 50.61, 46.19, 38.92, 29.74, 26.96. HRMS EI-TOF: *m/z*: 457.2457 ([M]⁺, C₂₆H₃₅NO₆⁺, calc. 457.2464) IR (film) : 3336, 2966, 1753, 1675, 1609, 1474, 1216, 1110 cm⁻¹.

Methyl 2-(tert-butylamino)-4-pivaloyl-5-(4-(pivaloyloxy)phenyl)furan-3-carboxylate, 5i

Yield 62%. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 6.85 (s, 1H), 3.73 (s, 3H), 1.48 (s, 9H), 1.35 (s, 9H), 1.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 210.51, 176.90, 165.10, 161.79, 150.30, 137.54, 132.15, 127.68, 126.26, 121.67, 89.31, 52.75, 50.73, 46.33, 39.08, 29.88, 27.08. HRMS EI-TOF: *m/z*: 457.2454 ([M]⁺, C₂₆H₃₅NO₆⁺, calc. 457.2464) IR (film): 3341, 2966, 2360, 1753, 1680, 1609, 1472, 1218, 1112 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)-4-pivaloylfuran-3carboxylate, **5j**

Yield 70%. ¹H NMR (300 MHz, CDCl₃) δ 6.83 (s, 1H), 6.70 (s, 2H), 3.79 (s, 6H), 3.74 (s, 3H), 1.48 (s, 9H), 1.37 (s, 9H), 1.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 210.77, 176.38, 165.16, 161.71, 152.39, 138.11, 128.69, 128.10, 119.52, 102.44, 89.46, 56.20, 52.86, 50.84, 46.40, 39.20, 29.97, 27.31. HRMS EI-TOF: *m/z*: 517.2663 ([M]⁺, C₂₈H₃₉NO₈⁺, calc. 517.2676) IR (film): 3334, 2962, 2350, 1682, 1595, 1460, 1211, 1112 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3-methylthiophen-2-yl)-4-pivaloylfuran-3-carboxylate, 5k

Yield 59%. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, *J* = 5.2 Hz, 1H), 6.87 (s, 1H), 6.85 (d, *J* = 5.2 Hz, 1H), 3.72 (s, 3H), 2.29 (s, 3H), 1.44 (s, 9H), 1.03 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 208.88, 165.01, 162.15, 137.57, 131.70, 130.09, 126.25, 125.73, 122.63, 88.68, 52.69, 50.67, 45.59, 29.80, 26.60, 15.02. HRMS EI-TOF: *m/z*: 377.1665 ([M]⁺, C₂₀H₂₇NO₄S⁺, calc. 377.1661) IR (film): 3331, 2971, 2355, 1675, 1602, 1469, 1211cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-phenylfuran-3-carboxylate, 6a

Yield 52%. ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.1 Hz, 2H), 7.54 (d, *J* = 7.4 Hz, 1H), 7.48 – 7.36 (m, 4H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.17 (d, *J* = 7.2 Hz, 1H), 6.88 (s, 1H), 3.42 (s, 3H), 1.55 (s, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 193.56, 165.26, 161.68, 140.71, 137.61, 133.53, 129.46, 128.79, 128.63, 127.31, 124.30, 119.33, 90.03, 52.90, 50.70, 29.99.

HRMS EI-TOF: *m/z*: 377.1624 ([M]⁺, C₂₃H₂₃NO₄⁺, calc. 377.1627)

IR (film): 3336, 2966, 1673, 1607, 1472, 1214, 1095 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(4-nitrophenyl)furan-3-carboxylate, 6b

Yield 79%. ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 9.1 Hz, 2H), 7.96 (, *J* = 8.8 Hz, 2H), 7.54 – 7.39 (m,5), 7.05 (s, 1H), 3.45 (s, 3H), 1.57 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 192.83, 164.67, 163.00, 161.97, 145.55, 137.89, 136.80, 135.10, 134.08, 129.32, 128.82, 124.36, 123.58, 91.05, 53.17, 50.91, 29.80. HRMS EI-TOF: *m/z*: 422.1466 ([M]⁺, C₂₃H₂₂N₂O₆⁺, calc. 422.1478) IR (film): 3331, 2919, 2360, 1675, 1590, 1332, 1216, 1110 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(3-nitrophenyl)furan-3-carboxylate, 6c

Yield 78%. ¹H NMR (300 MHz, CDCl₃) δ 8.27 (t, J = 2.0 Hz, 1H), 8.01 – 7.92 (m, 3H), 7.64 (dt, J = 8.3, 1.3 Hz, 1H), 7.58 (d, J = 7.3 Hz, 1H), 7.46 (dd, J = 8.3, 6.9 Hz, 2H), 7.38 (t, J = 8.1 Hz, 1H), 6.99 (s, 1H), 3.44 (s, 3H), 1.57 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 192.75, 164.77, 161.69, 148.57, 137.98, 137.06, 133.86, 130.87, 129.79, 129.28, 128.70, 122.07, 121.26, 118.53, 90.31, 53.05, 50.76, 29.85.

HRMS EI-TOF: *m/z*: 422.1466 ([M]⁺, C₂₃H₂₂N₂O₆⁺, calc. 422.1478)

IR (film): 3331, 2914, 2355, 1573, 1609, 1528, 1346, 1214, 1095 cm⁻¹.

Methyl 5-(benzo[d][1,3]dioxol-5-yl)-4-benzoyl-2-(tert-butylamino)furan-3-carboxylate, 6d

Yield 45%. ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.89 (m, 2H), 7.58 – 7.50 (m, 1H), 7.43 (dd, J = 8.3, 6.8 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.84 (s, 1H), 6.70 (d, J = 8.1 Hz, 1H), 5.92 (s, 2H), 3.40 (s, 3H), 1.53 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 193.37, 165.14, 161.31, 147.81, 146.97, 140.82, 137.60, 133.32, 129.28, 128.46, 123.53, 118.70, 117.95, 108.62, 105.17, 101.10, 89.71, 52.73, 50.50, 29.88. HRMS EI-TOF: m/z: 421.1524 ([M]⁺, C₂₄H₂₃NO₆⁺, calc. 421.1525) IR (film): 3341, 2914, 2355, 1668, 1602, 1453, 1216, 1093 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(p-tolyl)furan-3-carboxylate, 6e

Yield 57%. ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.59 – 7.46 (m, 1H), 7.41 (dd, J = 8.3, 6.8 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 3.41 (s, 3H), 2.27 (s, 3H), 1.54 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 193.53, 165.25, 161.56, 141.13, 137.68, 137.27, 133.38, 129.42, 129.40, 128.54, 126.64, 124.38, 118.46, 89.88, 52.82, 50.61, 29.98, 21.25.

HRMS EI-TOF: *m/z*: 391.1780 ([M]⁺, C₂₄H₂₅NO₄⁺, calc. 391.1784)

IR (film): 3336, 2914, 2360, 1673, 1611, 1475, 1214, 1093 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(4-fluorophenyl)furan-3-carboxylate, 6f

Yield 52%. ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 7.1 Hz, 2H), 7.42 (ddd, *J* = 8.9, 7.5, 5.8 Hz, 5H), 6.96 (t, *J* = 8.7 Hz, 2H), 6.87 (s, 1H), 3.41 (s, 3H), 1.54 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 193.40, 165.23, 163.65, 161.65, 160.36, 140.19, 137.61, 133.60, 129.42, 128.66, 126.35, 126.25, 119.06, 116.05, 115.76, 89.96, 52.94, 50.71, 30.03. HRMS EI-TOF: *m/z*: 395.1524 ([M]⁺, C₂₃H₂₂NO₄F⁺, calc. 395.1533) IR (film): 3336, 2957, 2355, 1673, 1614, 1472, 1211, 1095 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(2-(pivaloyloxy)phényl)furan-3-carboxylate, 6g

Yield 58%. ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 7.0 Hz, 2H), 7.52 – 7.40 (m, 2H), 7.32 (dd, *J* = 8.6, 6.9 Hz, 3H), 7.15 (td, *J* = 7.6, 1.2 Hz, 1H), 6.99 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.85 (s, 1H), 3.44 (s, 3H), 1.44 (s, 9H), 1.30 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 191.32, 176.55, 165.55, 162.70, 150.12, 139.48, 137.74, 133.05, 132.81, 130.63, 129.37, 128.19, 125.56, 122.77, 122.68, 122.01, 89.40, 53.21, 50.72, 30.24, 27.12.

HRMS EI-TOF: *m/z*: 477.2148 ([M]⁺, C₂₈H₃₁NO₆⁺, calc. 477.2151) IR (film): 3336, 2966, 2355, 1751, 1671, 1604, 1455, 1414, 1095cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(3-(pivaloyloxy)phenyl)furan-3-carboxylate, 6h

Yield 50%. ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.87 (m, 2H), 7.59 – 7.47 (m, 2H), 7.48 – 7.37 (m, 2H), 7.23 (dd, J = 4.9, 1.8 Hz, 2H), 7.07 – 7.00 (m, 1H), 6.89 (s, 1H), 3.43 (s, 3H), 1.54 (s, 9H), 1.31 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 193.24, 176.93, 165.19, 161.68, 151.46, 139.68, 137.47, 133.61, 130.81, 129.75, 129.44, 128.67, 121.49, 120.47, 117.23, 90.18, 52.96, 50.78, 39.13, 30.01, 27.15.

HRMS EI-TOF: m/z: 477.2150 ([M]⁺, C₂₈H₃₁NO₆⁺, calc. 477.2151)

IR (film): 3336, 2971, 2355, 1753, 1673, 1611, 1469, 1214, 1098 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(4-(pivaloyloxy)phenyl)furan-3-carboxylate, 6i

Yield 52%. ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 2H), 7.46 – 7.39 (m, 5H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.87 (s, 1H), 3.42 (s, 3H), 1.54 (s, 9H), 1.32 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 193.46, 177.04, 165.24, 161.67, 150.22, 140.18, 137.53, 133.61, 129.44, 128.67, 127.00, 125.44, 121.96, 119.30, 90.03, 52.93, 50.73, 30.00, 27.18. HRMS EI-TOF: *m/z*: 477.2143 ([M]⁺, C₂₈H₃₁NO₆⁺, calc. 477.2151) IR (film): 3341, 2966, 2355, 1749, 1675, 1611, 1472, 1209, 1110 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)furan-3-carboxylate, **6j**

Yield 63%. ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.88 (m, 2H), 7.61 – 7.50 (m, 1H), 7.43 (dd, *J* = 8.4, 6.9 Hz, 2H), 6.86 (s, 1H), 6.66 (s, 2H), 3.63 (s, 6H), 3.46 (s, 3H), 1.54 (s, 9H), 1.33 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 193.32, 176.39, 165.23, 161.55, 152.42, 140.28, 137.49, 133.67, 129.40, 128.74, 127.21, 119.45, 101.53, 90.19, 56.04, 52.92, 50.84, 39.19, 30.00, 27.30. HRMS EI-TOF: *m/z*: 537.2344 ([M]⁺, C₃₀H₃₅NO₈⁺, calc. 537.2363) IR (film): 3336, 2966, 2355, 1753, 1675, 1595, 1462, 1211, 1102 cm⁻¹.

Methyl 4-benzoyl-2-(tert-butylamino)-5-(3-methylthiophen-2-yl)furan-3-carboxylate, 6k

Yield 53%. ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.80 (m, 2H), 7.56 – 7.48 (m, 1H), 7.41 (dd, J = 8.3, 6.7 Hz, 2H), 7.09 (d, J = 5.0 Hz, 1H), 6.96 (s, 1H), 6.76 (d, J = 5.3 Hz, 1H), 3.41 (s, 3H), 2.27 (s, 3H), 1.50 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 192.06, 165.34, 162.02, 138.00, 136.86, 136.58, 133.20, 130.67, 129.44, 128.39, 125.25, 121.05, 89.31, 52.91, 50.68, 29.84, 15.82.

HRMS EI-TOF: *m/z*: 397.1351 ([M]⁺, C₂₂H₂₃NO₄S⁺, calc. 397.1348)

IR (film): 3327, 2924, 2360, 1675, 1611, 1455, 1214, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-phenyl-4-(thiophene-2-carbonyl)furan-3-carboxylate, 7a

Yield 40%. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.59 (dd, *J* = 3.6, 0.8 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.19 (d, *J* = 7.4 Hz, 1H), 6.89 (s, 1H), 3.54 (s, 3H), 1.54 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.23, 165.19, 161.58, 144.82, 140.66, 134.67, 130.36, 129.19, 128.69, 128.12, 127.29, 124.33, 87.70, 52.80, 50.83, 29.87.

HRMS EI-TOF: *m/z*: 383.1185 ([M]⁺, C₂₁H₂₁NO₄S⁺, calc. 383.1191) IR (film): 3345, 2962, 2355, 1673, 1607, 1469, 1408, 1216, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(4-nitrophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7b**

Yield 62%. ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 1H), 7.75 (dd, *J* = 4.9, 1.3 Hz, 1H), 7.61 (dd, *J* = 3.8, 1.3 Hz, 1H), 7.53 (d, *J* = 9.2 Hz, 1H), 7.09 (dd, *J* = 4.9, 3.8 Hz, 1H), 7.06 (s, 1H), 3.56 (s, 3H), 1.56 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 184.65, 164.90, 162.11, 145.81, 144.21, 138.09, 135.73, 135.15, 135.10, 128.57, 124.53, 123.88, 123.66, 91.02, 53.31, 51.28, 29.95.

HRMS EI-TOF: *m/z*: 428.1036 ([M]⁺, C₂₁H₂₀N₂O₆S⁺, calc. 428.1042)

IR (film): 3327, 2919, 2355, 1678, 1590, 1330, 1216, 1098 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3-nitrophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7c**

Yield 61%. ¹H NMR (300 MHz, CDCl₃) δ 8.30 (t, *J* = 2.0 Hz, 1H), 8.00 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.77 - 7.66 (m, 2H), 7.61 (d, *J* = 3.5 Hz, 1H), 7.42 (t, *J* = 8.1 Hz, 1H), 7.12 - 7.04 (m, 1H), 7.00 (s, 1H), 3.55 (s, 3H), 1.57 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 184.40, 164.83, 161.70, 148.59, 144.27, 137.99, 135.30, 134.82, 130.75, 129.77, 129.34, 128.28, 121.70, 121.35, 118.63, 90.15, 53.05, 50.99, 29.85.

HRMS EI-TOF: *m/z*: 428.1035 ([M]⁺, C₂₁H₂₀N₂O₆S⁺, calc. 428.1042)

IR (film): 3336, 2924, 2360, 1678, 1609, 1408, 1349, 1216, 1095cm⁻¹.

Methyl 5-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7d**

Yield 23%. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (dd, J = 4.9, 1.3 Hz, 1H), 7.58 (dd, J = 3.7, 1.1 Hz, 1H), 7.05 (dd, J = 4.9, 3.8 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.86 (s, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.93 (s, 2H), 3.52 (s, 3H), 1.52 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.31, 165.35, 161.49, 148.01, 147.21, 145.07, 141.02, 134.69, 128.24, 123.60, 119.03, 117.89, 108.82, 105.44, 101.31, 89.79, 52.93, 50.94, 29.85.

HRMS EI-TOF: *m/z*: 427.1089 ([M]⁺, C₂₂H₂₁NO₆S⁺, calc. 427.1090)

IR (film): 3336, 2919, 2360, 1671, 1607, 1469, 1408, 1214, 1093 cm⁻¹.

Methyl 2-(tert-butylamino)-4-(thiophene-2-carbonyl)-5-(p-tolyl)furan-3-carboxylate, 7e

Yield 32%. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 4.4 Hz, 1H), 7.58 (d, J = 3.6 Hz, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.05 – 7.02 (m, 1H), 6.86 (s, 1H), 3.53 (s, 3H), 2.29 (s, 3H), 1.53 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.25, 165.20, 161.48, 144.89, 141.08, 137.30, 134.56, 130.52, 129.35, 128.06, 126.43, 124.41, 118.10, 89.67, 52.73, 50.75, 29.86, 21.16.

HRMS EI-TOF: *m/z*: 397.1349 ([M]⁺, C₂₂H₂₃NO₄S⁺, calc. 397.1348)

IR (film): 3336, 2962, 2355, 1673, 1607, 1467, 1048, 1214, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(4-fluorophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7f**

Yield 42%. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (dd, J = 5.0, 1.2 Hz, 1H), 7.58 (dd, J = 3.8, 1.1 Hz, 1H), 7.45 (dd, J = 9.0, 5.2 Hz, 2H), 7.05 (dd, J = 5.1, 3.7 Hz, 1H), 6.98 (t, J = 8.8 Hz, 2H), 6.88 (s, 1H), 3.53 (s, 3H), 1.53 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.05, 165.13, 163.54, 161.51, 144.71, 140.04, 134.75, 134.65, 128.14, 126.31, 126.21, 125.53, 118.63, 115.94, 115.65, 89.68, 52.81, 50.85, 29.88.

HRMS EI-TOF: *m/z*: 401.1090 ([M]⁺, C₂₁H₂₀NO₄FS⁺, calc. 401.1097)

IR (film): 3350, 2919, 2360, 1732, 1671, 1597, 1410, 1216, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(2-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7g**

Yield 47%. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.44 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.33 (td, *J* = 7.8, 1.8 Hz, 1H), 7.17 (td, *J* = 7.6, 1.3 Hz, 1H), 7.01 (dd, *J* = 8.1, 1.2 Hz, 1H), 6.95 (dd, *J* = 4.9, 3.8 Hz, 1H), 6.86 (s, 1H), 3.57 (s, 3H), 1.44 (s, 9H), 1.30 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 182.97, 176.43, 165.34, 162.63, 149.70, 144.57, 139.10, 134.29, 132.27, 130.36, 127.67, 125.50, 122.70, 121.69, 89.21, 53.08, 50.81, 39.02, 30.08, 26.95. HRMS EI-TOF: m/z: 483.1705 ([M]⁺, C₂₆H₂₉NO₆S⁺, calc. 483.1716) IR (film): 3322, 2966, 1752, 1671, 1604, 1470, 1411, 1214, 1103 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7h**

Yield 35%. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (dd, J = 4.9, 1.2 Hz, 1H), 7.57 (dd, J = 3.7, 1.3 Hz, 1H), 7.29 (dd, J = 3.4, 1.9 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 1.9 Hz, 1H), 7.05 (dd, J = 4.9, 3.8 Hz, 1H), 6.90 (s, 1H), 6.89 – 6.83 (m, 1H), 3.54 (s, 3H), 1.53 (s, 9H), 1.32 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 184.85, 176.84, 165.08, 161.56, 151.33, 144.60, 139.64, 134.79, 130.54, 129.64, 128.20, 121.49, 120.43, 119.78, 117.21, 89.90, 52.82, 50.86, 38.99, 29.84, 27.01.

HRMS EI-TOF: *m/z*: 483.1710 ([M]⁺, C₂₆H₂₉NO₆S⁺, calc. 483.1716) IR (film): 3345, 2919, 2355, 1746, 1675, 1609, 1469, 1408, 1218, 1110 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(4-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7i**

Yield 41%. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (dd, J = 4.9, 1.2 Hz, 1H), 7.57 (dd, J = 3.8, 1.1 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.05 (dd, J = 4.9, 3.8 Hz, 1H), 6.97 (d, J = 8.7 Hz, 2H), 6.88 (s, 1H), 3.54 (s, 3H), 1.53 (s, 9H), 1.32 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.06, 176.90, 165.12, 161.54, 150.15, 144.68, 140.10, 134.72, 128.16, 126.75, 125.43, 121.84, 118.89, 89.77, 52.80, 50.83, 39.02, 29.85, 27.04.

HRMS EI-TOF: *m/z*: 483.1705 ([M]⁺, C₂₆H₂₉NO₆S⁺, calc. 483.1716)

IR (film): 3341, 2971, 2360, 1751, 1673, 1611, 1472, 1211, 1112 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7**j

Yield 40%. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.59 (dd, *J* = 3.9, 1.2 Hz, 1H), 7.11 (dd, *J* = 4.9, 3.9 Hz, 1H), 6.89 (s, 1H), 6.73 (s, 2H), 3.70 (s, 6H), 3.58 (s, 3H), 1.55 (s, 9H), 1.36 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 185.04, 176.29, 165.12, 161.43, 152.32, 144.75, 140.37, 134.85, 134.76, 128.42, 128.31, 126.95, 119.03, 101.49, 89.87, 55.97, 52.81, 50.92, 39.08, 29.87, 27.17. HRMS EI-TOF: *m/z*: 543.1922 ([M]⁺, C₂₈H₃₃NO₈S⁺, calc. 543.1927)

IR (film): 3341, 2962, 2360, 1753, 1675, 1579, 1460, 1410, 1216, 1095 cm⁻¹.

Methyl 2-(tert-butylamino)-5-(3-methylthiophen-2-yl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **7k**

Yield 26%. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (dd, J = 4.9, 1.2 Hz, 2H), 7.56 (dd, J = 3.8, 1.2 Hz, 1H), 7.12 (d, J = 5.1 Hz, 1H), 7.03 (dd, J = 4.9, 3.8 Hz, 1H), 6.96 (s, 1H), 6.77 (d, J = 5.0 Hz, 1H), 3.55 (s, 3H), 2.29 (s, 3H), 1.49 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 183.77, 165.26, 161.98, 145.07, 136.60, 134.40, 134.32, 130.58, 128.69, 127.93, 125.32, 124.83, 102.11, 88.99, 52.79, 50.85, 29.92, 15.59.

HRMS EI-TOF: *m/z*: 403.0912 ([M]⁺, C₂₀H₂₁NO₄S₂⁺, calc. 403.0912)

IR (film): 3336, 2966, 2360, 1671, 1609, 1410, 1214, 1098 cm⁻¹.

Methyl 5-(tert-butylamino)-2-phenyl-4-(thiophene-2-carbonyl)furan-3-carboxylate, 8a

Yield 10%. ¹H NMR (300 MHz, CDCl₃) δ 8.35 (s, 1H), 7.83 (d, *J* = 7.0 Hz, 2H), 7.51 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.42 (dd, *J* = 8.4, 6.4 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.07 (dd, *J* = 5.0, 3.7 Hz, 1H), 3.32 (s, 3H), 1.53 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.53, 165.18, 162.63, 145.20, 130.11, 129.72, 128.88, 128.74, 128.60, 128.52, 127.11, 126.61, 113.09, 98.51, 52.94, 51.71, 29.77.

HRMS EI-TOF: *m/z*: 383.1184 ([M]⁺, C₂₁H₂₁NO₄S⁺, calc. 383.1191)

IR (film): 3303, 2919, 2360, 1725, 1621, 1517, 1211 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(4-nitrophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8b**

Yield 30%. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 8.26 (d, *J* = 9.0 Hz, 2H), 7.97 (d, *J* = 9.1 Hz, 2H), 7.56 (d, *J* = 4.9 Hz, 1H), 7.36 (d, *J* = 3.7 Hz, 1H), 7.10 (dd, *J* = 4.9, 3.6 Hz, 1H), 3.35 (s, 3H), 1.56 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.84, 164.83, 162.70, 146.56, 144.78, 141.78, 134.73, 130.70, 129.00, 127.22, 126.13, 123.97, 116.84, 99.19, 53.19, 52.05, 29.66.

HRMS EI-TOF: *m/z*: 428.1028 ([M]⁺, C₂₁H₂₀N₂O₆S⁺, calc. 428.1042) IR (film): 3331, 2976, 2355, 1725, 1623, 1517, 1332, 1214cm⁻¹.

Methyl 5-(tert-butylamino)-2-(3-nitrophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8c**

Yield 25%. ¹H NMR (300 MHz, CDCl₃) δ 8.75 (t, J = 2.0 Hz, 1H), 8.32 (s, 1H), 8.17 (dt, J = 8.0, 2.2 Hz, 2H), 7.60 (t, J = 8.1 Hz, 1H), 7.55 (dd, J = 4.9, 1.1 Hz, 1H), 7.37 (dd, J = 3.8, 1.0 Hz, 1H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H), 3.36 (s, 3H), 1.56 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.77, 164.74, 162.59, 148.44, 145.00, 142.31, 131.75, 130.59, 130.49, 129.60, 129.01, 127.24, 122.70, 121.27, 115.54, 98.62, 53.18, 52.02, 29.78.

HRMS EI-TOF: *m/z*: 428.1026 ([M]⁺, C₂₁H₂₀N₂O₆S⁺, calc. 428.1042)

IR (film): 3303, 2919, 2355, 1725, 1623, 1528, 1453, 1349, 1216 cm⁻¹.

Methyl 2-(benzo[d][1,3]dioxol-5-yl)-5-(tert-butylamino)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8d**

Yield 9%. ¹H NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H), 7.50 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.40 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.35 (dd, *J* = 5.0, 1.4 Hz, 2H), 7.07 (dd, *J* = 4.9, 3.7 Hz, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 6.01 (s, 2H), 3.29 (s, 3H), 1.52 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.37, 165.14, 162.31, 148.06, 147.67, 145.53, 145.35, 130.04, 128.66, 127.12, 122.83, 121.50, 111.90, 108.41, 107.36, 101.34, 98.26, 52.86, 51.63, 29.76. HRMS EI-TOF: m/z: 427.1088 ([M]⁺, C₂₂H₂₁NO₆S⁺, calc. 427.1090) IR (film): 3317, 2928, 2355, 1621, 1446, 1233, 1036 cm⁻¹.

Methyl 5-(tert-butylamino)-4-(thiophene-2-carbonyl)-2-(p-tolyl)furan-3-carboxylate, 8e

Yield 8%. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 5.0 Hz, 1H), 7.36 (d, *J* = 3.9 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.07 (dd, *J* = 5.0, 3.7 Hz, 1H), 3.31 (s, 3H), 2.39 (s, 3H), 1.52 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.45, 165.20, 162.59, 145.81, 145.39, 138.86, 130.03, 129.21, 128.71, 127.10, 126.77, 126.09, 112.38, 98.40, 52.89, 51.63, 29.77, 21.38.

HRMS EI-TOF: *m/z*: 397.1344 ([M]⁺, C₂₂H₂₃NO₄S⁺, calc. 397.1348)

IR (film): 3734, 2919, 2355, 1621, 1512, 1209, 1042 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(4-fluorophenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8f**

Yield 8%. ¹H NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H), 7.85 (dd, J = 9.0, 5.3 Hz, 2H), 7.61 – 7.48 (m, 1H), 7.35 (dd, J = 3.7, 1.1 Hz, 1H), 7.15 – 7.08 (m, 2H), 7.08 – 7.05 (m, 1H), 3.30 (s, 3H), 1.52 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.53, 165.18, 162.63, 145.20, 130.11, 129.72, 128.88, 128.74, 128.60, 128.52, 127.11, 126.61, 113.09, 98.51, 52.94, 51.71, 29.77.

HRMS EI-TOF: *m/z*: 401.1086 ([M]⁺, C₂₁H₂₀NO₄FS⁺, calc. 401.1097)

IR (film): 3328, 2924, 2355, 1720, 1621, 1226, 1043 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(3-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8h**

Yield 12%. ¹H NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H), 7.72 – 7.62 (m, 1H), 7.58 (t, *J* = 2.0 Hz, 1H), 7.51 (d, *J* = 4.9 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 3.2 Hz, 1H), 7.05 (dt, *J* = 8.2, 3.2 Hz, 2H), 3.32 (s, 3H), 1.53 (s, 9H), 1.38 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.60, 176.96, 164.94, 162.55, 151.16, 145.21, 144.13, 130.26, 130.23, 129.43, 128.83, 127.12, 123.77, 121.78, 119.78, 113.86, 98.56, 52.96, 51.76, 39.09, 29.74, 27.09.

HRMS EI-TOF: *m/z*: 483.1708 ([M]⁺, C₂₆H₂₉NO₆S⁺, calc. 483.1716) IR (film): 3331, 2919, 2360, 1749, 1621, 1214, 1110 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(4-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8i**

Yield 12%. ¹H NMR (300 MHz, CDCl₃) δ 8.31 (s, 1H), 7.85 (d, J = 8.7 Hz, 2H), 7.48 (dd, J = 4.9, 1.2 Hz, 1H), 7.34 (dd, J = 3.8, 1.1 Hz, 1H), 7.10 (d, J = 8.9 Hz, 2H), 7.05 (dd, J = 4.9, 3.8 Hz, 1H), 3.28 (s, 3H), 1.51 (s, 9H), 1.35 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.54, 176.90, 165.08, 162.58, 151.26, 145.30, 144.77, 130.16, 128.78, 127.99, 127.14, 126.40, 121.68, 112.91, 98.43, 52.96, 51.71, 29.77, 29.68, 27.10. HRMS EI-TOF: m/z: 483.1709 ([M]⁺, C₂₆H₂₉NO₆S⁺, calc. 483.1716) IR (film): 3312, 2966, 2355, 1751, 1621, 1453, 1209, 1110 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8j**

Yield 13%. ¹H NMR (300 MHz, CDCl₃) δ 8.30 (s, 1H), 7.51 (d, *J* = 4.7 Hz, 1H), 7.38 (d, *J* = 3.7 Hz, 1H), 7.23 (s, 2H), 7.07 (dd, *J* = 4.9, 3.6 Hz, 1H), 3.85 (s, 6H), 3.27 (s, 3H), 1.53 (s, 9H), 1.39 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.52, 176.30, 165.26, 162.29, 152.19, 145.28, 144.99, 130.19, 129.57, 128.74, 127.15, 126.61, 113.26, 103.93, 98.63, 56.17, 52.92, 51.74, 39.16, 29.74, 27.22. HRMS EI-TOF: *m/z*: 543.1912 ([M]⁺, C₂₈H₃₃NO₈S⁺, calc. 543.1927) IR (film): 3269, 2919, 2360, 1751, 1623, 1457, 1207, 1112 cm⁻¹.

Methyl 5-(tert-butylamino)-2-(3-méthylthiophen-2-yl)-4-(thiophene-2-carbonyl)furan-3-carboxylate, **8k**

Yield 8%. ¹H NMR (300 MHz, CDCl₃) δ 8.38 (s, 1H), 7.57 – 7.44 (m, 1H), 7.36 – 7.31 (m, 2H), 7.05 (dd, J = 5.0, 3.6 Hz, 1H), 6.91 (d, J = 5.2 Hz, 1H), 3.33 (s, 3H), 2.35 (s, 3H), 1.48 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 180.33, 164.57, 162.08, 145.48, 138.42, 130.24, 128.98, 128.88, 127.16, 122.40, 110.96, 97.80, 53.06, 51.52, 29.67, 15.76.

HRMS EI-TOF: m/z: 403.0911 ([M]⁺, C₂₀H₂₁NO₄S₂⁺, calc. 403.0912) IR (film): 3331, 2919, 2355, 1614, 1453, 1211, 1093 cm⁻¹.

X-ray Crystallography Experiments

Single-crystal X-ray diffraction data were collected with an Enraf–Nonius Kappa-CCD diffractometer using graphite-monochromated Mo- $K\alpha$ (λ = 0.71070 Å) radiation at ambient temperature. Diffraction images were recorded according to a $\varphi+\omega$ scan profile data strategy derived by the COLLECT software package.³ Intensities were reduced and merged after semiempirical absorption correction using HKL-2000 software.⁴ The structures were solved by direct methods (SHELXS-97)⁵ and refined on F^2 by means of full-matrix least-squares methods (SHELXL-97).⁵ All non-hydrogen atoms were refined anisotropically, whereas hydrogen atoms, located from difference Fourier maps, were refined using a riding model (except for the amine hydrogen with soft restraint on the N-H distance with sd 0.02) with $U_{iso} = 1.2U_{eq}$ of the parent atom (1.5 for the methyl hydrogen atoms). ORTEP drawings were made using ORTEP3⁶ as implemented within PLATON⁷ and packing studies were carried out using MERCURY.⁸

CCDC 949882 and CCDC 949883 contain the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336033; or <u>deposit@ccdc.cam.uk</u>).

Electronic supplementary information (ESI) available: X-ray structure data. CCDC 949882-949883.

Figure S1. ORTEP (50% ellipsoid probability) diagram of **7a** (left) and **8b** (right), showing the atom-labeling scheme.

³ Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

⁴ Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology, Volume 276, Macromolecular Crystallography, part A, edited by C.W. Carter, Jr. & R.M. Sweet, 307-326, New York: Academic Press.*

⁵ Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122; Welter, R. (2006). Acta Cryst. A62, s252.

⁶ Burnett, Michael N. and Johnson, Carroll K.(1996). ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895.

⁷ Spek, A. L. (2003). J.Appl. Cryst. 36, 7-13.

⁸ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J.Appl. Cryst.* **39**, 453-457.

Table S1. Data collection

Identification code	7b	8b
Empirical formula	$C_{21}H_{20}N_2O_6S$	$C_{21}H_{20}N_2O_6S$
Formula weight	428.45	428.45
Temperature / K	293(2)	293(2)
Wavelength / Å	0.71070	0.71070
Crystal system,	Trigonal,	Orthorhombic,
space group	P 31	P 21 21 21
a / Å	10.104(2)	8.534(2)
b / Å	10.104(2)	15.242(4)
c / Å	17.905(4)	16.014(4)
Volume / Å ³	1583.0(6)	2083.0(9)
Ζ,	3,	4,
ρ / g.cm ⁻³	1.348	1.366
μ (Mo K α) / mm ⁻¹	0.193	0.196
F(000)	672	896
Crystal size / mm	0.55 x 0.40 x 0.18	0.58 x 0.29 x 0.24
θ range for data collection / °	2.59 to 25.31	2.87 to 27.39
Limiting indices	$-12 \le h \le 12$,	$-11 \le h \le 11$,
	$-9 \le k \le 9,$	$-19 \le k \le 19$,
	$-21 \le l \le 21$	$-20 \le l \le 20$
	9134 / 3746	27119 / 4703
Reflections collected / unique	[R(int) = 0.0000]	[R(int) = 0.0000]
Completeness to θ max	99.3 %	99.2 %
Absorption correction	Semi-empirical f	rom equivalents
Max. and min. transmission	0.96 and 0.88	0.97 and 0.88
Refinement method	Full-matrix least	t-squares on F^2
Data / restraints / parameters	3742 / 2 / 279	4692 / 1 / 279
Goodness-of-fit on F^2	1.005	1.047
	R1 = 0.0438,	R1 = 0.0347,
Final R indices $[I>2\sigma(I)]$	wR2 = 0.1070	wR2 = 0.0800
R indices (all data)	R1 = 0.0522,	R1 = 0.0463,
	wR2 = 0.1136	wR2 = 0.0871
Absolute structure parameter	0.07(9)	-0.04(7)
Extinction coefficient	0.053(6)	0.028(3)
Largest diff. peak and hole / e.Å ⁻³	0.143 and -0.208	0.136 and -0.155

[a] $R1 = \Sigma | |Fo| - |Fc| | / \Sigma |Fo|$. [b] $wR2 = [\Sigma \{w(Fo^2 - Fc^2)^2\} / \Sigma \{w(Fo^2)^2\}]^{1/2}$

Figure S2. An overlay of molecules **7b** (carbon atoms in yellow) and **8b** (carbon atoms in grey) generated by a least-squares fit of their common sections.

Explanation of the similar relative orientations of the nitrophenyl moiety and the trisubstituted furan moiety in both structures (19.9° and 13.2° respectively in **8b** and **7b**) can be found in the recurrent intramolecular H-bond between the N-H and the carbonyl oxygen atom. Please note that the dihedral angles between furan and thiophen groups are 73.7° and 39.1° and for **7b** and **8b**, respectively.

Table S2. Intra-molecular Hydrogen bonds [Å and °].

	D–H…A	d(D–H)	d(HA)	d(DA)	<(DHA)>
7b	N1-H1N O2	0.882(19)	2.846(3)	2.263(3)	123.35
8b	N1–H1N O1 ''	0.858(16)	2.136(19)	2.775(2)	131.0(18)

Computational Details

Geometry optimizations and frequency calculations were done with the M062X/6-31G(d,p) method⁹ in vacuo, were all stationary points were properly characterized by frequency analysis. NBO analysis¹⁰ were done by single point calculation using NBO 3.0 software with IEFPCM/M062X/6-31G(d,p) method (dichloromethane continuum solvent). DFT-based reactivity indices have been determined; global electrophilicity ω ,²³ which measures the stabilization in energy when the system acquires an additional electronic charge ΔN from the environment chemical hardness, chemical softness and useful Fukui²⁴ condensed indices f_k^+ and f_k^- using a method described elsewhere.²⁵ Global electrophilicity ω ($\omega = \mu^2/2\eta$) was calculated in terms of the electronic chemical potential μ ($\mu \approx (\varepsilon_{HOMO}+\varepsilon_{LUMO})/2$) and the chemical hardness η ($\eta \approx (\varepsilon_{LUMO}-\varepsilon_{HOMO})$). The chemical softness S was calculated using following expression: S = $1/\eta$. All calculations were done with the Gaussian09 program packages.

Full reference of Gaussian09 software.

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009

Compound	ε HOMO ^a	ε LUMO ^a	Electronic chemical potential,ª μ	Chemical hardness,ª η	Chemical softness,ª S	Electrophilicity index, ^b ω
1	-0.33870	-0.02179	-0.180	0.317	3.155	1.39
2	-0.31905	-0.04797	-0.184	0.271	3.689	1.69
3	-0.30826	-0.05331	-0.181	0.255	3.922	1.74
4	-0.35223	0.09589	-0.128	0.448	2.232	0.50

Table S3. DFT-based reactivity indices of compounds 1-4.

^a indices given in a.u; ^b value expressed in eV.

⁹ Y. Zhao, D.G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.

¹⁰ F. Weinhold, "Natural Bond Orbital Methods," in *Encyclopedia of Computational Chemistry*, P. V.R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Schreiner (Eds.), (John Wiley & Sons, Chichester, UK, 1998), Vol. 3, pp. 1792-1811.

Cartesian coordinates of compounds 1-4.

Methyl 5,5-dimethyl-4-oxohex-2-ynoate, **1**.

6	-0.075705000	0.573951000	-0.031550000
6	1.106529000	0.371057000	0.111491000
6	2.529485000	0.158303000	0.349748000
8	3.057637000	0.297684000	1.422365000
6	-1.517142000	0.823793000	-0.206506000
8	-1.899801000	1.926930000	-0.519152000
6	-2.436729000	-0.370506000	0.026574000
6	-2.062708000	-1.471152000	-0.978780000
1	-1.024732000	-1.792112000	-0.852466000
1	-2.709865000	-2.339261000	-0.821593000
1	-2.196976000	-1.126636000	-2.008417000
6	-3.882020000	0.077439000	-0.175640000
1	-4.554785000	-0.770012000	-0.015527000
1	-4.146337000	0.872461000	0.525799000
1	-4.034924000	0.462134000	-1.186691000
6	-2.221227000	-0.881755000	1.459668000
1	-2.876182000	-1.739432000	1.639685000
1	-1.187746000	-1.201598000	1.620216000
1	-2.462126000	-0.108198000	2.194856000
1	5.052039000	0.487220000	-0.295663000
1	4.739620000	-1.211164000	0.124742000
8	3.153288000	-0.210728000	-0.771739000
6	4.559035000	-0.431949000	-0.618053000
1	4.915898000	-0.739577000	-1.598438000

SCF Done: E(RM062X) = -575.552544435 # of imaginary frequency: none

Methyl 4-oxo-4-phenylbut-2-ynoate, **2**.

6	0.575775000	0.751434000	0.151614000
6	1.708131000	0.336203000	0.208761000
6	3.071509000	-0.165221000	0.344265000
8	3.523530000	-0.610739000	1.366992000
6	-0.782389000	1.306965000	0.070386000
8	-0.937238000	2.509439000	0.060973000
1	5.654071000	0.048034000	-0.019275000
1	5.114568000	-1.581552000	-0.480869000
8	3.734923000	-0.061558000	-0.809210000
6	5.087808000	-0.525397000	-0.755712000
1	5.488790000	-0.374548000	-1.755529000
6	-1.910898000	0.339664000	0.000483000

6	-1.704680000	-1.039884000	0.054302000
6	-3.204584000	0.855714000	-0.119605000
6	-2.793731000	-1.902688000	-0.011419000
1	-0.697324000	-1.433256000	0.150749000
6	-4.287770000	-0.008712000	-0.186668000
1	-3.331760000	1.932461000	-0.157929000
6	-4.081972000	-1.387710000	-0.132286000
1	-2.637609000	-2.975263000	0.032365000
1	-5.293281000	0.387587000	-0.280835000
1	-4.930371000	-2.062808000	-0.183434000

SCF Done: E(RM062X) = -649.329981982 # of imaginary frequency: none

Methyl 4-oxo-4-(thiophen-2-yl)but-2-ynoate, **3**.

6	0.594344000	0.660755000	0.176083000
6	1.739805000	0.282225000	0.217085000
6	3.118199000	-0.184149000	0.330074000
8	3.552226000	-0.766061000	1.289957000
6	-0.789355000	1.146300000	0.115294000
8	-1.037754000	2.333824000	0.149181000
1	5.699776000	0.180280000	0.111269000
1	5.251931000	-1.375610000	-0.623132000
8	3.816316000	0.122192000	-0.764914000
6	5.186179000	-0.291039000	-0.728676000
1	5.613444000	0.033287000	-1.674914000
6	-1.816395000	0.106418000	0.009972000
6	-1.659000000	-1.257907000	-0.005606000
6	-2.896465000	-1.941750000	-0.116603000
6	-3.956677000	-1.077612000	-0.182433000
16	-3.477620000	0.566688000	-0.109273000
1	-0.689734000	-1.737612000	0.065449000
1	-2.998528000	-3.018818000	-0.145772000
1	-5.005087000	-1.327623000	-0.269460000

SCF Done: E(RM062X) = -970.086638741 # of imaginary frequency: none

Tert-butyl isocyanide, 4.

6	-0.257107000	0.000228000	0.000102000
7	1.183352000	0.000203000	0.000128000
6	2.357021000	-0.000370000	0.000112000
6	-0.733403000	-0.646939000	1.303409000

1	-1.826481000	-0.660198000	1.326340000
1	-0.366959000	-1.673584000	1.376643000
1	-0.369558000	-0.083352000	2.165788000
6	-0.733040000	-0.805493000	-1.211866000
1	-1.826112000	-0.820523000	-1.234299000
1	-0.367994000	-0.355455000	-2.138102000
1	-0.367928000	-1.833680000	-1.155513000
6	-0.733020000	1.452547000	-0.091641000
1	-0.367128000	1.917248000	-1.010217000
1	-1.826051000	1.479341000	-0.093908000
1	-0.367956000	2.028943000	0.761673000

SCF Done: E(RM062X) = -250.555327879 # of imaginary frequency: none

NMR Spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Τ

-2.0E+08

-1.0E+08

-0.0E+00

-1.0E+08

- 1.57

— 1.53 — 1.34

---- 3.30

8.38 6.59 6.592 6.59

