Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Ratiometric fluorescence chemosensor based on Tyrosine derivatives for monitoring mercury ions in aqueous solutions

Ponnaboina Thirupathi, Ponnaboina Saritha (née Gudelli) and Keun-Hyeung Lee* Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering,

Inha University, 253 Yonghyun–Dong, Nam–Gu, Incheon, 402–751, Korea

Email: leekh@inha.ac.kr (K.-H. Lee)

Contents

1. Figures	
Fig. S1. HPLC chromatogram of 1	S2
Fig. S2. ESI mass spectrum of 1	S3
Fig. S3. ¹ H NMR spectrum of 1	S4
Fig. S4. ¹³ C NMR spectrum of 1	S5
Fig. S5. IR spectrum of 1	S6
Fig. S6. HRMS–FAB mass spectrum of 1	S7
Fig. S7. HRMS–FAB elemental composition of 1	S8
Fig. S8. HPLC chromatogram of 2	S9
Fig. S9. ESI mass spectrum of 2	S10
Fig. S10. ¹ H NMR spectrum of 2	S11
Fig. S11. ¹³ C NMR spectrum of 2	S12
Fig. S12. IR spectrum of 2	S13
Fig. S13. HRMS–FAB mass spectrum of 2	S14
Fig. S14. HRMS-FAB elemental composition of 2	S15
Fig. S15. Uv–visible spectra of 1 and 2	S16
Fig. S16. Uv–visible titration spectra with Hg(II) 1 and 2	S17
Fig. S17. Job's plot analysis of 1 and 2	S18
Fig. S18. Association constant of 1 and 2	S19

Fig. S19. Determination of detection limit of 1 and 2	S20
Fig. S20. ESI mass spectra of 1–Hg(II)	S21
Fig. S21. ESI mass spectra of 2–Hg(II)	S22

1. Figures

Fig. S1 HPLC chromatogram of compound 1

Fig. S2 ESI mass spectrum of 1

Fig. S3 ¹H NMR spectrum of compound 1

Fig. S4 ¹³C NMR spectrum of compound 1

Fig. S5 IR spectrum of 1

Fig. S6 HRMS-FAB mass spectrum of 1

1) PYSO2-1 with GLY (POS)

Fig. S7 HRMS-FAB elemental composition of 1

Fig. S8 HPLC chromatogram of compound 2

Fig. S9 ESI mass spectrum of 2

Fig. S10 ¹H NMR spectrum of compound 2

Fig. S11 ¹³C NMR spectrum of compound 2

Fig. S12 IR spectrum of 2

Fig. S13 HRMS-FAB mass spectrum of 2

2) PYSO2-2 with GLY (POS)

Fig. S14 HRMS-FAB elemental composition of 2

Fig. S15 UV-Visible absorption spectra of (a) 1 (40 μ M) and (b) 2 (40 μ M) in aqueous solution (H₂O/DMSO = 95:5, v/v, 10 mM HEPES at pH 7.4.

Fig. S16 UV–Visible absorption spectra of (a) **1** (40 μ M) upon gradual addition of Hg(II) (0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.75, 0.875, 1.00 and 1.125 equiv)and (b) **2** (40 μ M) upon gradual addition of Hg(II) (0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.75, 0.875, 1.00, 1.125 and 1.25 equiv) in aqueous solution (H₂O/DMSO, 95:5, v/v, 10 mM HEPES at pH 7.4).

Fig. S17 A Job's plot analysis for (a) 1, and (b) 2 with Hg(II).

Fig. S18 Non-linear fitting of the fluorescence intensity change of (a) **1** at 490 nm *vs* concentration of Hg(II) (slit 15/5) (b) **2** at 486 nm *vs* concentration of Hg(II) (slit 15/6) in aqueous solution (H₂O/DMSO, 95:5, v/v, 10 mM HEPES at pH 7.4).

Fig. S19 Detection limit for (a) 1 and (b) 2 with Hg(II) (Intensity change at 386 nm) in aqueous solution (H₂O/DMSO = 95:5, v/v, 10 mM HEPES at pH 7.4; λ_{ex} = 353 nm, slit 15/6).

Fig. S20 ESI mass spectra of 1 (500 μ M) in the presence of 1 equiv Hg(II) in aqueous solution (H₂O/ACN, 7:3, v/v).

Fig. S21 ESI mass spectra of 1 (500 μ M) in the presence of 1 equiv Hg(II) in aqueous solution (H₂O/ACN, 7:3, v/v).