Supplementary Materials

Effects of (5'S)-5',8-cyclo-2'-deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study.

Boleslaw T. Karwowski, Sophie Bellon, Peter O'Neill, Martine E. Lomax and Jean Cadet

Graphical representation of hydrogen bonds.

BASE PAIR	Hydrogen Bond											
	HB1	HB2	HB3									
A::T	O4N6	N3N1										
A::U	04N6	N3N1										
G:::C	N4O6	N3N1	O2N2									

Graphical representation of idealized base pair parameters

Base Pairs Parameters	
λ(Ι) [°]	N1 C1' (pyrimidine) C1' (purine)
λ(II) [°]	N9 C1' (purine) C1' (pyrimidine)
D1 [Å]	C1' C1'
D2 [Å]	N9 N1
L [Å]	C8 C6

Graphical representation of helix length and helix bent.

Helix length has been measured as distance between positions of points: Q1 and Q2, assigned by W3DNA analysis.

Helix bending has been measured as the angle between: Q1 point, C1' atom of purines located at position ^{7}A , and Q2 point. The position/coordinates of Q1 and Q2 has been taken from W3DNA analysis of suitable *ds*-oligodeoxynucleotide.

The graphical representation of dihedral angles and sugar pseudorotation phase used for conformational analysis, data of the analysis are presented in Table 7S in supplementary material.

Scheme 1S. The schematic overviev of Base Excision Repair paths.

Abreviations: **APE1** – Human apurinic/apyrimidinc endonuclease, **Pol** β – Polymerase β (beta), **XRCC1** - X-ray repair cross-complementing protein 1, **Lig3** – Ligase III, **RFC** - replication factor C, **PCNA** – Proliferating cell nuclear antigen, Pol δ – Polimerase δ (delta), Pol ϵ - Polimerase ϵ (epsilon), FEN1 – Flap structure-specific endonuclease 1, Lig1 – Ligase I. Black arow \clubsuit represented the damage nucleobase, \top represents the apurinic/apyrimidinic site.

(For more details: A. Sancar, L. A. Lindsey-Boltz, K. Ünsal-Kaçmaz, S. Linn, *Molecular mechanisms of mammalian dna repair and the dna damage checkpoints.*, Annual Review of Biochemistry, 2004, **73**, 39-85)

Figure 1S Time scale for the rejoining of an AP-site, formed from conversion of the uracil by UDG prior to exposure to NE, following incubation with NE at 37 °C for upto 60 min. The repair protocol is shown in the Experimental. Thenumbers in parentheses corresponding to sequence of double stranded 40-mer oligonucleosides given in Table 1 and schematically depicted in Figure 1:

A) dark blue curve - AP-site control (no (5'S)-cdA) i.e. correspond to the distance between dU and dA equal 0 bases, present in reference *ds*-oligonucleoside Con.1; **B**) violet curve - correspond to the distance between dU and dA equal to -5 bases present in *ds*-oligonucleoside U_{-5} ; **C**) brown curve - correspond to the distance between dU and (5'S)-cdA equal to -1 base present in *ds*-oligonucleoside U₋₁; **D**) light blue - correspond to the opposite position of dU versus (5'S)-cdA present in *ds*-oligonucleoside U0, **E**) red curve - correspond to the distance between dU and dA equal to +1 base present in *ds*-oligonucleoside U₊₁; **F**) yellow curve - correspond to the distance between dU and dA equal to +5 bases present in *construct* U₊₅.

Figure 2S. Graphical representation of oligodeoxynucleotide structures obtained under Molecular Mechanics optimization. Oligodeoxynucleotides contain only one modification: 2'-deoxyuridine or AP-site or single DNA strand brake at different positions namely 0, -1, +1.

Figure 2S continued. Graphical representation of oligodeoxynucleotide structures obtained under Molecular Mechanics optimization. Oligodeoxynucleotides contain (5'S)-cdA in one strand and another modification i.e. 2'-deoxyuridine, AP-site or single DNA strand break in the complementary one, at different positions namely 0, -1, +1.

Table 1S. Average values of: **a**) base pair parameters, **b**) complementary base-pair parameters, **c**) local helical parameters of double stranded oligodeoxynucleotides that contained at positions **7A** 2'-deoxyadenosine (dA) or (5'S) 5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions **T6** (U-1) or **T7** (U0) or **T8**(U+1) the 2'-deoxyuridine in the opposite chain which after conversion gives first an apurinic/apyrimidinic site **T6**(Ap+1) or **T7** (Ap0) or **T8**(Ap+1), and then a single strand break e.i. gap **T6**(Ga+1) or **T7** (Ga0) or **T8**(Ga+1). The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

	Average values TUDE Complementarybase-pareparameters Base-pair parameters Local helical parameters																			
OLIGODEOXYNUCLEOTIDE		Comp	lementary	base-parep	arameters			Ba	se-pair	paramet	ers				Local h	elical paramet	ers			
	Share	Stretch	Stagger	Buckle	Propeller	Opening	Shift	Slide	Rise	Tilt	Roll	Twist	x-displacement	y-displacement	h-Rise	Inclination	Tip	h-Twist	h-Length	h-bend
dA(U-1)	0.08	-0.02	0.07	-2.88	-12.09	-1.32	0.03	-0.28	3.2	-0.52	0.96	35.52	-0.62	-0.08	3.16	1.57	0.8	35.8	39.01	142.49
dA(Ap-1)	0.03	-0.03	0.09	4.19	-9.51	-0.94	-0.1	-0.45	3.5	-0.3	0.03	38.54	-0.6	0.07	3.48	-0.91	0.5	38.96	38.76	142.01
dA(Ga-1)	-0.06	-0.03	-0.04	-1.25	-9.6	1.09	-0.04	-0.29	3.45	0.38	1.29	38.51	-0.58	-0.1		0.68	1.07	39.19	38.59	140.39
dA(U0)	0.08	-0.02	0.06	-0.17	-11.68	-0.03	0.05	-0.32	3.19	-0.03	0.76	35.07	-0.67	-0.03		1.02	0.08	35.22	38.81	143.01
$dA(A_P0)$	0.12	-0.02	0.11	6.85	-12.62	-0.85	0.12	-0.44	3.5	0.2	0.98	38.43	-0.7	-0.18		1.1	-0.53	38.75	39.23	148.54
dA(Ga0)	0.09	-0.02	0.18	1.42	-12.24	-1.44	0.07	-0.3	3.53	0.77	-0.28	38.50	-0.49	-0.13	3.5	-0.37	-0.33	38.74	38.44	146.78
dA(U+1)	0.16	0.00	0.05	-4.00	-13.55	-2.44	-0.03	-0.34	3.18	-0.51	1.08	34.81	-0.75	-0.18	3.15	1.44	1.22	35.12	39.17	141.30
$dA(A_P+1)$	0.14	-0.03	0.13	0.6	-14.6	-1.96	0.03	-0.32	3.43	-0.52	0.97	38.00	-0.61	-0.18	3.37	0.89	0.96	38.38	39.02	142.80
dA(Ga+1)	0.1	-0.04	0.38	-3.85	-9.53	-2.14	-0.06	-0.48	3.42	0.89	-0.73	37.45	-0.68	0.06	3.4	-1.2	-0.78	37.7	38.93	142.33
cdA(U-1)	0.11	-0.01	0.03	-1.37	-12.74	0.1	-0.02	-0.35	3.21	-0.32	0.58	35.15	-0.74	0.07	3.17	0.87	0.44	35.37	39.20	140.06
cdA(Ap-1)	0.15	-0.04	0.1	0.59	-10.81	-0.3	-0.04	-0.46	3.45	1.02	-0.21	38.81	-0.53	0.12	3.39	-1.01	-1.19	39.25	38.77	144.31
cdA(Ga-1)	0.05	-0.03	0.19	3.47	-8.96	-0.04	0.02	-0.42	3.38	1.89	-0.51	37.61	-0.65	0.18	3.35	-0.91	-2.45	38.22	38.56	143.12
cdA(U0)	0.20	0.01	-0.03	-1.71	-14.47	-1.26	0.05	-0.37	3.21	0.04	0.78	35.17	-0.78	-0.01	3.18	0.96	-0.29	35.62	39.20	140.06
cdA(A _P 0)	0.13	-0.01	0.18	2.51	-11.48	-1.6	-0.03	-0.41	3.47	0.31	0.77	38.12	-0.76	-0.09	3.42	1	-0.42	38.38	38.54	143.00
cdA(A _P 0)	0.06	-0.02	0.17	2.2	-11.71	-0.33	-0.11	-0.35	3.46	-0.39	-0.04	38.54	-0.66	0.09	3.4	-0.31	0.68	38.85	38.77	144.31
cdA(U+1)	0.13	-0.01	0.04	1.17	-12.1	-1.28	-0.08	-0.33	3.15	-0.31	0.83	35.38	-0.71	0.17	3.13	1.21	0.18	35.62	39.18	140.71
$cdA(A_P+1)$	0.18	0.03	-0.11	-1.83	-11.28	-1.48	0.03	-0.39	3.5	0.27	0.27	38.49	-0.69	0.02	3.48	-0.09	-0.74	38.63	38.54	137.20
cdA(Ga+1)	0.02	-0.01	0.11	-2.22	-12.54	-0.54	-0.07	-0.51	3.45	1.18	0.71	37.62	-0.91	0.3	3.45	1.27	-1.93	37.77	38.54	142.99

Table 2S. Base pairs parameters, complementary base-pair parameters and local helical parameters of double stranded oligodeoxynucleotides that contained at position **7A** 2'-deoxyadenosine (dA) or (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions **T6** (U-1) or **T7** (U0) or **T8** (U+1) the 2'-deoxyuridine in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

BASE	PAIR																		
				dA	A(U0)					dA	(U-1)					dA	(U+1)		
		Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening
5'	3'																		
^{1}T	A ₁₃	-0.25	-0.02	-0.08	-12.51	-11.61	0.87	-0.27	0.05	-0.06	-7.66	-12.82	-4.29	-0.23	0.13	0.34	-12.85	-10.75	-7.83
^{2}A	T ₁₂	0.37	0.03	0.12	-4.02	-4.42	0.79	0.2	0.01	0.05	-4.56	-10.33	-2.03	0.36	-0.02	0.23	-4.52	-19.03	-2.68
³ T	A ₁₁	-0.19	-0.03	-0.12	8.32	-11.7	1.99	-0.18	-0.05	-0.23	4.17	-7.19	1.75	-0.12	0.04	-0.13	4.86	-3.35	8.69
⁴ A	T ₁₀	0.19	-0.03	0.26	0.91	-13.58	1.24	0.17	-0.01	0.09	-8.36	-8.96	1.44	0.44	0.02	-0.23	-7.56	-7.66	-1.98
⁵ C	G ₉	0.5	-0.12	0.27	-1.53	-5.79	-0.34	0.19	-0.06	0.23	3.82	-3.07	-1.34	0.32	-0.11	-0.06	6.74	-8.64	-1.63
⁶ A	T ₈	0.26	-0.01	-0.02	7.76	-12.44	2.58	0.46	0	-0.14	7.48	-16.44	1.19	0.38	0.03	-0.28	-6.09	-10.24	-3.3
⁷ A	T ₇	0.11	-0.01	-0.21	1.67	-13.85	0.32	0.06	-0.03	0.17	4.44	-21.28	-4.5	0.26	0	-0.13	-5.16	-23.06	-2.82
⁸ A	T ₆	0.14	-0.05	-0.12	-8.1	-17.12	0.97	0.13	-0.04	0.13	-11.07	-22.28	0.8	0.13	-0.02	0.14	-9.46	-20.14	-6.15
⁹ G	C ₅	-0.03	-0.02	-0.03	-4.68	-19.65	-0.06	-0.46	-0.1	0.01	-8.34	-23.54	0.65	-0.13	-0.07	0.14	-5.56	-21.86	-1.47
¹⁰ A	T ₄	0.21	0.02	-0.02	-8.73	-9.59	-1.69	0.36	0.07	-0.34	-15.95	-12.46	-4.94	0.4	0.14	-0.21	-13.53	-14.8	-8.73
¹¹ T	A ₃	-0.42	0.05	0.02	6.92	-11.17	-1.45	-0.03	-0.01	0.21	-3.79	-10.63	-0.81	-0.16	-0.05	0.58	-4.87	-8.5	2.32
^{12}A	T ₂	0.19	-0.07	0.44	7.07	-12.52	-3.52	0.3	0.01	0.26	-3.24	-8.2	-4.99	0.07	0.04	-0.02	0.26	-12.27	-4.95
¹³ C	G1	0.01	-0.04	0.33	4.69	-8.41	-2.11	0.16	-0.09	0.56	5.56	-0.02	-0.13	0.36	-0.14	0.36	5.79	-15.82	-1.22
3'	5'																		
				cd	A(U0)					cdA	A(U-1)								
5'	3'																		
^{1}T	A ₁₃	-0.24	0.03	0.17	-3.36	-8.01	-0.12	-0.34	-0.01	-0.02	-3.37	-12.97	-0.31	-0.31	0.07	0.12	-8.98	-11.63	-3.92
^{2}A	T ₁₂	0.23	0.01	-0.03	-5.12	-14.71	-0.92	0.29	0.01	0.22	-2.54	-9.86	0.25	0.25	-0.02	0.18	-5.88	-9.42	2.17
³ T	A ₁₁	0.08	-0.08	-0.47	9.11	-11.84	8.36	-0.08	-0.02	-0.22	8.93	-5.98	-0.22	-0.22	-0.02	-0.08	3.06	-6.5	1.31
⁴ A	T ₁₀	0.22	-0.06	0.53	5.77	-7.03	0.3	-0.1	-0.05	0.25	0.26	-10.98	0.28	0.28	-0.01	0.23	2.21	-9.73	-0.21
⁵ C	G ₉	0.38	-0.15	0.31	10.64	-8.66	-1.94	0.63	-0.19	0.13	6.43	-8.94	0.35	0.35	-0.11	0.01	8.91	-9.13	-2.4
⁶ A	T ₈	0.42	0.05	-0.2	11.33	-19.97	-1.99	0.34	-0.01	-0.29	-0.45	-12.14	0.55	0.55	0.01	-0.07	11.36	-17.29	-1.25
⁷ A	T ₇	0.21	-0.06	-0.59	-17.46	-27.23	6.74	0.33	0.13	-0.41	-19.2	-23.73	0.46	0.46	0	-0.35	-14.63	-18.73	6.38
⁸ A	T ₆	0.61	0.5	-0.7	-13.19	-16.96	-15.81	0.26	0.14	-0.16	-4.04	-12.22	0.35	0.35	0.11	0.21	7	-11	-6.72
⁹ G	C ₅	-0.29	-0.1	0.03	-23.26	-29.05	-2.55	-0.46	-0.13	0.06	-4.97	-19.5	-0.39	-0.39	-0.18	0.36	0.34	-19.5	-2.37
¹⁰ A	T ₄	0.12	0.05	0.04	-4.75	-8.96	-3.52	0.21	0.02	-0.11	-8.63	-9.92	0	-0.00	0.05	-0.37	-15.69	-13.54	-4.51
¹¹ T	A ₃	-0.18	-0.05	0.31	7.1	-11.37	1.05	0.01	-0.1	0.55	-0.33	-9.39	-0.05	-0.05	-0.02	0.2	0.65	-10.14	0.56
^{12}A	T ₂	0.51	0.08	-0.13	-2.96	-12.49	-5.74	0.36	0.13	-0.03	1.55	-15.43	0.14	0.14	0.07	0.04	5.68	-5.61	-4.64
¹³ C	G1	0.46	-0.12	0.29	3.93	-11.77	-0.26	-0.08	-0.05	0.39	8.6	-14.63	0.29	0.29	-0.04	-0.02	21.13	-15.03	-0.99
3'	5'																		

BASE PAIR			dA	(\mathbf{U}_0)					dA(U-1)				d.	A(U+	1)		
SIEP	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist
TA/TA	0.5	0.57	3.08	0.14	1.36	42.99	0.9	0.64	3.11	0.92	1.61	41.74	0.49	0.18	3.17	-1.14	4.57	33.13
AT/AT	-0.56	-0.26	2.92	2.13	-1.79	27.32	-0.09	-0.23	2.98	2.41	-1.27	29.88	0.66	-0.29	3.02	4.14	-2.93	30.94
TA/TA	0.56	0.13	3.32	-0.02	4.79	40.48	0.27	-0.32	3.46	-2.44	7.32	41.32	-0.74	0.17	3.56	-0.99	5.38	45.89
AC/GT	0.4	-0.6	3.31	-0.69	-0.36	33.44	-0.21	-0.4	3.01	-0.71	3.84	31.86	0.32	-0.39	2.93	-1.09	1.75	27.97
CA/TG	-0.49	0.38	3.12	2.82	5.45	36.98	-0.67	0.34	3.25	3.67	0.62	38.29	-1.19	-0.58	3.49	-0.46	7.47	38.02
AA/TT	-0.41	-0.82	3.36	-1.4	-0.17	31.07	0.04	-0.33	3.14	-3.36	-2.07	31.23	-0.62	-0.22	3.22	-1.67	-4.39	36.26
AA/TT	0.45	-0.45	3.36	2.28	0.34	38.79	0.15	-0.82	3.51	-0.38	-2.49	39.11	-0.19	-0.81	3.19	-3.1	0.18	29.84
AG/CT	-0.27	0.24	3.19	-1.13	4.8	33.11	0.27	-0.24	3.2	0.23	9.34	31.42	0.41	-0.1	3.3	-0.43	1.9	36.19
GA/TC	-0.29	-1.18	3.29	-2.12	-0.06	30.52	-0.75	-1.01	3.44	-0.09	0.07	32.29	-0.94	-1.07	3.32	0.98	0.83	34.01
AT/AT	-0.15	-0.48	2.8	0.33	-2.88	29.55	0.4	-0.23	2.95	-2.12	-3.24	34.36	0.81	-0.79	2.98	-4.87	-3.54	26.31
TA/TA	0.79	0	3.15	-0.43	-1.87	40.71	-0.41	-0.27	3.18	-0.14	0.46	34.77	0.01	0.35	2.98	6.58	0.06	43.85
AC/GT	0.1	-1.35	3.32	-2.28	-0.45	35.93	0.48	-0.43	3.14	-4.2	-2.64	39.95	0.64	-0.56	3.04	-4.05	1.67	35.33
			cdA	(U_0)					cdA	(U-1)					cdA	(U+1)		
TA/TA	0.73	0.37	3.18	3.57	4.31	42.67	0.85	0.56	3.17	2.24	-0.26	42.34	0.48	0.64	3.11	-0.13	-0.81	46.34
AT/AT	0.25	-0.25	2.8	4.14	-0.46	29	-0.05	-0.39	2.93	3.2	-1.85	31.35	-0.15	-0.43	2.97	1.8	-2.49	27.52
TA/TA	0.23	0.01	3.37	-3.57	3.41	39.86	0.59	-0.55	3.31	-1.4	6.16	35.33	0.55	-0.1	3.21	0.15	6.52	38.31
AC/GT	0.16	-0.88	3.21	1.37	-2.5	35.09	-0.01	-0.2	3.24	0.39	-2.14	40.86	-0.2	-0.45	3.12	1.74	0.31	33.98
CA/TG	-0.1	-0.27	3.24	6.19	3.63	28.49	-0.33	-0.49	3.53	2.47	1.63	28.47	0.28	-0.02	3.26	4.04	2.44	33.51
AA/TT	-0.56	0.09	3.74	-6	6	47.46	0.13	0.2	3.68	-3.78	3.89	45.35	-1.05	-0.22	3.65	-6.13	3.48	43.62
AA/TT	-1.21	-0.61	3.14	2.91	2.03	28.09	-1.23	-0.63	3.03	1.12	0.84	26.47	-0.27	-0.49	2.77	0.03	1.38	26.2
AG/CT	0.32	-0.92	3.54	-5.86	3.48	32.47	-0.04	-0.56	3.25	-3.42	1.85	34.42	-0.18	-0.72	3.29	-3.26	0	37.04
GA/TC	-0.73	-0.85	3	-3.48	-7.91	30.19	-0.87	-0.93	3.31	-1.28	-1.27	35.77	-0.75	-1.41	3.62	3.83	0.99	32.76
AT/AT	0.38	-0.67	2.93	-2.15	-2.74	30.2	0.7	-0.46	3.04	-3.97	-5.28	32.09	0.54	-0.19	2.83	-3.47	-5.19	34.02
TA/TA	0.1	0.15	3.4	5.66	-1.56	45.14	-0.87	-0.15	3.11	3.64	2.64	38.07	-0.62	-0.26	3.09	-0.46	3.73	34.53
AC/GT	1.02	-0.65	3.03	-2.31	1.61	33.36	0.86	-0.65	2.96	-3.1	0.76	31.28	0.42	-0.27	2.91	-1.82	-0.45	36.76

							Local helical parameters											
BASE PAIR		d	IA(U0)					dz	A(U-1)					dA(U	+1)			
STEP	x- displacement	y- displacement	h- Rise	Inclinati on	Tip	h- Twist	x- displacement	y- displacement	h- Rise	Inclinati on	Tip	h- Twist	x- displacement	y- displacement	h- Rise	Inclination	Tip	h- Twist
TA/TA	0.66	-0.67	3.1	1.86	-0.2	43.02	0.74	-1.17	3.15	2.26	-1.29	41.78	-0.41	-1.03	3.15	7.96	1.98	33.45
AT/AT	-0.15	1.65	2.88	-3.78	-4.49	27.46	-0.21	0.63	2.97	-2.45	-4.66	30	-0.02	-0.49	3.09	-5.44	-7.7	31.34
TA/TA	-0.36	-0.81	3.32	6.9	0.03	40.75	-1.25	-0.65	3.33	10.26	3.42	42	-0.29	0.85	3.58	6.87	1.26	46.2
AC/GT	-0.98	-0.81	3.31	-0.63	1.2	33.45	-1.36	0.27	2.95	6.96	1.28	32.09	-1.18	-0.89	2.89	3.61	2.25	28.05
CA/TG	-0.1	1.12	3.1	8.52	-4.42	37.47	0.43	1.46	3.18	0.95	-5.58	38.47	-1.83	1.73	3.33	11.33	0.7	38.72
AA/TT	-1.5	0.48	3.38	-0.31	2.61	31.1	-0.23	-0.68	3.13	-3.82	6.21	31.47	0.26	0.76	3.24	-7.01	2.68	36.55
AA/TT	-0.72	-0.38	3.37	0.51	-3.43	38.85	-0.9	-0.28	3.55	-3.71	0.57	39.19	-1.6	-0.26	3.19	0.35	6.01	30
AG/CT	-0.35	0.28	3.2	8.36	1.97	33.47	-1.99	-0.44	3.01	16.79	-0.4	32.75	-0.43	-0.72	3.29	3.05	0.7	36.24
GA/TC	-2.23	0.12	3.3	-0.12	4.03	30.59	-1.83	1.33	3.44	0.12	0.17	32.29	-1.96	1.76	3.27	1.42	-1.68	34.03
AT/AT	-0.41	0.35	2.83	-5.62	-0.65	29.69	0.06	-0.97	2.93	-5.46	3.58	34.57	-0.88	-2.85	2.87	-7.65	10.53	26.98
TA/TA	0.2	-1.19	3.14	-2.69	0.61	40.76	-0.52	0.67	3.18	0.76	0.24	34.78	0.46	0.55	2.95	0.09	-8.75	44.32
AC/GT	-2.13 -0.5 3.33 -0.73 3.69 36.0						-0.34	-1.16	3.1	-3.84	6.12	40.25	-1.14	-1.58	2.92	2.74	6.64	35.59
		C(dA(U0)				cd	A(U-1))		cdA(U+1)						
1TA/TA	0.08	-0.65	3.25	5.9	-4.89	43.02	0.8	-0.95	3.21	-0.36	-3.09	42.39	0.88	-0.62	3.09	-1.03	0.16	46.35
AT/AT	-0.41	0.28	2.81	-0.92	-8.22	29.29	-0.4	0.62	2.93	-3.41	-5.89	31.56	-0.35	0.71	2.99	-5.21	-3.76	27.69
TA/TA	-0.39	-0.76	3.33	4.97	5.21	40.15	-1.77	-1.16	3.15	10.05	2.29	35.88	-0.93	-0.81	3.16	9.85	-0.22	38.84
AC/GT	-1.09	-0.07	3.27	-4.14	-2.26	35.2	-0.06	0.06	3.24	-3.06	-0.56	40.91	-0.82	0.6	3.1	0.53	-2.98	34.02
CA/TG	-1.3	1.5	3.09	7.24	-12.32	29.37	-1.39	1.27	3.46	3.29	-5.01	28.62	-0.43	0.17	3.26	4.21	-6.97	33.83
AA/TT	-0.43	0.14	3.76	7.39	7.39	48.17	-0.12	-0.54	3.66	5.03	4.88	45.66	-0.67	0.75	3.73	4.64	8.19	44.16
AA/TT	-1.69	3.1	2.96	4.17	-5.98	28.3	-1.58	2.96	2.96	1.83	-2.45	26.5	-1.4	0.61	2.74	3.05	-0.07	26.24
AG/CT	-2.24	-1.6	3.32	6.15	10.34	33.16	-1.22	-0.45	3.2	3.11	5.76	34.64	-1.12	-0.16	3.29	0	5.12	37.18
GA/TC	-0.13	0.71	3.18	-14.81	6.51	31.38	-1.32	1.23	3.37	-2.06	2.08	35.82	-2.67	2.04	3.47	1.74	-6.76	32.99
AT/AT	-0.78	-1.12	2.94	-5.23	4.11	30.4	0.04	-1.88	2.97	-9.43	7.08	32.74	0.37	-1.38	2.76	-8.77	5.86	34.57
TA/TA	0.34	0.38	3.38	-2.02	-7.34	45.5	-0.54	1.76	3	4.03	-5.55	38.32	-0.97	0.97	3.06	6.26	0.78	34.73
AC13/GT	-1.38	-2.11	2.92	2.8	4.02	33.48	-1.32	-2.11	2.85	1.41	5.73	31.44	-0.37	-0.88	2.89	-0.72	2.88	36.81

Oligodeoxynucleotide dA(U0) versus cdA(U0)

Table 3S. Base pair parameters, complementary base-pair parameters and local helical parameters of double stranded oligodeoxynucleotide that contained at position **7A** 2'-deoxyadenosine (dA) or (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions **T6** (Ap-1) or **T7** (Ap0) or **T8** (Ap+1) apurinic/apyrimidininc sites in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

BASE	PAIR									Oligod	eoxynucleo	otides							
				dA	A(Ap0)					dA	(Ap-1)					dA(Ap+1)		
		Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening
5'	3'																		
^{1}T	A ₁₃	-0.44	0.06	0	8.01	-11.24	-3.41	-0.32	0	0.37	-11.24	-3.36	-1.63	-0.09	0.05	0.35	-12.82	-9.49	-6.38
^{2}A	T ₁₂	0.26	-0.04	0.58	13.08	-14.69	1.26	0.23	0	0.48	0.81	-4.99	-2,94	0.16	0	0.28	5.41	-11.84	-0.83
³ T	A ₁₁	0.17	-0.08	-0.4	13.38	-13.81	6.12	-0.12	-0.01	0.01	10.22	-6.8	2.12	-0.25	-0.05	-0.27	10.91	-13.11	0.16
⁴ A	T ₁₀	0.12	-0.02	0.13	2.52	-10.51	-2.66	0.02	-0.03	-0.06	-0.01	-8.19	-1.96	-0.11	-0.01	0.09	-5.8	-12.92	-2.29
⁵ C	G ₉	0.38	-0.09	0	2.7	-7.38	-0.35	0.19	-0.07	0.05	7.84	-10.43	-3.24	0.8	-0.23	0.18	3.13	-10.14	-0.69
⁶ A	T ₈	0.34	0.03	-0.01	10.83	-15.56	2.99	0.27	-0.02	-0.22	7.24	-8.14	-0.42						
⁷ A	T ₇							-0.02	-0.08	0.48	16.92	-9.3	-1.16	0.25	-0.03	0	1.72	-27.55	-4.83
⁸ A	T ₆	0.38	0.02	0.15	-2.79	-15	-7.47							0.15	-0.05	0.24	-4.36	-22.8	-3.66
⁹ G	C ₅	-0.03	-0.02	0.32	4.47	-23.21	1.86	-0.31	-0.13	0.26	2.31	-22.3	-1.98	-0.09	-0.01	-0.18	-19.61	-20.74	0.13
¹⁰ A	T ₄	0.09	-0.05	0.02	-6	-13.17	-1.44	0.1	0.02	-0.03	-3.87	-4.49	0.20	0.17	0	0.2	-7.03	-10.65	-1.25
¹¹ T	A_3	-0.06	-0.03	0.26	4.81	-6.84	0.86	-0.26	0.03	0.04	14.64	-9.52	-1.77	-0.13	-0.01	0.4	5.6	-9.23	1.27
^{12}A	T ₂	0.07	0.09	0.04	8.4	-6.03	-6.76	0.18	-0.03	-0.23	-0.54	-12.52	-1.86	0.18	0.12	0.1	10.43	-8.66	-6.79
¹³ C	G1	0.19	-0.05	0.18	22.72	-13.96	-1.17	0.4	-0.09	-0.03	5.94	-14.1	0.16	0.65	-0.12	0.13	19.66	-18.03	1.6
3'	5'																		
	1		1	cd	A(Ap0)					cdA	A(Ap-1)		1		1	cdA	(Ap+1)		
5'	3'																		
T	A ₁₃	-0.19	-0.03	0.57	-8.13	-5.9	-1.69	0.09	-0.07	0.3	-6.63	-10.77	1.24	-0.34	0.13	-0.24	6.4	-3.34	-8.3
^{2}A	T ₁₂	0.26	0.02	0.27	0.16	-7.16	-0.95	0.14	0	0.22	-8.45	-4.61	-2.03	0.44	0.02	0.13	2.85	-11.09	0.46
Τ	A ₁₁	0.07	-0.04	0.26	7.12	-7.3	6.39	0.03	-0.07	-0.25	5.75	-8.18	1.13	-0.03	-0.06	-0.16	5.96	-12	4.79
⁴ A	T ₁₀	0.11	-0.01	-0.08	-0.62	-14.13	2.35	0.07	-0.01	0.11	-3.14	-8.95	-1.6	0.03	-0.06	0.35	-2.79	-9.01	0.6
°C	G ₉	0.45	-0.1	-0.02	3.43	-5.75	-0.72	0.29	-0.11	0.38	-1.66	-7.5	-1.28	0.55	-0.09	0	9.33	-3.71	0.1
۴A	T ₈	0.44	0.04	-0.03	11.08	-12.07	-2.9	0.2	0.02	0.05	10.55	-10.21	0.19						
⁷ A	T ₇							0.33	-0.02	-0.43	-4.3	-10.54	4.47	0.39	0.06	-0.65	-25.67	-24.98	5.1
⁸ A	T ₆	0.43	0.17	0.3	8.7	-13.91	-11.04							0.45	0.33	-0.46	-10.2	-12.78	-11.33
⁹ G	C ₅	-0.5	-0.15	0.27	0.9	-22.14	0.7	0.04	-0.05	0.33	-3.41	-26.28	-1.26	-0.03	-0.02	-0.13	-15.66	-16.91	-2.18
¹⁰ A	T_4	0.26	0.07	-0.14	-5.98	-14.01	-6.94	0.13	-0.03	0.19	-0.8	-11.86	-2.22	0.35	0.01	-0.11	-13.08	-11.94	-0.5
¹¹ T	A_3	-0.16	-0.11	0.65	-1.02	-14.71	1.46	-0.14	0	0.02	7.22	-13.38	-0.85	-0.26	0.04	0.04	3.12	-10.53	0.14
¹² A	T ₂	0.19	0.08	-0.04	2.38	-11.54	-5.48	0.12	-0.03	0.18	-0.17	-5.56	-2.41	0.18	0.1	-0.04	2.36	-6.4	-6.95
¹³ C	G1	0.18	-0.04	0.21	12.07	-9.08	-0.39	0.54	-0.1	0.07	12.14	-11.81	1.05	0.43	-0.07	-0.05	15.44	-12.73	0.3
3'	5'																		

Bace Dain								Oligo	odeoxynucl	eotides								
BASE PAIR			dA	(Ap0)					dA(Ap	-1)					dA(Aj	p+1)		
STEP	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist
TA/TA	0.71	0.31	3.11	-2.95	-0.35	37.7	-0.18	-0.03	2.96	-0.36	-8.02	42.11	0.27	0.76	2.83	0.02	-1.27	33.69
AT/AT	0.12	-0.39	3.25	6.44	-3.39	33.64	-0.1	-0.66	3.04	3.26	-2.16	26.48	-0.47	0.12	3.06	1.86	-5.3	35.01
TA/TA	-0.14	-0.49	3.47	-2.61	10.83	37.33	-0.44	0.02	3.41	0.59	6.32	44.53	0.54	-0.94	3.42	-0.75	13.31	38.02
AC/GT	0.23	-0.76	3.3	1.76	-1.82	33.36	0.3	-0.6	3.1	-1.09	-1.1	31.06	-0.19	-0.38	3.03	0.1	1.71	33.54
CA/TG	0.04	0.57	3.3	2.07	-0.4	35.18	-0.67	0.01	3.33	2.58	5.21	36.39	0.7	0.1.1	6 50	4.24	2.64	60.66
AA/TT	0.40	1.40	6.69	0.04	2 71	70.45	0.19	-0.35	2.95	-7.07	-3.06	33.02	-0.7	0.14	6.58	-1.31	3.61	69.66
AA/TT	-0.48	-1.49	6.68	-0.64	3.71	/3.15	0.57	1.20	C 77	0.24	10.45	70.02	0.24	-0.54	3.25	-1.78	-0.36	31.98
AG/CT	0.55	-0.05	3.17	2.62	0.47	32	-0.57	-1.26	6.77	-0.34	10.45	70.02	-0.1	-0.6	3.6	-1.14	6.45	39.54
GA/TC	-0.63	-0.76	3.35	-0.82	1.13	34.91	-0.75	-0.77	3.48	-2.88	-7.26	36.85	-0.42	-0.78	2.96	-2.44	-3.71	28.78
AT/AT	0.74	-0.75	2.94	-0.73	-3.96	31.68	0.17	-0.46	2.8	-0.93	-2.01	26.76	0.35	-0.81	2.94	-1.68	-2.3	29.94
TA/TA	-0.34	-0.37	3.06	1.48	2.81	37.07	0.58	-0.29	3.65	4.76	0.53	39.99	0.37	0.09	3.07	4.59	-1.44	40.81
AC/GT	0.58	-0.66	2.89	-4.36	1.76	36.76	0.39	-0.51	3.04	-1.76	1.46	36.71	0.46	-0.64	3.04	-3.25	-0.02	37.01
			cdA	(Ap0)					cdA(Ap	-1)					cdA(A	p+1)		
TA/TA	0.03	0.26	2.96	3.83	-4.94	46.41	0.03	-0.01	3.25	0.44	-4.53	41.02	0.71	0.52	3.31	0.44	-0.56	47.11
AT/AT	0.28	-0.63	3.05	0.28	-2.94	27.37	-0.36	-0.1	2.92	3.71	-0.19	29.17	0.1	-0.31	3.12	1.92	-3.07	27.67
TA/TA	0.25	-0.32	3.3	5.08	6.26	37.94	0.06	-0.22	3.4	-1.22	7.9	41.14	0.57	-0.31	3.33	-1.91	4.66	37.38
AC/GT	-0.05	-0.35	3.15	-0.23	4.56	35.68	0.27	-0.69	3.24	-1.99	-1.01	31.92	-0.13	-0.31	3.06	3.58	0.07	35.74
CA/TG	-0.11	0	3.1	0.87	1.62	29.74	-0.05	0.22	3.1	3.67	-2.57	34.51	0.04	0.5	7.2	1.00	4.60	70.2
AA/TT	1 1	0.72	C 40	2 41	2.00	74.24	-0.61	0.41	3.77	-6.3	-5.87	47.54	-0.84	-0.5	7.5	-1.09	4.08	79.3
AA/TT	-1.1	-0.72	6.49	-3.41	2.68	74.34	0.52	2.55	F 74	12.55	10.44	C1 FF	-0.72	-0.77	2.94	3.52	2.03	25.91
AG/CT	0.51	-0.67	3.52	0.11	1.98	31.89	-0.53	-2.55	5.74	12.55	10.44	61.55	0.12	-1.08	3.43	-2.45	-0.6	30.98
GA/TC	-1.14	-0.79	3.37	-1.47	1.65	37.55	-0.61	-0.83	3.21	-3.53	-4.81	31.83	-0.68	-0.78	3.19	-1.24	-0.04	34.99
AT/AT	0.81	-0.69	3.1	-4.67	-3.55	29.08	0.39	-0.74	3.03	1.15	-1.53	29.96	0.06	-0.43	2.74	-0.38	-2.81	27.68
TA/TA	-0.96	-0.02	3.1	5.16	0.6	36.85	0.46	-0.13	3.33	1.28	1.1	41.03	0.33	0.08	3.18	1.54	1.11	39.27
AC/GT	1.15	-0.55	2.99	-2.17	0.59	32.45	0.55	-0.39	2.99	1.52	-1.28	37.19	0.84	-0.43	2.93	-0.39	-2.52	37.33

								Oligodeoxyn	ucleotide	s								
BASE PAIR		(lA(Ap0)					d	lA(Ap-1)					d	A(Ap+1)			
STEP	х-	y-	h-	Inclination	Tin	h-	х-	y-	h-	Inclinati	Tin	h-	х-	у-	h-	Inclination	Tin	h-
	displacement	displacement	Rise	memuuon	110	Twist	displacement	displacement	Rise	on	тр	Twist	displacement	displacement	Rise	Inclination	110	Twist
TA/TA	0.52	-1.46	3.04	-0.54	4.56	37.82	0.68	0.22	2.92	-11.04	0.5	42.84	0.27	0.76	2.83	0.02	-1.27	33.69
AT/AT	-0.13	0.8	3.24	-5.78	- 10.97	34.39	-0.9	1	3.05	-4.69	-7.06	26.76	-0.47	0.12	3.06	1.86	-5.3	35.01
TA/TA	-2.1	-0.12	3.21	16.48	3.96	38.9	-0.57	0.63	3.38	8.3	-0.78	44.96	0.54	-0.94	3.42	-0.75	13.31	38.02
AC/GT	-1.01	-0.1	3.35	-3.17	-3.05	33.46	-0.93	-0.77	3.1	-2.05	2.04	31.1	-0.19	-0.38	3.03	0.1	1.71	33.54
CA/TG	1	0.25	3.29	-0.66	-3.42	35.24	-0.7	1.42	3.25	8.28	-4.1	36.83	0.7	0.14	6 50	1 21	2.61	60.66
AA/TT	1 Г	0.26	6.62	2 1 1	0.52	72.24	-0.15	-1.36	2.87	-5.3	12.23	33.88	-0.7	0.14	0.58	-1.51	5.01	09.00
AA/TT	-1.5	0.30	0.02	3.11	0.55	73.24	1 0 2	0.47	6 55	0.05	0.20	70.60	0.24	-0.54	3.25	-1.78	-0.36	31.98
AG/CT	-0.18	-0.53	3.2	0.85	-4.74	32.1	-1.85	0.47	0.55	9.05	0.29	70.09	-0.1	-0.6	3.6	-1.14	6.45	39.54
GA/TC	-1.44	0.93	3.34	1.89	1.36	34.94	-0.17	0.76	3.61	-11.33	4.5	37.64	-0.42	-0.78	2.96	-2.44	-3.71	28.78
AT/AT	-0.7	-1.46	2.99	-7.22	1.34	31.93	-0.55	-0.58	2.82	-4.33	2.01	26.85	0.35	-0.81	2.94	-1.68	-2.3	29.94
TA/TA	-0.92	0.72	3.01	4.4	-2.32	37.2	-0.49	-0.23	3.69	0.78	-6.92	40.27	0.37	0.09	3.07	4.59	-1.44	40.81
AC/GT	-1.25	-1.42	2.77	2.77	6.88	37.05	-0.99	-0.83	2.99	2.32	2.79	36.78	0.46	-0.64	3.04	-3.25	-0.02	37.01
		с	dA(Ap0)					C		cd	IA(Ap+1)						
1TA/TA	0.7	0.25	2.91	-6.24	-4.83	46.81	0.48	0	3.23	-6.44	-0.63	41.26	0.69	-0.85	3.31	-0.71	-0.55	47.11
AT/AT	-0.65	-0.53	3.1	-6.2	-0.59	27.53	-0.17	1.41	2.85	-0.37	-7.33	29.4	0.06	0.23	3.13	-6.38	-4	27.9
TA/TA	-1.25	0.25	3.22	9.5	-7.7	38.75	-1.15	-0.22	3.3	11.12	1.72	41.88	-1.09	-1.13	3.23	7.22	2.97	37.71
AC/GT	-1.19	0.05	3.08	7.41	0.37	35.96	-1.07	-0.84	3.24	-1.83	3.61	32	-0.51	0.69	3.03	0.11	-5.82	35.92
CA/TG	-0.33	0.38	3.09	3.15	-1.68	29.79	0.74	0.61	3.05	-4.31	-6.15	34.79	0.67	0.55	7 20	2.67	1 2 2	70.42
AA/TT	0.70	0.7	6.5	2.22	2.02	74 45	1.03	0.18	3.75	-7.21	7.74	48.27	-0.67	0.55	7.28	3.07	1.32	79.43
AA/TT	-0.76	0.7	6.5	2.22	2.82	74.45	2.2	1.40	F 11	10.01	12.04	C2 47	-2.18	2.41	2.75	4.48	-7.79	26.22
AG/CT	-1.61	-0.9	3.47	3.59	-0.21	31.95	-3.2	1.43	5.11	10.01	-12.04	63.47	-1.89	-0.73	3.43	-1.12	4.58	31.08
GA/TC	-1.44	1.57	3.38	2.55	2.28	37.61	-0.63	0.47	3.34	-8.67	6.37	32.37	-1.29	0.95	3.21	-0.07	2.06	35.01
AT/AT	-0.65	-2.51	3	-6.99	9.19	29.65	-1.13	-0.53	3.07	-2.96	-2.22	30.01	-0.32	-0.2	2.77	-5.86	0.8	27.82
TA/TA	-0.11	2.14	2.94	0.95	-8.12	37.2	-0.31	-0.51	3.34	1.58	-1.82	41.06	-0.01	-0.31	3.19	1.64	-2.29	39.31
AC13/GT	-1.07	-2.39	2.9	1.06	3.87	32.53	-0.46	-0.68	3.02	-2.01	-2.37	37.24	-0.37	-1.36	2.94	-3.94	0.6	37.41

Graph 3S. Graphical representation of data presented in Table 3S

Graph 3S. Graphical representation of data presented in Table 3S

Oligodeoxynucleotide dA(Ap+1) versus cdA(Ap+1)

Table 4S. Base pair parameters, complementary base-pair parameters and local helical parameters of double stranded oligodeoxynucleotides that contained at position 7A 2'-deoxyadenosine (dA) or (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions **T6** (Ga-1) or **T7** (Ga0) or **T8** (Ga+1) a single strand break e.i. gap (Ga) in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

BASE	PAIR									Oligod	eoxynucleo	otides							
				dA	(Ga0)					dA	(Ga-1)					dA(Ga +1)		
		Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening	Share	Stretch	Stagger	Buckle	Propeller	Opening
5'	3'																		
^{1}T	A ₁₃	-0.07	-0.04	-0.41	-1.96	-11.02	-0.36	-0.23	-0.03	-0.19	1.69	-11.58	3.56	-0.36	-0.05	0.88	-20.38	-7.66	0.21
^{2}A	T ₁₂	0.32	-0.05	0.39	-6.7	-9.06	-1.41	0.14	-0.02	-0.28	-14.82	-11.99	6.5	0.31	0.13	-0.12	-9.16	-12.53	-4.81
³ T	A ₁₁	-0.17	0	0.24	0.64	-8.33	-1.61	-0.29	0.03	0.01	-1	-13.72	2.01	-0.3	0.05	0.06	-0.06	-14.24	-3.71
⁴ A	T ₁₀	0.16	-0.02	0.6	10.59	-13.06	1.48	-0.05	-0.03	0.23	-2.48	0.4	-1.99	0.11	-0.05	0.58	3.79	1.15	-0.59
⁵ C	G ₉	0.42	-0.09	0.24	5.78	-12.8	0.48	-0.27	-0.06	0.38	17.5	-15.66	-2.34	0.38	-0.12	0.31	8.08	0.35	0.19
⁶ A	T ₈	0.25	0.02	0.79	26	-10.32	0.9	0.35	-0.01	-0.64	-2.88	-6.13	-1.21						
⁷ A	T ₇							-0.03	-0.01	0.24	11.26	-3.08	-3.53	0.05	-0.17	0.77	-5.49	-5.84	-4.16
⁸ A	T ₆	0.06	0.01	-0.13	-6.17	-15.14	-4.26							0.33	0	0.44	-4.38	-8.82	-1.39
⁹ G	C ₅	-0.12	-0.06	-0.09	-13.17	-18.35	0.32	-0.67	-0.17	-0.66	-17.62	-17.95	5.08	-0.33	-0.17	0.25	-6.56	-28.01	-1.12
^{10}A	T_4	0.25	0.08	-0.12	-1.16	-8.87	-3.05	0.19	0.03	-0.11	-9.77	-10.61	-1.17	0.26	0.03	0.07	-13.19	-19.46	-6.45
¹¹ T	A_3	-0.33	0.03	0.12	6.97	-9.11	-1.56	-0.19	-0.02	0.45	-3.1	-11.11	7.35	-0.25	-0.03	0.77	-14.52	-6.32	0.92
^{12}A	T_2	0.08	0	0.26	2.92	-16.54	-7.55	0.26	0.01	0.02	0.98	-9.76	0.26	0.42	0	0.36	3.53	-7.02	-4.17
¹³ C	G1	0.27	-0.08	0.23	-6.65	-14.3	-0.61	0.06	-0.04	0.02	5.3	-4.04	-1.45	0.54	-0.14	0.18	12.15	-5.98	-0.62
3'	5'																		
				cdA	(Ga0)				-	cdA	(Ga -1)		-		-	cdA(Ga +1)		
5'	3'																		
^{1}T	A ₁₃	-0.26	0.02	-0.21	-5.92	-15.47	1.04	-0.04	-0.02	0.21	-8.31	-3.03	1.63	-0.21	0.01	0.35	-7.66	-2.36	0.53
^{2}A	T ₁₂	0.3	-0.16	0.84	3.14	-12.8	1.61	0.21	-0.01	0.38	-3.84	-6.32	3.84	-0.07	-0.06	0.09	-4.19	-8.81	1.01
³ T	A ₁₁	-0.28	-0.01	0.18	1.07	-12.55	0.61	0.12	-0.1	0.56	-3.34	-14.14	1.31	-0.08	-0.03	-0.23	5.55	-12.74	-1.33
⁴ A	T ₁₀	0.37	-0.01	0.5	6.14	-9.76	-0.7	0.17	-0.01	0.32	2.3	-12.55	-1.63	0.58	0.01	0.08	-7.59	-7.69	-3.43
⁵ C	G ₉	0.07	-0.08	0.32	2.39	-2.32	-2.87	-0.05	-0.06	0.31	8.59	-13.46	-1.75	0.1	-0.01	0	9.26	-3.88	-2.62
⁶ A	T ₈	0.26	0.06	0.08	15.58	-10.02	-3.01	0.12	-0.01	-0.07	8.87	-12.64	-1.18						
⁷ A	T ₇							0.3	0.01	-0.38	9.88	15.02	8.07	0.22	0.13	0.17	-22.38	-27.59	10.38
⁸ A	T ₆	0.03	-0.01	0.2	6.45	-8.03	2.46							0.27	-0.07	0.48	-5.74	-14.68	-5.38
⁹ G	C ₅	0.04	-0.05	-0.2	-1.68	-17.29	1	-0.4	-0.14	0.14	-6.67	-18.33	-1.58	-0.44	-0.17	0.15	-10.61	-22.68	-0.77
¹⁰ A	T_4	0.26	0.04	-0.31	-9.34	-14.55	0.02	0.11	0.05	0.1	0.12	-12.02	-4.62	0.26	0.04	0.12	-7.11	-8.8	-1.8
¹¹ T	A_3	-0.18	0.05	-0.13	6.15	-16.75	-3.38	-0.03	-0.08	0.35	4.16	-11	-2.41	-0.36	0.05	0.23	1.95	-4.93	-1.59
^{12}A	T ₂	-0.04	-0.07	0.34	-2.01	-10.06	0.64	0.07	-0.05	0.58	10.78	-8.68	-0.22	0.12	0.01	0.08	16.73	-17.61	-1.82
¹³ C	G_1	0.12	-0.05	0.38	4.38	-10.9	-1.39	0.02	0	-0.21	19.15	-10.34	-1.94	-0.12	-0.04	-0.21	5.07	-18.73	0.39
3'	5'																		

Bace Dain								Ol	igodeoxy	nucleotic	les							
BASE PAIR			dA	(Ga0)					dA(G	a-1)					dA	(Ga+1)		
SIEP	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist	Shift	Slide	Rise	Tilt	Roll	Twist
TA/TA	0.51	-0.12	3.47	-4.49	-1.46	38.05	0.32	0.6	3.51	1.96	8.16	47.44	-1.2	-0.07	2.84	4.62	1.3	35.71
AT/AT	-0.72	-0.72	3.03	0.91	-1.41	30.19	-0.34	-0.51	2.77	-2.05	0.23	27.38	-0.03	-0.4	2.92	-0.75	-2.75	28.71
TA/TA	1.25	0.49	2.86	1.59	-1.19	40.68	-0.43	-0.12	3.15	-3.66	5.55	41.94	-0.14	0.05	3.17	-5.27	0.81	39.29
AC/GT	0.47	-0.74	3.42	1.39	-4.13	37.34	0.58	-0.48	2.93	-0.38	-4.17	28.67	0.32	-0.72	3.4	0.94	-5.69	34.44
CA/TG	-0.3	0.37	2.86	-2.08	0.64	31.95	-0.79	-0.63	3.96	4.16	-2.87	38.25						
AA/TT							0.29	-0.93	2.85	-7.88	-6.36	30.68	-0.43	-1.18	6.16	7.28	-0.26	68.57
AA/TT	-0.78 -0.68 7.07 11.34 0.51 7												-0.34	-0.34	3.37	2.89	3.99	36.26
AG/CT	0.34	-0.84	3.48	-0.99	3.02	26.01	0.29	-0.49	6.77	18.5	9.08	67.26	0.04	-0.4	3.41	-0.66	3.09	29.3
GA/TC	-0.59	0.26	2.99	1.55	0.69	38.93	-1.01	0.27	2.88	-7.5	1.8	41.36	-0.62	-0.49	3.33	-0.95	-2.06	36.92
AT/AT	0.13	-0.65	3.01	-1.83	-3.96	31.19	0.5	-0.82	3.02	-2.85	-1.88	26.89	0.74	-0.92	3.26	-2.37	-3.31	29.6
TA/TA	0.49	-0.54	3.23	1.31	6.87	36.81	-0.26	0.58	3.04	4.59	3.25	45.53	0.19	0.24	2.75	4.5	-3.48	43.48
AC/GT	-0.02	-0.07	3.42	-0.24	-2.63	40.88	0.42	-0.63	3.12	-0.77	1.43	28.22	0.75	-1.03	3.08	-0.46	0.34	29.67
			cdA	(Ga0)					cdA(C	Ga-1)					cdA	A(Ga+1)		
TA/TA	0.57	0.66	3.05	-8.27	-3.56	39.79	0.33	0.04	3.05	0.02	-1.03	44.32	0.22	-0.46	3.12	1.72	2.4	32.49
AT/AT	-0.66	-0.92	3.25	3.62	-1.83	31.39	-0.7	-1.28	3.26	-1.32	-2.24	26.78	-0.71	-0.51	2.96	2.51	-0.98	31.87
TA/TA	1.08	0.26	3	1.67	-0.86	38.55	-0.2	0.31	2.97	3.07	1.65	39.26	0.51	-0.5	3.57	-0.05	1.82	38.09
AC/GT	-0.14	-1.06	3.45	-1.11	-1.73	37.14	0.84	-0.19	3.09	0.99	-7.46	35.96	0.19	-0.39	2.92	1.23	-1.73	33.39
CA/TG	0.29	-0.51	2.95	2.58	-1.41	27.97	0.25	-0.56	3.22	2.1	2.58	30.29						
AA/TT							-0.27	-0.54	3.48	-6.05	-7.74	44.64	-0.04	-1.44	6.71	1.98	-1.67	76.01
AA/TT	-0.86	-0.17	6.52	6.22	6.37	71.75							-0.57	-0.27	2.89	1.44	3.99	28.43
AG/CT	-0.46	-0.95	3.48	1.64	0.22	29.04	-0.21	-1.45	5.83	19.82	2.18	58.29	0.22	-0.99	3.44	2.34	0.78	31.5
GA/TC	-1.05	0.13	3.22	-2.94	0.89	42.1	-0.48	0.51	3.07	-1.9	4.46	39.92	-0.55	-0.24	3.07	0.15	-0.58	40.4
AT/AT	0.1	-0.49	2.72	-1.8	-1.23	30.24	0.47	-0.97	3.11	-2.01	0.24	25.57	-0.03	-0.86	3.03	-0.17	-2.94	27.46
TA/TA	0.5	-0.94	3.25	-3.06	6.84	30.72	-0.25	-0.23	2.96	-0.96	2.45	44.37	0.43	0.68	2.92	3.62	5.41	37.19
AC/GT	-0.6	0.12	3.14	-2.8	-4.18	45.29	0.4	-0.3	3.1	7.09	-0.73	24.32	-0.38	-0.68	3.37	-1.73	1.34	37.03

								Oligodeoxynuo	cleotides									
BASE PAIR		dA	A(Ga0)					cdA	A(Ga-1))				cdA	(Ga+1))		
DAJETAIN	х-	у-	h-	Inclinatio	Tin	h-	Х-	у-	h-	Inclina	Tin	h-	х-	у-	h-	Inclin	Tin	h-
	displacement	displacement	Rise	n	p	Twist	displacement	displacement	Rise	tion	P	Twist	displacement	displacement	Rise	ation	P	Twist
TA/TA	0.01	-1.36	3.4	-2.23	6.85	38.33	0.04	-0.22	3.57	10.05	-2.41	48.13	-0.27	2.49	2.67	2.11	-7.5	36.02
AT/AT	-1.11	1.56	3.04	-2.7	-1.75	30.24	-1.12	0.28	2.78	0.48	4.32	27.46	-0.26	-0.09	2.94	-5.53	1.5	28.85
TA/TA	0.81	-1.64	2.89	-1.71	-2.29	40.73	-0.71	0.24	3.13	7.69	5.07	42.44	-0.02	-0.4	3.16	1.21	7.79	39.64
AC/GT	-0.58	-0.53	3.5	-6.42	-2.16	37.58	-0.13	-1.23	2.96	-8.37	0.76	28.96	-0.29	-0.39	3.47	-9.53	-1.57	34.91
CA/TG	0.58	0.22	2.89	1.16	3.78	32.02	-0.52	1.81	3.89	-4.36	-6.31	38.57						
AA/TT	0.62	1 47	6 80	0.42	0.65	72.22	-0.67	-1.77	2.83	-11.64	14.4	32.27	-1.02	0.88	6.09	-0.23	-6.44	68.91
AA/TT	-0.02	1.47	0.89	0.43	-9.05	12.22	.1 1	1 1 2	6 5 5	8 01	16.22	60.00	-1.1	0.95	3.28	6.38	-4.61	36.58
AG/CT	-2.72	-1.03	3.34	6.68	2.2	26.2	-1.1	1.12	0.55	0.01	-10.32	09.99	-1.46	-0.23	3.35	6.08	1.29	29.47
GA/TC	0.32	1.05	2.97	1.04	-2.33	38.96	0.2	0.7	3.02	2.52	10.51	42.04	-0.49	0.85	3.36	-3.24	1.49	36.98
AT/AT	-0.51	-0.55	3.06	-7.32	3.38	31.49	-1.3	-1.72	3	-4.01	6.09	27.1	-1.1	-1.93	3.27	-6.45	4.62	29.88
TA/TA	-1.73	-0.59	3.1	10.77	-2.05	37.45	0.48	0.7	3.04	4.18	-5.91	45.86	0.6	0.1	2.73	-4.67	-6.04	43.84
AC/GT	0.2	0	3.42	-3.76	0.34	40.96	-1.59	-1.03	3.07	2.93	1.58	28.27	-2.07	-1.55	3.05	0.66	0.9	29.68
		cd	A(Ga0)				cdA	(Ga-1)				cdA	(Ga+1)		
1TA/TA	1.31	-1.65	2.81	-5.16	11.96	40.75	0.14	-0.44	3.05	-1.36	-0.02	44.33	-1.22	-0.1	3.09	4.28	-3.07	32.62
AT/AT	-1.34	1.87	3.2	-3.37	-6.65	31.64	-2.16	1.16	3.39	-4.82	2.84	26.91	-0.77	1.7	2.91	-1.79	-4.56	31.98
TA/TA	0.49	-1.45	3.03	-1.3	-2.52	38.59	0.28	0.62	2.96	2.46	-4.56	39.41	-1.02	-0.78	3.54	2.79	0.07	38.13
AC/GT	-1.41	0.06	3.5	-2.72	1.74	37.19	0.68	-1.2	3.09	-11.92	-1.58	36.72	-0.43	-0.16	2.94	-3.01	-2.13	33.46
CA/TG	-0.76	-0.04	2.99	-2.91	-5.32	28.12	-1.57	-0.06	3.18	4.93	-4	30.47						
AA/TT							0.04	-0.22	3.52	-10.04	7.85	45.66	-1.06	0.15	6.73	-1.36	-1.6	76.05
AA/TT	-0.56	1.14	6.41	5.41	-5.29	72.23							-1.33	1.43	2.8	8.06	-2.92	28.74
AG/CT	-1.94	1.3	3.44	0.44	-3.27	29.09	-1.61	1.87	5.46	2.17	-19.73	61.32	-1.97	0.06	3.42	1.44	-4.31	31.6
GA/TC	0.09	1.16	3.28	1.23	4.09	42.21	0.26	0.49	3.12	6.5	2.78	40.2	-0.28	0.81	3.07	-0.83	-0.21	40.41
AT/AT	-0.74	-0.5	2.73	-2.35	3.44	30.32	-2.25	-1.6	3.05	0.54	4.54	25.65	-1.13	0.02	3.1	-6.17	0.36	27.61
TA/TA	-2.94	-1.46	2.91	12.68	5.68	31.6	-0.51	0.25	2.94	3.24	1.27	44.44	0.42	-0.23	3.01	8.4	-5.62	37.73
AC13/GT	0.51	0.53	3.15	-5.41	3.62	45.55	-0.49	1.07	3.09	-1.69	-16.39	25.33	-1.25	0.35	3.36	2.11	2.73	37.09
																	1	

Oligodeoxynucleotide dA(Ga0) versus cdA(Ga0)

Oligodeoxynucleotide dA(Ga-1) versus cdA(Ga-1)

Oligodeoxynucleotide dA(Ga0) versus cdA(Ga0)

Oligodeoxynucleotide dA(Ga-1) versus cdA(Ga-1)

Oligodeoxynucleotide dA(Ga+1) versus cdA(Ga+1)

Oligodeoxynucleotide dA(Ga0) versus cdA(Ga0)

Oligodeoxynucleotide dA(Ga-1) versus cdA(Ga-1)

Table 5S. Base pair hydrogen bond length (HB) analysis in double stranded (*ds*) oligodeoxynucleotides that contained at position **7A** 2'-deoxyadenosine or (5'*S*)-5',8-cyclo-2'-deoxyadenosine in one strand and at different positions **T6** (U-1) or **T7** (U0) or **T8** (+1) 2'-deoxyaridine in the opposite strand which were first converted to an apurinic/apyrimidinic site (**Ap-1**, **Ap0**, **Ap+1**) and subsequently to a single strand break e.i. gaps (**Ga-1**, **Ga0**, **Ga+1**). The structures of *ds*-oligodeoxynucleotudes obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA. Hydrogen bond for base pair **A::T: HB1**: O4-N6; **HB2**: N3-N1 and for **C:::G HB1**: N4-O6; **HB2**: N3-N1; **HB3**: O2-N2.

BASE	PAIR							2	'-deox	xyAde	enosin	e at p	ositio	n 7A i	in dou	ıble st	trande	ed olig	godeo	xynuc	leotid	le						
		С	dA(U	0)	cc	lA(U-	1)	cd	lA(U+	-1)	cd	IA(Ap	0)	cd	A(Ap	-1)	cd	A(Ap-	+1)	cd	lA(Ga	10)	cd	A(Ga	-1)	cd	A(Ga	+1)
5'	3'	HB1	HB2	HB3	HB1	HB2	HB3	HB1	HB2	HB3	HB1	HB2	HB3	HB1	HB2	HB3	HB1	HB2	HB3	HB1	HB2	HB3				HB1	HB2	HB3
¹ T	A12	2.9	2.92		2.87	3.02		2.88	3.1		2.89	3.01		2.93	2.91		2.86	3.04		2.9	2.95		2.96	2.89		2.94	2.87	
^{2}A	T ₁₂	2.98	2.96		2.91	2.96		2.92	2.94		2.98	2.89		2.9	2.98		2.93	2.95		2.9	2.93		3.05	2.85		2.91	3.08	
³ T	A ₁₁	2.93	2.89		2.91	2.89		3.16	2.9		3	2.84		2.97	2.91		2.88	2.88		2.94	2.96		2.99	2.94		2.91	3	
⁴ A	T ₁₀	2.98	2.91		2.96	2.91		2.91	2.96		2.89	2.94		2.9	2.95		2.93	2.98		3.01	2.91		2.91	2.96		2.89	2.94	
5C	G9	2.94	2.97	2.87	2.92	2.97	2.89	2.86	2.94	2.89	2.92	2.96	2.86	2.88	2.96	2.96	2.95	2.97	2.85	3	2.96	2.85	2.93	2.93	2.85	2.92	2.95	2.85
⁶ A	T ₈	2.96	2.91		2.95	2.94		2.89	2.98		2.99	2.93		2.9	2.94					2.97	2.89		2.91	2.98		2.88	2.93	
⁷ A	T ₇	2.95	2.95		2.89	2.96		2.9	2.96					2.9	2.88		2.91	2.95					2.88	2.97				
⁸ A	T ₆	2.92	2.88		2.95	2.88		2.88	2.97		2.84	3					2.91	2.93		2.87	2.99					2.96	2.97	
°G	C ₅	2.95	2.96	2.91	2.99	2.95	2.88	2.94	2.94	2.92	3.06	2.95	2.86	2.92	2.93	2.93	2.96	2.94	2.89	2.93	2.91	2.87	2.97	2.92	2.84	2.95	2.89	2.9
¹⁰ A	T ₄	2.91	2.96		2.87	3		2.86	3.1		2.89	2.91		2.97	2.96		2.93	2.95		2.93	3.03		2.92	2.97		2.86	2.99	
¹¹ T	A ₃	2.93	2.98		2.93	2.95		3	2.91		2.96	2.92		2.9	2.96		2.99	2.94		2.92	2.96		3.14	2.88		2.95	2.92	
¹² A	T ₂	2.89	2.92		2.86	2.99		2.87	3.02		2.88	3.08		2.88	2.94		2.89	3.09		2.88	3.01		2.95	2.94		2.87	2.96	
¹³ C	G ₁	2.91	2.98	2.9	2.9	2.98	2.85	2.91	2.93	2.85	2.89	2.93	2.84	2.94	2.95	2.86	2.95	2.93	2.82	2.94	2.95	2.87	2.9	2.96	2.88	2.9	2.96	2.83
3'	5'																											
D A C F	DAID						(= 1 0	T) = 0	1-	A 1 1		J	•	• • •	• -	A • 1		-		12		1	4. 1					
BASE	PAIR						(512) 5 [°] ,8	-cycic)-2°-a	eoxyA	aenos	sine a	t posit	10n7	A in d	louble	strat	iaea o	ongoa	eoxyn	ucleo	tide					
BASE	PAIR	c	dA(U	0)	cc	łA(U-	(5 ⁻ 2 1)	ci	-cyclc łA(U+)-2°-a 1)	eoxyA cd	laenos IA(Ap	0)	cd	<u>10n 7.</u> A(Ap	<u>A in d</u> -1)	cd	A(Ap-	1aea a +1)	cd	eoxyn lA(Ga	<u>ucieo</u> 0)	tide cd	A(Ga	-1)	cd	A(Ga	+1)
5'	3'	C HB1	dA(U HB2	0) HB3	HB1	HB2	(5 [°] 2 1) HB3	о) 5',8 сс нв1	-cycic IA(U- HB2	-2 [°] -α ⊢1) HB3	cd	Adenos AA(Ap HB2	0) HB3	cd HB1	A(Ар нв2	A in d -1) HB3	cd.	stгаг А(Ар- нв2	аеа (+1) нвз	ngoa cd	eoxyn A(Ga HB2	ucieo 0) HB3	tide cd	A(Ga	- 1) HB3	cd.	A(Ga HB2	+ 1) HB3
5'	3'	с НВ1 2 94	dA(U HB2	0) HB3	CC HB1 2 89	HB2	(5°2 1) HB3	HB1	-cycic IA(U- HB2 2 94	-2°-d ⊢1) HB3	cd HB1	A (Ap HB2 2 94	0) HB3	cd HB1	A(Ap HB2	A in d -1) HB3	cd. HB1	HB2	наеа (+1) НВЗ	HB1	eoxyn A(Ga HB2 2 97	UCIEO 0) HB3	tide cd HB1 2 94	A(Ga HB2	-1) HB3	cd HB1	A(Ga HB2	+ 1) HB3
5' <u>1</u> T 2A	3' <u>A₁₃</u> T ₁₂	C HB1 2.94 2.93	dA(U HB2 2.96 2.95	0) HB3	CC HB1 2.89 2.99	HB2 3.02 2.91	(572 1) HB3	HB1 2.89 2.95	-cyclo IA(U+ HB2 2.94 2.95	-2°-d ⊦1) HB3	cd HB1 2.91 2.95	HB2 2.94 2.97	0) HB3	cd HB1 2.95 2.91	A(Ap HB2 2.90 2.97	A in d -1) HB3	cd. HB1 2.86 2.96	HB2 3.11 2.95	наеа о +1) HB3	HB1 2.94 2.96	eoxyn A(Ga HB2 2.97 2.85	ucieo (0) HB3	tide cd HB1 2.94 3.04	A(Ga HB2 2.91 2.92	-1) HB3	cd. HB1 2.94 2.93	A(Ga HB2 2.94 2.91	+ 1) HB3
5' <u>1</u> T <u>2</u> A <u>3</u> T	3' A ₁₃ T ₁₂ A ₁₁	HB1 2.94 2.93 3.06	dA(U HB2 2.96 2.95 2.83	0) HB3	CC HB1 2.89 2.99 2.93	HB2 3.02 2.91 2.91	(5°2 1) HB3	HB1 2.89 2.95 3	-cycld IA(U- HB2 2.94 2.95 2.88	-2'-d -1) HB3	eoxyA cd HB1 2.91 2.95 3.07	HB2 2.94 2.88	о) нвз	r positi cd HB1 2.95 2.91 2.94	A(Ap HB2 2.90 2.97 2.89	A in d -1) HB3	CdL HB1 2.86 2.96 2.98	HB2 3.11 2.95 2.86	наеа о +1) HB3	HB1 2.94 2.96 2.94	eoxyn A(Ga HB2 2.97 2.85 2.92	ucieo 0) нвз	tide cd HB1 2.94 3.04 3.00	A(Ga HB2 2.91 2.92 2.9	-1) HB3	cd. HB1 2.94 2.93 2.90	A(Ga HB2 2.94 2.91 2.93	+ 1) HB3
5' <u>1T</u> <u>2A</u> <u>3T</u> <u>4</u> A	3' A ₁₃ T ₁₂ A ₁₁ T ₁₀	C HB1 2.94 2.93 3.06 2.93	dA(U HB2 2.96 2.95 2.83 2.90	0) HB3	CC HB1 2.89 2.99 2.93 2.93	HB2 3.02 2.91 2.91 2.93	(5°2 1) HB3	HB1 2.89 2.95 3 2.97	-cyclo HA(U- HB2 2.94 2.95 2.88 2.92	-2'-d(+1) HB3	eoxyA cd HB1 2.91 2.95 3.07 2.99	HB2 2.94 2.97 2.88 2.92	(0) HB3	cd HB1 2.95 2.91 2.94 2.92	A(Ap HB2 2.90 2.97 2.89 2.95	A in d -1) HB3	CdD HB1 2.86 2.96 2.98 2.94	A(Ap- HB2 3.11 2.95 2.86 2.91	HB3	HB1 2.94 2.96 2.94 2.95	eoxyn A(Ga HB2 2.97 2.85 2.92 2.94	ucieo 0) нвз	tide cd HB1 2.94 3.04 3.00 2.92	A(Ga HB2 2.91 2.92 2.9 2.94	-1) HB3	cd. HB1 2.94 2.93 2.90 2.87	A(Ga HB2 2.94 2.91 2.93 2.96	+ 1) HB3
5' <u>1</u> T <u>2</u> A <u>3</u> T <u>4</u> A <u>5</u> C	3' A ₁₃ T ₁₂ A ₁₁ T ₁₀ G ₉	C HB1 2.94 2.93 3.06 2.93 2.89	dA(U HB2 2.96 2.95 2.83 2.90 2.94	0) HB3	CC HB1 2.89 2.99 2.93 2.93 2.93 2.89	HA(U- HB2 3.02 2.91 2.91 2.93 2.95	(5°2 1) HB3	HB1 2.89 2.95 3 2.97 2.91	-cyclo IA(U+ HB2 2.94 2.95 2.88 2.92 2.94	-2°-d -1) HB3 2.87	eoxyA cd HB1 2.91 2.95 3.07 2.99 2.93	HB2 2.94 2.97 2.88 2.92 2.97	0) HB3 2.88	cd HB1 2.95 2.91 2.92 2.91	A(Ap HB2 2.90 2.97 2.89 2.95 2.96	A in d -1) HB3 2.87	Cd. HB1 2.86 2.96 2.98 2.94 2.98	A(Ap- HB2 3.11 2.95 2.86 2.91 2.98	HB3 2.87	rd HB1 2.94 2.96 2.94 2.95 2.87	eoxyn A(Ga HB2 2.97 2.85 2.92 2.94 2.96	UCIEO (0) HB3 2.94	cd HB1 2.94 3.04 3.00 2.92	A(Ga HB2 2.91 2.92 2.9 2.94 2.94	-1) HB3	cd. HB1 2.94 2.93 2.90 2.87 2.89	A(Ga HB2 2.94 2.91 2.93 2.96 3.00	+ 1) HB3
S' 1T 2A 3T 4A 5C 6A	3' A ₁₃ T ₁₂ A ₁₁ T ₁₀ G ₉ T ₈	HB1 2.94 2.93 3.06 2.93 2.89 2.90	dA(U HB2 2.96 2.95 2.83 2.90 2.94 3.01	0) HB3 2.88	CC HB1 2.89 2.99 2.93 2.93 2.93 2.89 2.92	HB2 3.02 2.91 2.93 2.95 2.96	(5°2 1) HB3	HB1 2.89 2.95 3 2.97 2.91 2.89	-Cyclo IA(U- HB2 2.94 2.95 2.88 2.92 2.94 2.97	-2 -d +1) HB3 2.87	eoxyA cd HB1 2.91 2.95 3.07 2.99 2.93 2.87	HB2 2.94 2.97 2.88 2.92 2.97 2.99	0) HB3 2.88	cd HB1 2.95 2.91 2.92 2.91 2.92 2.91	HB2 2.90 2.97 2.89 2.95 2.96 2.95	A in d -1) HB3 2.87	CdD14 HB1 2.86 2.96 2.98 2.94 2.94 2.98	Strar A(Ap- HB2 3.11 2.95 2.86 2.91 2.98	HB3	HB1 2.94 2.96 2.94 2.95 2.87 2.89	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99	UCIEO (0) HB3 2.94	tide cd HB1 2.94 3.04 2.92 2.92 2.91	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95	-1) HB3 2.88	cd. HB1 2.94 2.93 2.90 2.87 2.89	A(Ga HB2 2.94 2.91 2.93 2.96 3.00	+ 1) HB3
5' ¹ T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A	3' A ₁₃ T ₁₂ A ₁₁ T ₁₀ G ₉ T ₈ T ₇	HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00	dA(U HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84	 D) HB3 2.88 	HB1 2.89 2.93 2.93 2.93 2.89 2.92 3.03	HB2 3.02 2.91 2.93 2.95 2.96 2.88	(5 2 1) HB3	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89	-2'-d(+1) HB3	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87	HB2 2.94 2.97 2.88 2.92 2.97 2.99	0) HB3 2.88	cd HB1 2.95 2.91 2.92 2.91 2.95 3.01	HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90	A in d -1) HB3 2.87	CdJ HB1 2.86 2.96 2.98 2.94 2.98 3.00	HB2 3.11 2.95 2.86 2.91 2.98 2.91	HB3	rcd HB1 2.94 2.96 2.94 2.95 2.87 2.89	HB2 2.97 2.85 2.92 2.94 2.96 2.99	UCIEO (0) HB3 2.94	tide cd HB1 2.94 3.04 3.00 2.92 2.92 2.92 2.91 3.16	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89	-1) HB3 2.88	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92	+1) HB3 2.93
5' <u>1T</u> <u>2A</u> <u>3T</u> <u>4A</u> <u>5C</u> <u>6A</u> <u>7A</u> <u>8A</u>	$\begin{array}{c} 3'\\ \hline A_{13}\\ \hline T_{12}\\ \hline A_{11}\\ \hline T_{10}\\ \hline G_9\\ \hline T_8\\ \hline T_7\\ \hline T_6\\ \end{array}$	C HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00 2.9	dA(U HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84	 D) HB3 2.88 	HB1 2.89 2.99 2.93 2.93 2.93 2.89 2.92 3.03 2.90	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08	(5 2 1) HB3	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12	-2'-d(+1) HB3 2.87	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16	0) HB3 2.88	cd HB1 2.95 2.91 2.92 2.91 2.95 3.01	HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90	A in d -1) HB3 2.87	Cdl HB1 2.86 2.96 2.98 2.94 2.98 3.00 2.90	HB2 3.11 2.95 2.86 2.91 2.98 2.91 3.33	HB3	rcd HB1 2.94 2.96 2.94 2.95 2.87 2.89 3.00	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92	UCIEO (0) HB3 2.94	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89	-1) HB3 2.88	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94	+1) HB3 2.93
S' 1T 2A 3T 4A 5C 6A 7A 8A 9G	$\begin{array}{c} 3'\\ \hline \\ A_{13}\\ \hline \\ T_{12}\\ \hline \\ A_{11}\\ \hline \\ T_{10}\\ \hline \\ G_9\\ \hline \\ T_8\\ \hline \\ T_7\\ \hline \\ T_6\\ \hline \\ C_5 \end{array}$	C HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00 2.9 2.91	dA(U HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84 2.89	 HB3 2.88 2.88 	HB1 2.89 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.92 3.03 2.90 2.9	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08 2.91	(5 2 1) HB3	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88 2.95	-cycld HA(U- HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12 2.93	-2'-d(+1) HB3 2.87	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88 3.00	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16 2.92	0) HB3 2.88 2.87	cd HB1 2.95 2.91 2.92 2.91 2.95 3.01 2.99	HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90 2.94	A in d -1) HB3 2.87 2.93	HB1 2.86 2.96 2.94 2.98 2.94 2.98 2.90	Straft A(Ap- HB2 3.11 2.95 2.86 2.91 2.98 2.91 3.33 2.95	HB3 2.87 2.94	Igod cd HB1 2.94 2.95 2.87 2.89 3.00 2.93	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92 2.94	UCIEO 0) HB3 2.94 2.89	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16 2.92	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89 2.93	-1) HB3 2.88 2.89	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88 2.94	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94 2.90	+ 1) HB3 2.93 2.86
S' 1T 2A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A ⁹ G ¹⁰ A	$\begin{array}{c} 3'\\ \hline A_{13}\\ \hline T_{12}\\ \hline A_{11}\\ \hline T_{10}\\ \hline G_9\\ \hline T_8\\ \hline T_7\\ \hline T_6\\ \hline C_5\\ \hline T_4\\ \end{array}$	C HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00 2.9 2.91 2.91	dA(U) HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84 2.89 3.01	 HB3 2.88 2.88 	HB1 2.89 2.99 2.93 2.93 2.93 2.93 2.99 2.92 3.03 2.90 2.9 2.88	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08 2.91 3.00	(5.2 1) HB3 2.9 2.9	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88 2.95 2.92	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12 2.93 2.95	-2'-d(+1) HB3 2.87 2.87	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88 3.00 2.86	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16 2.92 3.05	Ime and an and a state of the stat	cd HB1 2.95 2.91 2.92 2.91 2.95 3.01 2.99 2.92	HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90 2.94 2.94	A in d -1) HB3 2.87 2.93	HB1 2.86 2.98 2.94 2.98 3.00 2.90 2.92	Strar HB2 3.11 2.95 2.86 2.91 3.33 2.95 2.92	HB3 2.87 2.94	HB1 2.94 2.96 2.94 2.95 2.87 2.89 3.00 2.93 2.96	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92 2.94 2.96	UCIEO 0) HB3 2.94 2.89	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16 2.92 2.92 2.92	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89 2.89 2.93 3.02	-1) HB3 2.88 2.89	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88 2.94 2.94	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94 2.90 2.98	+ 1) HB3 2.93 2.86
S' 1T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A ⁹ G ¹⁰ A ¹¹ T	$\begin{array}{c} \mathbf{3'} \\ \mathbf{\overline{A_{13}}} \\ \mathbf{\overline{T_{12}}} \\ \mathbf{\overline{A_{11}}} \\ \mathbf{\overline{T_{10}}} \\ \mathbf{\overline{G_9}} \\ \mathbf{\overline{T_8}} \\ \mathbf{\overline{T_7}} \\ \mathbf{\overline{T_6}} \\ \mathbf{\overline{C_5}} \\ \mathbf{\overline{T_4}} \\ \mathbf{\overline{A_3}} \end{array}$	C HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00 2.9 2.91 2.91 2.94	dA(U) HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84 2.89 3.01 2.90	 HB3 2.88 2.88 	HB1 2.89 2.99 2.93 2.93 2.93 2.99 2.92 3.03 2.90 2.9 2.88 2.95	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08 2.91 3.00 2.93	(5.2 1) HB3 2.9 2.9	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88 2.95 2.92 2.97	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12 2.93 2.95 2.89	-2 -di -1) HB3 2.87 2.87	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88 3.00 2.86 2.99	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16 2.92 3.05 2.88	Ime and a fille HB3 2.88 2.87	cd HB1 2.95 2.91 2.92 2.91 2.92 3.01 2.99 2.92 2.94	A(Ap HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90 2.94 2.94 2.94	A in d -1) HB3 2.87 2.93	Cdl. HB1 2.86 2.96 2.98 2.94 2.98 3.00 2.90 2.92 2.97	Straft A(Ap- HB2 3.11 2.95 2.86 2.91 3.33 2.95 2.92 2.97	444 (1) HB3 2.87 2.94	Igod cd HB1 2.94 2.95 2.87 2.89 3.00 2.93 2.96 2.92	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92 2.94 2.96 3.01	UCIEO (0) HB3 2.94 2.89	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.90 2.89	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89 2.93 3.02 2.92	-1) HB3 2.88 2.89	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88 2.94 2.94 2.94	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94 2.90 2.98 2.99	+1) HB3 2.93 2.86
S' 1T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A ⁹ G ¹⁰ A ¹¹ T ¹² A ¹¹ T	$\begin{array}{c} 3'\\ \hline A_{13}\\ \hline T_{12}\\ \hline A_{11}\\ \hline T_{10}\\ \hline G_9\\ \hline T_8\\ \hline T_7\\ \hline T_6\\ \hline C_5\\ \hline T_4\\ \hline A_3\\ \hline T_2\\ \end{array}$	C HB1 2.94 2.93 3.06 2.93 2.89 2.90 3.00 2.9 2.91 2.91 2.94 2.87	dA(U) HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84 2.89 3.01 2.90 3.04	 D) HB3 2.88 2.88 2.88 	HB1 2.89 2.99 2.93 2.93 2.93 2.99 2.92 3.03 2.90 2.9 2.88 2.95 2.90	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08 2.91 3.00 2.93 3.03	(5 2 1) HB3 2.9 2.9	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88 2.95 2.92 2.97 2.87	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12 2.93 2.95 2.89 3.11	-2 -di -1) HB3 2.87 2.87	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88 3.00 2.86 2.99 2.87	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16 2.92 3.05 2.88 3.05	Ime at 0) HB3 2.88 2.87	cd HB1 2.95 2.91 2.92 2.91 2.92 2.91 2.92 2.91 2.92 2.91 2.92 2.99 2.92 2.94 2.88	A(Ap HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90 2.95 2.90 2.94 2.94 2.94 2.94	A in d -1) HB3 2.87 2.93	Outple cd. HB1 2.86 2.96 2.98 2.94 2.98 3.00 2.90 2.92 2.97 2.87	Straft HB2 3.11 2.95 2.86 2.91 3.33 2.95 2.92 2.97 3.09	2.87 2.94	Igod HB1 2.94 2.95 2.87 2.89 3.00 2.93 2.92 2.93	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92 2.94 2.96 3.01 2.91	UCIEO (0) HB3 2.94 2.89	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.93 2.93	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89 2.93 3.02 2.92 2.91	-1) HB3 2.88 2.89	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88 2.94 2.94 2.94 2.94	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94 2.90 2.98 2.99 2.96	+1) HB3 2.93 2.86
Si 1 2A 3T 4A 5C 6A 7A 8A 9G 10A 11 12A 13C	$\begin{array}{c} \mathbf{3'} \\ \mathbf{\overline{A_{13}}} \\ \mathbf{\overline{T_{12}}} \\ \mathbf{\overline{A_{11}}} \\ \mathbf{\overline{T_{10}}} \\ \mathbf{\overline{G_9}} \\ \mathbf{\overline{T_8}} \\ \mathbf{\overline{T_7}} \\ \mathbf{\overline{T_6}} \\ \mathbf{\overline{C_5}} \\ \mathbf{\overline{T_4}} \\ \mathbf{\overline{A_3}} \\ \mathbf{\overline{T_2}} \\ \mathbf{\overline{G_1}} \end{array}$	C HB1 2.93 3.06 2.93 2.89 2.90 3.00 2.91 2.91 2.94 2.95 2.91 2.91 2.92	dA(U) HB2 2.96 2.95 2.83 2.90 2.94 3.01 2.84 2.89 3.01 2.90 3.04 2.96	 D) HB3 2.88 2.88 2.88 2.88 	HB1 2.89 2.99 2.93 2.93 2.93 2.99 2.92 3.03 2.90 2.90 2.90 2.90 2.90 2.90	HB2 3.02 2.91 2.93 2.95 2.96 2.88 3.08 2.91 3.00 2.93 3.03 2.94	(5 2 1) HB3 2.9 2.9 2.9 2.9	HB1 2.89 2.95 3 2.97 2.91 2.89 3.41 2.88 2.95 2.92 2.97 2.87 2.94	-cycld HB2 2.94 2.95 2.88 2.92 2.94 2.97 2.89 3.12 2.93 2.95 2.89 3.11 2.95	-2 -di -1) HB3 	cd HB1 2.91 2.95 3.07 2.99 2.93 2.87 2.88 3.00 2.86 2.99 2.87 2.86 2.99 2.87 2.93	HB2 2.94 2.97 2.88 2.92 2.97 2.99 3.16 2.92 3.05 2.88 3.05 2.97	Ime and (0) HB3 2.88 2.88 2.87 2.85	cd HB1 2.95 2.91 2.92 2.91 2.92 3.01 2.99 2.92 2.94 2.95 3.01 2.99 2.92 2.94 2.88 2.95	A(Ap HB2 2.90 2.97 2.89 2.95 2.96 2.95 2.90 2.94 2.94 2.94 2.94 2.94 2.94 2.94	A in d -1) HB3 2.87 2.93 2.93	Outple cd. HB1 2.86 2.96 2.98 2.94 2.98 3.00 2.90 2.92 2.97 2.87 2.92	Straft HB2 3.11 2.95 2.86 2.91 3.33 2.95 2.97 3.09 2.95	2.87 2.87 2.87	Igod HB1 2.94 2.95 2.87 2.89 3.00 2.93 2.92 2.93 2.93	A(Ga HB2 2.97 2.85 2.92 2.94 2.96 2.99 2.92 2.94 2.96 3.01 2.91 2.97	UCIEO (0) HB3 2.94 2.94 2.89 2.89	tide cd HB1 2.94 3.04 3.00 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91 3.16 2.92 2.91	A(Ga HB2 2.91 2.92 2.94 2.94 2.94 2.95 2.89 2.93 3.02 2.92 2.91 2.95	-1) HB3 2.88 2.89 2.89	cd. HB1 2.94 2.93 2.90 2.87 2.89 3.46 2.88 2.94 2.94 2.94 2.94 2.90 2.93	A(Ga HB2 2.94 2.91 2.93 2.96 3.00 2.92 2.94 2.90 2.98 2.99 2.96 2.94	+1) HB3 2.93 2.86 2.86 2.89

Graph 5S. Graphical representation of hydrogen bond lengths analysis, presented in Table 5S. Y-axis represents the hydrogen bond length in Å, X-axis represents the position and composition of base pair in investigated *ds*-oligodeoxynucleotide.

Table 6S. Base pairs and base step (MaG-major groove, MiG-minor groove width and adopted form) parameters of double stranded oligodeoxynucleotides that contained at position 7A 2'deoxyadenosine (dA) or (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions T6 (Ap-1) or T7 (Ap0) or T8 (AP+1) 2'-deoxyuridine in the opposite strand. The structures of *ds*-oligodeoxynucleotudes obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

BASE	PAIR												Ol	igodeo	xynucle	eotides												
						dA((U0)				dA(U	-1)								dA(U	+1)							
5'	3'	λ(1) (°)	λ(2) (°)	D1 Å	D2 Å	L Å	Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form
¹ T	A ₁₃	53.6	54.7	10.7	9.0	9.9	TA/TA			В	55.2	58.4	10.5	8.9	9.8	TA/TA			В	50.7	51.9	11.1	9.3	10	TA/TA			В
^{2}A	T ₁₂	57.3	51.7	10.7	9.0	9.9	AT/AT			В	54.6	49	11.1	9.2	10.1	AT/AT			В	55.8	50.4	10.8	9.1	10	AT/AT			В
³ T	A ₁₁	52.9	55.4	10.8	9.1	10.0	TA/TA	12.0	18.9	В	50.6	52.9	11	9.2	10	TA/TA	13.0	17.5	В	59.9	62.5	10.3	8.8	10	TA/TA	12.1	18.5	В
${}^{4}A$	T ₁₀	56.4	56.0	10.6	8.9	9.9	AC/GT	12.9	18.2	В	55.9	55	10.7	9	9.9	AC/GT	13.4	17.8		56.9	51.4	10.8	9.1	10	AC/GT	12.1	18.5	В
⁵ C	G ₉	55.9	54.0	10.7	9.0	10.0	CA/TG	13.4	18.3	В	55.5	54.1	10.7	9	9.9	CA/TG	13.2	17.7		54.8	51.7	10.8	9	9.9	CA/TG	11.6	18	
⁶ A	T ₈	57.9	56.4	10.4	8.8	9.8	AA/TT	12.9	17.4		53.7	52.3	10.7	8.9	9.8	AA/TT	13.4	17.4	В	55.4	51.1	10.9	9.1	10	AA/TT	11.7	17.6	В
⁷ A	T ₇	53.4	53.2	10.9	9.1	10.0	AA/TT	12.6	17.4	В	56.5	52.6	10.8	9.1	10	AA/TT	12.5	17.9	В	53.9	50.1	10.9	9.1	10	AA/TT	11.6	16.9	В
⁸ A	T ₆	56.4	53.0	10.7	9.0	9.9	AG/CT	11.9	17.4	В	52.6	53.2	10.7	9	9.9	AG/CT	11.5	17.8	В	53.3	51	10.9	9.1	9.9	AG/CT	11.4	18	
°G	C5	55.6	51.2	10.9	9.2	10.1	GA/TC	11.7	18.4	В	53.8	48.1	11	9.1	9.9	GA/TC	11.4	18.1	В	53.3	53	10.8	9.1	10	GA/TC	12.3	19	В
^{10}A	T_4	51.2	56.2	10.8	9.1	10.0	AT/AT	11.5	17.9	В	56.2	58.6	10.5	8.9	9.9	AT/AT			В	53.4	47.1	11.2	9.3	10	AT/AT	12.4	17.1	В
¹¹ T	A ₃	51.8	50.4	11.0	9.2	10.0	TA/TA			В	55.4	50.5	10.9	9.1	10	TA/TA			В	56	57.4	10.5	8.9	9.9	TA/TA			В
^{12}A	T ₂	54.4	52.0	10.8	9.0	10.0	AC/GT			В	57.1	51.6	10.7	9	9.9	AC/GT			В	52.9	51.6	11	9.2	10	AC/GT			В
^{13}C	G1	53.6	54.7	10.7	9.0	9.9					55.2	58.4	10.5	8.9	9.8					54.2	53.2	10.7	9	9.9				
3'	5'																											
						1	1	l				1					1											
						cdA	(U0)				cdA(l	U -1)								cdA(l	J+1)							
5'	3'	$\lambda(1)$	$\lambda(2)$	D1 Å	D2 Å	Å	Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form
^{1}T	A13	54.8	57.5	10.7	9	10	TA/TA			В	52.1	57.6	10.7	9	10	TA/TA			В	51.9	56.6	10.9	9.1	10	TA/TA			В
^{2}A	T ₁₂	54.9	53.1	10.8	9.1	10	AT/AT			В	57.2	53.5	10.7	9	10	AT/AT			В	58.3	55.2	10.6	8.9	9.9	AT/AT			В
³ T	A ₁₁	58.3	60.9	10.2	8.7	9.9	TA/TA	11.4	20.0	В	57	60.3	10.4	8.9	9.9	TA/TA	11.7	18.1	В	54.4	60.2	10.6	9	10	TA/TA	13	17.4	В
^{4}A	T ₁₀	56.4	54.6	10.6	8.9	9.9	AC/GT	11.5	18.3		54.8	56.1	10.6	8.9	9.9	AC/GT	11.2	18.3	В	57.1	53.7	10.7	9	10	AC/GT	12.2	19.4	В
⁵ C	G ₉	53.9	52.9	10.7	9	9.9	CA/TG	12.1	18.6	В	55.3	50.9	10.7	9	9.9	CA/TG	11.8	18.9	В	52.9	51	10.9	9	9.9	CA/TG	11.9	18.8	В
⁶ A	T ₈	57	51.6	10.8	9.1	10	AA/TT	11.9	18.5	В	55.8	50.9	10.9	9.1	10	AA/TT	12.7	17.9	В	58.4	52.3	10.7	9	10	AA/TT	12.5	17.1	В
⁷ A	T ₇	56.8	54.3	10.5	8.8	9.8	AA/TT	11	18.2	В	64.2	58.8	10	8.6	9.9	AA/TT	12.1	18.8		59.4	53.2	10.5	8.8	9.9	AA/TT	11.7	17.4	
⁸ A	T ₆	51.6	43.8	11.8	9.8	10.4	AG/CT	11.3	19.5	В	53.2	49.5	11.2	9.3	10.1	AG/CT	11.3	17.5	В	54.3	49.6	11.1	9.3	10.1	AG/CT	10.7	16.7	
⁹ G	C ₅	52.6	51.4	10.7	8.9	9.7	GA/TC	11.5	17.6	В	52.4	55.9	10.7	9	9.9	GA/TC	11.7	18.0	В	51.4	55.1	10.7	9	9.9	GA/TC	11.2	17.5	В
¹⁰ A	T ₄	53.7	51.6	10.9	9.1	10	AT/AT	11.4	17.6	В	56.9	53	10.7	9	10	AT/AT	11.5	17.5	В	52.9	51.5	10.9	9.1	9.9	AT/AT	11.9	17.1	В
¹¹ T	A ₃	53.5	57	10.6	8.9	9.9	TA/TA			В	56.5	56.4	10.5	8.9	9.9	TA/TA			В	54.6	56	10.7	9	10	TA/TA			В
^{12}A	T ₂	54.8	48.9	11.1	9.2	10.1	AC/GT			В	52.1	48	11.2	9.3	10.1	AC/GT			В	52.6	51.3	11	9.2	10	AC/GT			В
¹³ C	G_1	56.3	52.8	10.7	9	9.9					52.6	55.3	10.8	9.1	10					53.1	55.2	10.7	8.9	9.8				
3'	5'																											

Table 6S continued. Base pairs and base step (MaG-major groove, MiG-minor groove width and adopted form) parameters of double stranded oligodeoxynucleotides that contained at position 7A 2'-deoxyadenosine(dA) or (5'S) -5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions T6 (U-1) or T7 (U0) or T8 (U+1) an apurinic/apyrimidinic site in the opposite strand. The structures of *ds*-oligodeoxynucleotudes obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

DACE													Olig	godeox	ynucle	eotudes												
BASE	PAIR					dA(A	p0)								dA(A	. p-1)		-			-		dA	(Ap+1)				
5'	3'	λ(1) (°)	λ(2) (°)	D1 Å	D2 Å	L Å	Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	L		MiG	MaG	Form	λ(1)	λ(2)	D1	D2	L		MiG	MaG	Form
^{1}T	A ₁₃	50.8	56.9	10.9	9.1	10	TA/TA			В	54.7	59.3	10.6	8.9	9.9	TA/TA				52.7	52.7	10.9	9.1	10	TA/TA			В
^{2}A	T ₁₂	56.9	56	10.5	8.9	9.9	AT/AT			В	55.6	52.2	10.8	9.1	10	AT/AT			В	56.1	53.8	10.7	9	10	AT/AT			В
³ T	A ₁₁	58.2	59.7	10.3	8.8	9.8	TA/TA	12.1	18.2	В	55.7	57.8	10.5	8.9	9.9	TA/TA	12.4	17.6	В	54.2	59.4	10.6	8.9	9.9	TA/TA	12.6	17.6	В
${}^{4}A$	T ₁₀	53.4	52.9	10.8	9	10	AC/GT	12.9	18	В	53.6	54.2	10.8	9	10	AC/GT	11.7	18	В	52.9	53.9	10.8	9.1	10	AC/GT	13.2	16.6	В
⁵ C	G ₉	55.4	53	10.8	9	10	CA/TG	13.8	17.8	В	52	51.2	10.9	9.1	9.9	CA/TG	12.9	17.3	В	57.1	48.7	10.7	8.9	9.8	CA/TG	12 5	17.4	
⁶ A	T ₈	59.3	55	10.5	8.9	10	AA/TT	13.6	17.5	В	56.9	53	10.7	9	9.9	AA/TT	14.4	17.1	В						AA/TT	13.5	17.4	
⁷ A	T ₇						AA/TT				54.5	55.6	10.6	8.9	9.8	AA/TT	12.0	17.0		52.8	49.7	11	9.1	9.9	AA/TT	13.1	17.3	В
⁸ A	T ₆	54.2	49.6	11	9.2	10	AG/CT	13.2	16.1	В						AG/CT	13.8	17.9		54.9	50.9	10.8	9	9.9	AG/CT	12.1	20	В
⁹ G	C ₅	55.1	55.1	10.7	9	10	GA/TC	12.3	17.6	В	52.1	53.9	10.8	9	9.9	GA/TC	13.4	18.1	В	55.5	53.8	10.7	9	9.9	GA/TC	12	18.4	В
^{10}A	T_4	54.1	53.1	10.7	9	9.9	AT/AT	11.5	17.4	В	56.6	53.9	10.7	9	10	AT/AT	12.8	18	В	56.4	52.0	10.7	9	10	AT/AT	12.6	17.4	В
¹¹ T	A ₃	54.7	55.7	10.6	9	9.9	TA/TA			В	51.3	56.1	10.8	9	9.9	TA/TA			В	54.3	57.1	10.6	9	10	TA/TA			
^{12}A	T ₂	52	50.9	11.1	9.2	10	AC/GT				54.1	52.4	10.8	9	9.9	AC/GT			В	52.3	50.3	11.1	9.2	10	AC/GT			
¹³ C	G1	53.8	56.4	10.6	8.9	9.8					55.2	53.3	10.7	9	9.9					56.4	55.5	10.5	8.8	9.8				
3'	5'																											
			1			cdA(A	Ap0)	I				I		1	cdA(A	Ap-1)			1		T	I		cdA(A	p+1)	T		
5'	3'	λ(1) (°)	λ(2) (°)	D1 Å	D2 Å	cdA(A L Å	(p0) Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	cdA(A	Ap-1) Step	MiG	MaG	Form	λ(1)	λ(2)	D1	D2	cdA(A L	p+1) Step	MiG	MaG	Form
5' ¹ T	3' A ₁₃	λ(1) (°) 53.4	λ(2) (°) 55.6	D1 Å 10.7	D2 Å 9	cdA(A Å 9.9	Ap0) Step TA/TA	MiG Å	MaG Å	Form	λ(1) 56.9	λ(2) 55.4	D1 10.6	D2 8.9	cdA(A L 9.9	Ap-1) Step TA/TA	MiG	MaG	Form B	λ(1) 48.4	λ(2) 52.6	D1 11.2	D2 9.3	cdA(A L 10.1	p+1) Step TA/TA	MiG	MaG	Form
5' ¹ T ² A	3' A ₁₃ T ₁₂	λ(1) (°) 53.4 56.9	λ(2) (°) 55.6 53.7	D1 Å 10.7 10.8	D2 Å 9 9.1	cdA(A Å 9.9 10	Step TA/TA AT/AT	MiG Å	MaG Å	Form	λ(1) 56.9 54.1	λ(2) 55.4 52.9	D1 10.6 10.8	D2 8.9 9	cdA(A L 9.9 10	Ap-1) Step TA/TA AT/AT	MiG	MaG	Form B B	λ(1) 48.4 57.8	λ(2) 52.6 53.4	D1 11.2 10.7	D2 9.3 9	cdA(A L 10.1 10	p+1) Step TA/TA AT/AT	MiG	MaG	Form B B
$ \begin{array}{c} 5'\\ ^{1}T\\ ^{2}A\\ ^{3}T \end{array} $	3' A ₁₃ T ₁₂ A ₁₁	λ(1) (°) 53.4 56.9 58.5	λ(2) (°) 55.6 53.7 60.4	D1 Å 10.7 10.8 10.3	D2 Å 9 9.1 8.8	cdA(A Å 9.9 10 9.9	Step TA/TA AT/AT TA/TA	MiG Å 12.2	MaG Å 17.2	Form B B	λ(1) 56.9 54.1 55.9	λ(2) 55.4 52.9 57	D1 10.6 10.8 10.6	D2 8.9 9 8.9	cdA(A L 9.9 10 9.9	Step TA/TA AT/AT TA/TA	MiG 12.5	MaG 17.3	Form B B B	λ(1) 48.4 57.8 57.4	λ(2) 52.6 53.4 61	D1 11.2 10.7 10.4	D2 9.3 9 8.8	cdA(A L 10.1 10 9.9	p+1) Step TA/TA AT/AT TA/TA	MiG 13	MaG 17.7	Form B B B
$ \begin{array}{c} 5'\\ ^{1}T\\ ^{2}A\\ ^{3}T\\ ^{4}A \end{array} $	$\begin{array}{c} 3' \\ \hline A_{13} \\ \hline T_{12} \\ \hline A_{11} \\ \hline T_{10} \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6	λ(2) (°) 55.6 53.7 60.4 55.2	D1 Å 10.7 10.8 10.3 10.6	D2 Å 9 9.1 8.8 9	cdA(A Å 9.9 10 9.9 10	Ap0) Step TA/TA AT/AT TA/TA AC/GT	MiG Å 12.2 13.0	MaG Å 17.2 19.2	Form B B B	$\lambda(1)$ 56.9 54.1 55.9 53.9	$\lambda(2)$ 55.4 52.9 57 53.4	D1 10.6 10.8 10.6 10.8	D2 8.9 9 8.9 9	cdA(A L 9.9 10 9.9 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT	MiG 12.5 11.9	MaG 17.3 17.8	Form B B B B	λ(1) 48.4 57.8 57.4 55.8	$\lambda(2)$ 52.6 53.4 61 55.4	D1 11.2 10.7 10.4 10.6	D2 9.3 9 8.8 8.9	cdA(A L 10.1 10 9.9 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT	MiG 13 13.6	MaG 17.7 18	Form B B B
$ \begin{array}{r} 5'\\ ^{1}T\\ ^{2}A\\ ^{3}T\\ ^{4}A\\ ^{5}C \end{array} $	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9	λ(2) (°) 55.6 53.7 60.4 55.2 52.5	D1 Å 10.7 10.8 10.3 10.6 10.8	D2 Å 9 9.1 8.8 9 9	cdA(A Å 9.9 10 9.9 10 9.9	Step TA/TA AT/AT TA/TA AC/GT CA/TG	MiG Å 12.2 13.0 14.1	MaG Å 17.2 19.2 18.0	Form B B B B	$\lambda(1)$ 56.9 54.1 55.9 53.9 54.6	$\lambda(2)$ 55.4 52.9 57 53.4 52.6	D1 10.6 10.8 10.6 10.8 10.8	D2 8.9 9 8.9 9 9	cdA(A L 9.9 10 9.9 10 9.9	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG	MiG 12.5 11.9 13.0	MaG 17.3 17.8 17.9	Form B B B B B	λ(1) 48.4 57.8 57.4 55.8 55.8	λ(2) 52.6 53.4 61 55.4 51.7	D1 11.2 10.7 10.4 10.6 10.8	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 10 9.9 9.9 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG	MiG 13 13.6	MaG 17.7 18	Form B B B
$ \begin{array}{c} 5' \\ \frac{{}^{1}T}{{}^{2}A} \\ \frac{{}^{3}T}{{}^{4}A} \\ \frac{{}^{5}C}{{}^{6}A} \end{array} $	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8	D2 Å 9 9.1 8.8 9 9 9.1	cdA(A L Å 9.9 10 9.9 10 9.9 10	TA/TA TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT	MiG Å 12.2 13.0 14.1	MaG Å 17.2 19.2 18.0	Form B B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \end{array}$	$\lambda(2)$ 55.4 52.9 57 53.4 52.6 54.6	D1 10.6 10.8 10.6 10.8 10.8 10.7	D2 8.9 9 8.9 9 9 9 9	cdA(A L 9.9 10 9.9 10 9.9 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT	MiG 12.5 11.9 13.0 14.0	MaG 17.3 17.8 17.9 17.3	Form B B B B B	λ(1) 48.4 57.8 57.4 55.8 55.8	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \end{array}$	D1 11.2 10.7 10.4 10.6 10.8	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 9.9 9.9 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT	MiG 13 13.6 14.1	MaG 17.7 18 17.4	Form B B B
$ \begin{array}{r} 5'\\ ^{1}T\\ ^{2}A\\ ^{3}T\\ ^{4}A\\ ^{5}C\\ ^{6}A\\ ^{7}A \end{array} $	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \\ T_7 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8	D2 Å 9 9.1 8.8 9 9 9.1	cdA(A Å 9.9 10 9.9 10 9.9 10	TA/TA TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT	MiG Å 12.2 13.0 14.1 13.9	MaG Å 17.2 19.2 18.0 17.4	Form B B B	$\lambda(1)$ 56.9 54.1 55.9 53.9 54.6 57.2 57.7	$\lambda(2)$ 55.4 52.9 57 53.4 52.6 54.6 54.1	D1 10.6 10.8 10.6 10.8 10.8 10.7 10.6	D2 8.9 9 8.9 9 9 9 9 9 9 8.9	cdA(A L 9.9 10 9.9 10 9.9 10 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT	MiG 12.5 11.9 13.0 14.0	MaG 17.3 17.8 17.9 17.3	Form B B B B	λ(1) 48.4 57.8 57.4 55.8 55.8 55.8 55.8	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \\ \\ 51.9 \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5	D2 9.3 9 8.8 8.9 9 9 8.8	cdA(A L 10.1 9.9 9.9 9.9 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT	MiG 13 13.6 14.1 13.4	MaG 17.7 18 17.4 17.2	Form B B B
5' ¹ T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \\ T_7 \\ T_6 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 52.4	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 10.8 11.3	D2 Å 9 9.1 8.8 9 9.1 9 9.1 9 9.1	cdA(A Å 9.9 10 9.9 10 9.9 10 10	Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT	MiG Å 12.2 13.0 14.1 13.9 13.2	MaG Å 17.2 19.2 18.0 17.4 16.8	Form B B B B C B	$\lambda(1)$ 56.9 54.1 55.9 53.9 54.6 57.2 57.7	$\lambda(2)$ 55.4 52.9 57 53.4 52.6 54.6 54.1	D1 10.6 10.8 10.6 10.8 10.8 10.7 10.6	D2 8.9 9 8.9 9 9 9 9 8.9	cdA(A L 9.9 10 9.9 10 9.9 10 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT	MiG 12.5 11.9 13.0 14.0 13.2	MaG 17.3 17.8 17.9 17.3 17.3	Form B B B B B	λ(1) 48.4 57.8 57.4 55.8 55.8 55.8 58.4 52.2	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \hline \\ 51.9 \\ 46 \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5	D2 9.3 9 8.8 8.9 9 8.8 9.6	cdA(A L 10.1 9.9 9.9 9.9 9.8 10.3	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT	MiG 13 13.6 14.1 13.4 11.8	MaG 17.7 18 17.4 17.2 19.1	Form B B B B B B B
	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \\ T_7 \\ T_6 \\ C_5 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 57.1 52.4 51.7	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6 56.2	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 10.8 11.3 10.7	D2 Å 9 9.1 8.8 9 9 9 9.1 9.1 9.4 9	cdA(A Å 9.9 10 9.9 10 9.9 10 10 10.1 9.9	StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAA/TTAG/CTGA/TC	MiG Å 12.2 13.0 14.1 13.9 13.2 12.6	MaG Å 17.2 19.2 18.0 17.4 16.8 18.2	Form B B B B B C B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \\ 57.7 \\ \\ 54.1 \end{array}$	$\lambda(2)$ 55.4 52.9 57 53.4 52.6 54.6 54.1 51.7	D1 10.6 10.8 10.6 10.8 10.7 10.6 10.7 10.6	D2 8.9 9 8.9 9 9 9 9 8.9 9 8.9 9 1	cdA(A L 9.9 10 9.9 10 9.9 10 10 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC	MiG 12.5 11.9 13.0 14.0 13.2 12.9	MaG 17.3 17.8 17.9 17.3 17.3 16.8	Form B B B B B C C C B	$\lambda(1)$ 48.4 57.8 57.4 55.8 55.8 55.8 58.4 52.2 53.3	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \hline \\ 51.9 \\ 46 \\ 50.5 \\ \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5 10.9	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 9.9 9.9 9.9 9.8 10.3 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC	MiG 13 13.6 14.1 13.4 11.8 11.7	MaG 17.7 18 17.4 17.2 19.1 17.7	Form B B B B B B B
	$\begin{array}{c} 3' \\ \hline A_{13} \\ \hline T_{12} \\ \hline A_{11} \\ \hline T_{10} \\ \hline G_9 \\ \hline T_8 \\ \hline T_7 \\ \hline T_6 \\ \hline C_5 \\ \hline T_4 \\ \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 52.4 51.7 52.9	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6 56.2 49.5	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 11.3 10.7 11.1	D2 Å 9 9.1 8.8 9 9 9.1 9.1 9.4 9 9.2	cdA(A Å 9.9 10 9.9 10 9.9 10 10.1 9.9 10.1	StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAG/CTGA/TCAT/AT	MiG Å 12.2 13.0 14.1 13.9 13.2 12.6 12.0	MaG Å 17.2 19.2 18.0 17.4 16.8 18.2 17.4	Form B B B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \\ 57.7 \\ \hline \\ 54.1 \\ 54.6 \\ \end{array}$	$\lambda(2)$ 55.4 52.9 57 53.4 52.6 54.6 54.1 51.7 53	D1 10.6 10.8 10.6 10.8 10.8 10.7 10.6 10.9 10.9	D2 8.9 9 8.9 9 9 9 9 8.9 9 8.9 9.1 9.1	cdA(A L 9.9 10 9.9 10 9.9 10 10 10 10	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT	MiG 12.5 11.9 13.0 14.0 13.2 12.9 12.3	MaG 17.3 17.8 17.9 17.3 17.3 16.8 17.2	Form B B B B B C C C B B B	$\lambda(1)$ 48.4 57.8 57.4 55.8 55.8 58.4 52.2 53.3 57.6	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \hline \\ 51.9 \\ 46 \\ 50.5 \\ 50.5 \\ \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5 10.9 10.7	D2 9.3 9 8.8 8.9 9 9 8.8 9.6 9.1 9	cdA(A L 10.1 9.9 9.9 9.9 9.9 9.9 9.8 10.3 9.9 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT	MiG 13 13.6 14.1 13.4 11.8 11.7 12.6	MaG 17.7 18 17.4 17.2 19.1 17.7 17.3	Form B B B B B B B B B
5' ¹ T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A ⁹ G ¹⁰ A ¹¹ T	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \\ T_7 \\ T_6 \\ C_5 \\ T_4 \\ A_3 \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 57.1 52.4 51.7 52.9 54.8	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6 56.2 49.5 57	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 10.8 11.3 10.7 11.1 10.5	D2 Å 9 9.1 8.8 9 9.1 9.1 9.1 9.4 9 9.2 8.9	cdA(A Å 9.9 10 9.9 10 9.9 10 10 10.1 9.9 10 9.9	StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAG/CTGA/TCAT/ATTA/TA	MiG Å 12.2 13.0 14.1 13.9 13.2 12.6 12.0	MaG Å 17.2 19.2 18.0 17.4 16.8 18.2 17.4	Form B B B B B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \\ 57.7 \\ \\ 54.1 \\ 54.6 \\ 53 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 55.4 \\ 52.9 \\ 57 \\ 53.4 \\ 52.6 \\ 54.6 \\ 54.1 \\ \\ 51.7 \\ 53 \\ 55.5 \\ \end{array}$	D1 10.6 10.8 10.8 10.8 10.7 10.6 10.9 10.9 10.8 10.7	D2 8.9 9 9 9 9 9 9 9 8.9 9 8.9 9.1 9 9.1	cdA(A L 9.9 10 9.9 10 9.9 10 10 10 10 10	Ap-1)StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAG/CTGA/TCAT/ATTA/TA	MiG 12.5 11.9 13.0 14.0 13.2 12.9 12.3	MaG 17.3 17.8 17.9 17.3 17.3 16.8 17.2	Form B B B B B C B B B B B	$\begin{array}{c} \lambda(1) \\ 48.4 \\ 57.8 \\ 57.4 \\ 55.8 \\ 55.8 \\ \hline \\ 58.4 \\ 52.2 \\ 53.3 \\ 57.6 \\ 52.8 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \\ \\ 51.9 \\ 46 \\ 50.5 \\ 50.5 \\ 56.8 \\ \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5 10.9 10.7 10.8	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 9.9 9.9 9.9 9.9 9.8 10.3 9.9 9.9 9.9 10	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT TA/TA	MiG 13 13.6 14.1 13.4 11.8 11.7 12.6	MaG 17.7 18 17.4 17.2 19.1 17.7 17.3	Form B B B B B B B B B B B
5' ¹ T ² A ³ T ⁴ A ⁵ C ⁶ A ⁷ A ⁸ A ⁹ G ¹⁰ A ¹¹ T ¹² A	$\begin{array}{c} 3' \\ \hline A_{13} \\ \hline T_{12} \\ \hline A_{11} \\ \hline T_{10} \\ \hline G_9 \\ \hline T_8 \\ \hline T_7 \\ \hline T_6 \\ \hline C_5 \\ \hline T_4 \\ \hline A_3 \\ \hline T_2 \\ \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 57.1 52.4 51.7 52.9 54.8 53.1	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6 56.2 49.5 57 50.5	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 10.8 11.3 10.7 11.1 10.5 11	D2 Å 9 9.1 8.8 9 9.1 9.1 9.1 9.1 9.2 8.9 9.2	cdA(A Å 9.9 10 9.9 10 9.9 10 10 10.1 9.9 10 10.1	StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAG/CTGA/TCAT/ATTA/TAAC/GT	MiG Å 12.2 13.0 14.1 13.9 13.2 12.6 12.0	MaG Å 17.2 19.2 18.0 17.4 16.8 18.2 17.4	Form B B B B B B B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \\ 57.7 \\ \\ 54.1 \\ 54.6 \\ 53 \\ 53.7 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 55.4 \\ 52.9 \\ 57 \\ 53.4 \\ 52.6 \\ 54.6 \\ 54.1 \\ \\ \\ 51.7 \\ 53 \\ 55.5 \\ 53.5 \\ \\ \\ 53.5 \end{array}$	D1 10.6 10.8 10.6 10.8 10.7 10.6 10.9 10.8 10.7 10.8	D2 8.9 9 9 9 9 9 9 9 8.9 9.1 9 9 9 9	cdA(A L 9.9 10 9.9 10 10 10 10 10 10 10 10	Ap-1)StepTA/TAAT/ATTA/TAAC/GTCA/TGAA/TTAG/CTGA/TCAT/ATTA/TAAC/GT	MiG 12.5 11.9 13.0 14.0 13.2 12.9 12.3	MaG 17.3 17.8 17.9 17.3 17.3 16.8 17.2	Form B B B B B C B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 48.4 \\ 57.8 \\ 57.4 \\ 55.8 \\ 55.8 \\ \hline \\ 58.4 \\ 52.2 \\ 53.3 \\ 57.6 \\ 52.8 \\ 51.5 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \\ \\ 51.9 \\ 46 \\ 50.5 \\ 50.5 \\ 56.8 \\ 50.4 \\ \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5 10.9 10.7 10.8 11.1	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 9.9 9.9 9.9 9.9 9.9 10.3 9.9 9.9 10 10.1	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT TA/TA AC/GT	MiG 13 13.6 14.1 13.4 11.8 11.7 12.6	MaG 17.7 18 17.4 17.2 19.1 17.7 17.3	Form B B B B B B B B B B
$\begin{array}{c} 5' \\ {}^{1}T \\ {}^{2}A \\ {}^{3}T \\ {}^{4}A \\ {}^{5}C \\ {}^{6}A \\ {}^{7}A \\ {}^{8}A \\ {}^{9}G \\ {}^{10}A \\ {}^{11}T \\ {}^{12}A \\ {}^{13}C \end{array}$	$\begin{array}{c} 3' \\ A_{13} \\ T_{12} \\ A_{11} \\ T_{10} \\ G_9 \\ T_8 \\ T_7 \\ T_6 \\ C_5 \\ T_4 \\ A_3 \\ T_2 \\ G_1 \\ \end{array}$	λ(1) (°) 53.4 56.9 58.5 56.6 54.9 57.1 57.1 52.4 51.7 52.9 54.8 53.1 55.4	λ(2) (°) 55.6 53.7 60.4 55.2 52.5 50.9 47.6 56.2 49.5 57 50.5 54.8	D1 Å 10.7 10.8 10.3 10.6 10.8 10.8 10.8 11.3 10.7 11.1 10.5 11 10.7	D2 Å 9 9.1 8.8 9 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.2 9.2 9.2 9.2	cdA(A Å 9.9 10 9.9 10 9.9 10 10 10.1 9.9 10 10.1 9.9 10.1 10	Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT TA/TA	MiG Å 12.2 13.0 14.1 13.9 13.2 12.6 12.0	MaG Å 17.2 19.2 18.0 17.4 16.8 18.2 17.4	Form B B B B B B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 56.9 \\ 54.1 \\ 55.9 \\ 53.9 \\ 54.6 \\ 57.2 \\ 57.7 \\ \\ 54.1 \\ 54.6 \\ 53 \\ 53.7 \\ 56.9 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 55.4 \\ 52.9 \\ 57 \\ 53.4 \\ 52.6 \\ 54.6 \\ 54.1 \\ \\ \\ 51.7 \\ 53 \\ 55.5 \\ 53.5 \\ 54.3 \\ \end{array}$	D1 10.6 10.8 10.6 10.8 10.7 10.6 10.9 10.8 10.7 10.8 10.7	D2 8.9 9 9 9 9 9 9 8.9 9 8.9 9.1 9 9 9 9 9 9	cdA(A L 9.9 10 9.9 10 10 10 10 10 10 10 10 9.9	Ap-1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT TA/TA AC/GT	MiG 12.5 11.9 13.0 14.0 13.2 12.9 12.3	MaG 17.3 17.8 17.9 17.3 17.3 16.8 17.2	Form B B B B B B B B B B B	$\begin{array}{c} \lambda(1) \\ 48.4 \\ 57.8 \\ 57.4 \\ 55.8 \\ 55.8 \\ \hline \\ 58.4 \\ 52.2 \\ 53.3 \\ 57.6 \\ 52.8 \\ 51.5 \\ 54.9 \\ \end{array}$	$\begin{array}{c} \lambda(2) \\ 52.6 \\ 53.4 \\ 61 \\ 55.4 \\ 51.7 \\ \\ \\ 51.9 \\ 46 \\ 50.5 \\ 50.5 \\ 56.8 \\ 50.4 \\ 53.8 \\ \end{array}$	D1 11.2 10.7 10.4 10.6 10.8 10.5 11.5 10.9 10.7 10.8 11.1 10.7	D2 9.3 9 8.8 8.9 9	cdA(A L 10.1 9.9 9.9 9.9 9.9 9.9 10.3 9.9 9.9 10 10.1 9.9	p+1) Step TA/TA AT/AT TA/TA AC/GT CA/TG AA/TT AA/TT AG/CT GA/TC AT/AT TA/TA AC/GT	MiG 13 13.6 14.1 13.4 11.8 11.7 12.6	MaG 17.7 18 17.4 17.2 19.1 17.7 17.3	Form B B B B B B B B B B

Graph 6S continued. Graphical representation of data presented in Table 6S continued

Table 6 continued. Base pairs and base step (MaG-major groove, MiG-minor groove width and adopted form) parameters of double stranded oligodeoxynucleotides that contained at position **7A** 2'-deoxyadenosine(dA) or (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in one strand and at different positions **T6** (Ga-1) or **T7** (Ga0) or **T8** (Ga+1) a single strand break e.i gap (Ga) in the opposite strand. The structures of *ds*-oligodeoxynucleotudes obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

DACE													Olig	odeoxy	nucleo	tudes												
BASE	PAIK					dA(Ga0)								dA(Ga	a+1)							dA	A(Ga-1)			
5'	3'	λ(1) (°)	λ(2) (°)	D1 Å	D2 Å	L Å	Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	L		MiG	MaG	Form	λ(1)	λ(2)	D1	D2	L		MiG	MaG	Form
^{1}T	A ₁₃	53.6	54.7	10.7	9	9.9	TA/TA			В	55.2	58.4	10.5	8.9	9.8	TA/TA			В	56.5	60.2	10.5	8.9	10	TA/TA			В
^{2}A	T ₁₂	57.3	51.7	10.7	9	9.9	AT/AT			В	54.6	49	11.1	9.2	10.1	AT/AT			В	61.2	57.7	10.3	8.8	9.9	AT/AT			В
³ T	A ₁₁	52.9	55.4	10.8	9.1	10	TA/TA	12.0	18.9	В	50.6	52.9	11	9.2	10	TA/TA	13		В	54.2	56.9	10.7	9	10	TA/TA	12.1	18.1	В
⁴ A	T ₁₀	56.4	56	10.6	8.9	9.9	AC/GT	12.9	18.2	В	55.9	55	10.7	9	9.9	AC/GT	13.4	17.6		53.1	54.4	10.8	9	10	AC/GT	11.5	18.7	
⁵ C	G ₉	55.9	54	10.7	9	10	CA/TG	13.4	18.3	В	55.5	54.1	10.7	9	9.9	CA/TG	12.2	47.0		50.4	58	10.7	9	9.9	CA/TG	12.1	19.1	В
⁶ A	T ₈	57.9	56.4	10.4	8.8	9.8	AA/TT	12.0	47.0							AA/TT	13.2	17.6		56.5	51.9	10.8	9.1	10	AA/TT	13.2	16.7	В
⁷ A	T ₇						AA/TT	12.9	17.3		53.7	52.3	10.7	8.9	9.8	AA/TT	13.4	17.4	В	53.2	52.8	10.8	9	9.9	AA/TT	12.2		
⁸ A	T ₆	53.4	53.2	10.9	9.1	10	AG/CT	12.6	17.2	В	56.5	52.6	10.8	9.1	10	AG/CT	12.5	17.5	В						AG/CT	13.2	17.4	
⁹ G	C5	56.4	53	10.7	9	9.9	GA/TC	11.9	17.0	В	52.6	53.2	10.7	9	9.9	GA/TC	11.5	17.5	В	54.7	60.6	10.4	8.8	9.8	GA/TC	12.6	18.0	В
¹⁰ A	T_4	55.6	51.2	10.9	9.2	10.1	AT/AT	11.7		В	53.8	48.1	11	9.1	9.9	AT/AT	11.4		В	56	52.7	10.8	9	10	AT/AT	12.0	17.4	В
¹¹ T	A_3	51.2	56.2	10.8	9.1	10	TA/TA			В	56.2	58.6	10.5	8.9	9.9	TA/TA			В	58.8	61.4	10.3	8.8	10	TA/TA			В
^{12}A	T_2	51.8	50.4	11	9.2	10	AC/GT			В	55.4	50.5	10.9	9.1	10	AC/GT			В	57.2	54.3	10.7	9	10	AC/GT			В
^{13}C	G ₁	54.4	52	10.8	9	10					57.1	51.6	10.7	9	9.9					53.4	55	10.8	9.1	10				
3'	5'																											
																				-								
				•	1	dA(Ga0)		-						dA(Ga	a+1)		-					1	dA(Ga-1)		-	
5'	3'	λ(1) (°)	λ(2) (°)	D1 Å	D2 Å	L Å	Step	MiG Å	MaG Å	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form	λ(1)	λ(2)	D1	D2	L	Step	MiG	MaG	Form
^{1}T	A ₁₃	54.8	58.6	10.7	9	10	TA/TA			В	54.8	57.2	10.7	9	10	TA/TA			В	56.7	58.2	10.5	8.9	9.9	TA/TA			
^{2}A	T ₁₂	58.6	54.4	10.4	8.8	9.9	AT/AT			В	55.5	55.5	10.6	8.9	9.9	AT/AT			В	58.6	56.4	10.5	8.9	10	AT/AT			В
³ T	A ₁₁	53.9	58.1	10.6	9	10	TA/TA	11.8	19.3	В	53.5	54.5	10.8	9	9.9	TA/TA	13.4	17.5	В	57.3	54.9	10.5	8.9	9.9	TA/TA	11.5	17.3	В
⁴ A	T_{10}	57.7	53.1	10.7	9	10	AC/GT	12.7	19.0		56.5	49.3	10.9	9.1	10	AC/GT	13.8	18.1	В	55.1	54.2	10.7	9	10	AC/GT	11	18.1	В
⁵ C	G ₉	51.3	53.5	10.9	9.1	10	CA/TG	14.2	19.2		52.1	52.3	11	9.1	10	CA/TG	13.5	10 1		51.5	55.1	10.8	9.1	10	CA/TG	12.4	18.6	В
⁶ A	T ₈	56.5	52.3	10.8	9.1	9.9	AA/TT	13.8	18.0							AA/TT		10.1		58.7	54	10.6	9	9.9	AA/TT	13.3	16.9	
⁷ A	T_7						AA/TT	15.0	10.0		60.9	55.9	10.3	8.7	9.9	AA/TT	13.4	16.9		59.3	56	10.3	8.8	9.9	AA/TT	12.1	10.2	
⁸ A	T ₆	57.5	56.8	10.5	8.9	10	AG/CT	12.6	17.6	В	54.4	50.5	10.9	9.1	9.9	AG/CT	12.3	17.0	В						AG/CT	13.1	10.5	
⁹ G	C5	56.2	53.3	10.8	9.1	10	GA/TC	11.4	18.6	В	52.7	53.8	10.7	8.9	9.8	GA/TC	11.4	17.4	В	51.1	54.7	10.8	9	9.9	GA/TC	12.6	16.4	В
¹⁰ A	T_4	57.1	52.1	10.8	9	10	AT/AT	10.7	17.5	В	56.3	52.3	10.8	9.1	10	AT/AT	12.2	18.2	В	53	52.2	11	9.2	10	AT/AT	12.0	17.8	В
¹¹ T	A_3	50.7	53.9	11	9.1	10	TA/TA			В	52.1	57.3	10.8	9.1	10	TA/TA			В	54.5	54.7	10.7	9	9.9	TA/TA			В
^{12}A	T_2	56.8	55.7	10.6	8.9	9.9	AC/GT			В	55.3	54.7	10.7	9	9.9	AC/GT			В	56.6	56.1	10.6	8.9	9.9	AC/GT			В
¹³ C	G_1	53.9	53.9	10.8	9.1	10					52.2	57	10.8	9.1	10					55.9	55.4	10.7	9	9.9				
3'	5'																											

Table 7S. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double stranded oligodeoxynucleotides that contained at position 7A 2'-deoxyadenosine in one strand and at different positions T6 (U-1) or T7 (U0) or T8 (U+1) 2'-deoxyaridine in the opposite strand. The structures of ds-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of ds-DNA.

STRAND										doub	le stra	nded o	oligode	oxynuc	leotide									
				d/	4(U0)							dA	(U-1)							dA	(U+1)			
5'	α	ß	v	δ	8	۲	γ	Р	α	ß	γ	δ	8	۲	γ	Р	α	ß	v	δ	8	۲	γ	Р
¹ T		-176.4	50.9	141.6	-1787	-973	-110.4	175 7		-177 3	56	138.3	177.6	-91.2	-103 3	177 1		-179.3	54.6	133.2	-178.1	-89.8	-108 5	167.8
^{2}A	-61.8	-179.9	53.2	127	178.8	-101.6	-106.5	155.7	-58.7	172.6	56	128	-179.2	-101.2	-109.1	142.8	-59.6	163.8	58.1	118.1	179.1	-92.9	-119.7	129.3
³ T	-55.5	171.2	54.9	119	-178.5	-87.4	-112	127.9	-61.4	175.3	51.7	130.6	-178.9	-102.2	-104.8	143.6	-62.8	-178.2	50.9	137.8	-173.5	-124.6	-98.2	154.7
⁴ A	-60.3	171.4	51.5	118.4	-174.9	-91.5	-114.7	125.9	-68.7	173	54.8	109.6	-171.2	-85.1	-133.6	109.4	-62.7	179.9	48.7	138.6	-169.4	-94.2	-112.1	182.1
⁵ C	-55	160.1	53.8	107.5	-171.9	-106	-128.6	112.7	-64.2	170.7	56.7	122.3	173.4	-99.3	-120.4	136.2	-63.3	159.6	57.9	122.7	-175.6	-124.6	-116.4	130.3
⁶ A	-63.1	-176	51.7	140.2	171.9	-93.3	-93.9	183.6	-58.9	-159.5	46	141.2	174.5	-88.9	-91	208.7	-59.6	-175	48.3	141.4	173.7	-97.1	-117.3	185
⁷ A	-65.6	-178.7	48.1	118.2	173.3	-91.2	-116.1	129.6	-61	168.7	49.7	120.3	169.1	-94.1	-114.8	132.8	-59.6	-178.1	53.9	133.2	-173.2	-85	-112.5	160.5
⁸ A	-48.5	175.4	46.2	103	-171.3	-83.1	-132.6	86.6	-59.7	-179.7	41.9	82.2	-168.6	-67.4	-147.7	18.1	-70.4	166.3	54.9	93.4	176.6	-86.3	-135.7	95.2
°G	-65.5	169.4	62	130	179.2	-90.6	-111.8	150.5	-62.3	172.6	66.7	128.2	-179.8	-86.3	-123.2	154.7	-49	174.1	51.2	135.3	178.5	-90.8	-114.4	156.3
¹⁰ A	-63	177	46.6	92.7	-177.4	-86.3	-135.6	86.5	-59.7	174.8	47.8	103.3	-174.4	-89.2	-137	104.1	-64.8	-164.8	34.3	122.7	174.1	-88.8	-112.9	138
¹¹ T	-59.5	166.9	58.7	108	-179.8	-83.2	-124.9	111.1	-57.6	164.9	61.4	110.8	-174.3	-89.9	-129.2	114.5	-51.9	165.7	54.5	90.2	-179.7	-82.1	-145.1	83
¹² A	-58.3	170.1	51.3	134.7	-177.5	-105.9	-116.6	151.7	-64.4	172.3	52.6	132.8	180	-109.1	-115	146.7	-61.3	179.2	54.4	137.7	176.6	-90.7	-106.2	172.3
¹³ C	-63.8	178.4	55.7	136.1			-122.8	148.3	-61.4	-177.7	52.4	139.8			-111.5	161	-60.4	170.7	56.3	127.8			-120.2	135
3'																								
3'		2'	-deox	yUrac	ey at po	sition '	Г7			2'-	deoxy	Uracy	yl at p	osition	T6	1		2'-	deoxy	Uracy	l at po	osition '	Г8	
A ₁₃	-63.2	170.4	49.4	144.9			-103.2	191.1	-66.3	171.2	50.4	148.4			-101.5	192.5	-64.1	175.5	52.8	133			-100.8	149.9
T ₁₂	-53.7	170.7	49.5	135.1	-160.6	-139.6	-106.7	144.4	-57.8	173.6	49.5	137.7	-159.8	-140.3	-104.9	148.7	-61.6	156.7	64.4	92.3	-167.1	-79.5	-132.8	83.3
A ₁₁	-60.4	-140.3	28.5	149.1	171.3	-86.9	-93.7	216.3	-72.8	-110.8	14	154.6	163.7	-86.8	-83.6	229.1	-65.9	-138.8	34.9	142.1	176.7	-99.8	-93	215.8
T ₁₀	-62.9	-177.8	52.2	135.1	171.2	-96.1	-113.1	152.1	-60.5	168.5	58.6	136.6	168.7	-83.6	-111.7	150	-58	168.3	55.6	137.5	171.1	-92.3	-112.3	152.7
G ₉	-53.9	169.1	54.6	129.8	175.5	-96.3	-114.2	150.6	-56.5	168.1	54.4	121.7	-175.1	-96.4	-120.5	133.9	-55.6	166	53	97.6	-172	-87.1	-140.3	93.3
T ₈	-58	172.4	44.2	94.4	-174.1	-87.4	-134.3	89.3	-63.6	170.6	50.8	105.6	-178.8	-87.3	-122.2	106.9	-64	169.6	50.4	114.9	-179	-89.2	-116.9	121.8
T ₇	-55.5	-177.6	44.8	136.1	-177.8	-86.8	-115.9	164.2	-56.1	174.8	55.5	115.3	-174.2	-89.9	-126.6	122	-57.3	168.1	54.9	103.6	-174.4	-83.7	-127.4	107.6
Γ_6	-65	166.8	54.3	127	178	-112.7	-104.6	140	-65.8	171.8	54.6	126.1	175.9	-98.2	-106.4	140	-57.7	-177.1	54.2	131.9	179	-85.9	-108.5	167
C ₅	-49.8	170.1	53.2	99.4	-162.5	-87.2	-134.2	101.4	-52.4	160.5	55.5	88.4	-164.2	-84.6	-138.7	86.2	-58.3	162.2	50.2	82.1	-178.9	-83.9	-143.6	71.9
14	-68.2	172.4	51	109.4	168.5	-83.6	-113.2	116.1	-59.7	178.5	54	134.3	179.5	-87.8	-102.2	162.6	-60.5	167.5	58.1	118.7	-177.5	-86.6	-116.3	128.1
A ₃	-59.4	-178.5	52.1	140.3	-174.7	-88.1	-113.4	184.6	-63.4	-179.5	45.1	125.4	179.6	-111.7	-109	138.1	-63.9	-170.3	41.2	134	177.6	-90.4	-109.9	203.5
	-65.3	-172	54.7	135.5	-176.9	-112.6	-122.6	153.9	-63.5	179.6	57.6	134.6	176.8	-89.9	-108.4	159.7	-65.3	175.9	59.8	138.9	-174.6	-113.8	-114.4	155.3
G ₁		168.1	57.7	142.6	179.2	-99	-131.8	165.4		-179.5	47.4	132.4	-170	-112	-135.3	145.5		177.6	59.9	91.4	-173.1	-82.1	-153.1	79
5																								

Table 7S continued. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double strandedoligodeoxynucleotides contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine in one strand and at different positions T6 (U-1) or T7(U0) or T8 (U+1) 2'-deoxyuridine in the opposite strand. The structures of ds-oligodeoxynucleotides obtained under Molecular Mechanics(Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of ds-DNA.

STRAND										doub	le stra	nded of	ligodeo	xynucl	eotide									
				cd/	4(U0)							cdA	(U-1)							cdA	(U+1)			
5'	<u> </u>	ß	v	8	e	r	~	Р	a	ß	v	δ	e	٢	~	Р	a	ß	N	δ	e	٢	Ŷ	Р
1 1 T	~	P 176.0	50.0	120.4	175.7	>	106.2	174 5	~	P	40.7	122.0	170	כ	N	- 166	~	P	50.9	142.2	175.0	>	N	160
2 <u>1</u>	70.2	-1/0.9	50.0	139.4	-1/5./	-94.4	-106.2	174.5		164.7	49.7	121.4	-1/8	-92.1	-110.0	150.0		100.3	50.8	142.5	178.2	-98.9	-113.5	105 1
³ T	55.7	108.1	52.7	111 5	170.2	-91	-117.7	112 5	-30.1	179.5	52.1	122.5	-179.7	-101.8	-111.3	130.9	62.8	-100	43.0 58.4	107.7	173.6	-95.5	122.0	108.5
4A	-60.8 173.3 54 125.4 -177 -95 -112.9 140									164.1	54.5	96	-177.5	-87.1	-135.7	93.4	-67.8	165.7	56.1	97.7	179.4	-87.5	-131.8	83.5
⁵ C	-61.6	173.5	54.7	100.9	-173.4	-86.7	-123.9	101.1	-58.1	169.5	57.4	114.8	-174	-88.1	-124.4	121.9	-60.1	167.5	59.7	112.1	-171.7	-85.8	-128.8	113.7
⁶ A	-62.5	165.8	56.1	133.4	178.9	-85.1	-104.5	149.4	-57.6	175.1	43.3	142.8	-179.9	-81.3	-107.4	158.5	-60.9	171	53	142.1	178.2	-86.3	-101.4	161.8
⁷ A	-50.8	-80.5	-68.4	140	-157.4	-59.8	-158.7	288.5	-54.2	-80.7	-74.8	143.1	-162.5	-63.3	-163.9	286.2	-54.7	-79.1	-66.8	139.1	-155.4	-60.7	-159.2	288.2
⁸ A	-72.1	170.2	68.8	144.8	171.3	-91.4	-120.8	174.4	-71.8	170.3	69.5	142.3	-178.4	-106	-122.2	169.3	-69.9	169.5	67.5	147.9	-176.6	-116.5	-117.8	175
°G	-61.9	-164.3	46.4	132.1	-172.9	-89.6	-126.2	155.4	-63.6	-174.4	50.9	144.5	169.2	-87.3	-117.1	170.3	-60.8	-176.9	49.6	145.4	177.8	-86	-122.8	178.1
¹⁰ A	-62.4	177.5	48	108	178.2	-88.4	-121	116.4	-68.5	-145.9	33.8	136.3	176.9	-92.4	-104.1	173.3	-67	-173	43.8	117.5	-171.4	-92.8	-125.5	126.8
¹¹ T	-56.9	165.3	61	99.7	-175.7	-85.1	-136	99.6	-56.7	163	55.2	86.8	175.9	-85.1	-141.6	70.4	-63.4	162.4	58.6	94.2	178.1	-84.1	-135.4	83.5
¹² A	-60.2	174.7	50.3	134.2	179	-91.3	-107	158	-57.3	173.7	62.2	139.7	-175	-86	-114.7	172.2	-59.5	-178.3	48	133.8	-179.3	-98.8	-112.5	163.8
¹³ C	-58.4	172.9	52.3	126.6			-115.5	131.6	-64.2	171	49.1	131.5			-111.2	136.2	-61.9	170.9	60.7	137.6			-110.1	151.3
3'																								
3'		2	-deox	yUrac	y at po	sition '	Г7	1		2'-	-deoxy	Uracy	l at po	osition	T6			2'	-deoxy	Uracy	l at p	osition	T8	
A ₁₃	-62.1	178.8	47	140.9			-103.2	188.3	-64	168.4	53.2	149			-107.8	186.4	-65	175.5	50.1	142			-98.1	191.5
T ₁₂	-55.1	166.3	54.1	132.2	-164.2	-132.5	-110.4	142	-54.9	-179.2	47.1	140	-164.6	-137.5	-105.6	152.3	-53	178.7	47	138.7	-164.3	-132.8	-103.9	153.6
A ₁₁	-69.6	-136.7	37.4	142.1	171.3	-88	-92.8	217.9	-65.7	-128.3	16.3	152.3	161.9	-88	-94	217.4	-69.5	-117.8	16.8	153.2	157.3	-85.4	-84	226.8
T_{10}	-60.6	-176.6	57	142.4	169.5	-97.3	-118.5	164.3	-64.1	173.8	59.6	141.1	173	-91.5	-112.5	159.4	-60.8	176	54	135.7	172.3	-88.6	-114.1	149.7
G ₉	-68.9	167.5	48.5	118.1	173.6	-103.3	-122.8	128.4	-50.8	167.9	52.2	122.2	-174.1	-102.3	-128.5	133.7	-57	169.8	53.1	122.8	-179.4	-93.8	-124.5	136.6
T ₈	-63.2	172.8	64.1	127	-169.2	-82.6	-122	147.4	-62.3	-179.7	54	123.3	178.8	-86.3	-113.6	146.3	-62.2	167.5	55	96.7	-179.5	-85.9	-131.2	95.4
1 ₇	-58.7	161.1	53.1	87	-176.4	-77.2	-139.9	77.5	-59.2	163.5	52.3	86.7	-174.7	-79.2	-134.9	73	-58.2	169.8	55.1	117.1	-176.4	-84.1	-115.4	126.8
	-68.3	168.8	55.9	116	-179.6	-90	-110.8	125.3	-63	166.9	56.4	117	-179.6	-87.5	-118.6	126.6	-61.9	170	52.6	113.7	-178.2	-90	-126	123.4
	-46.2	161.5	63.6	88.1	-168.3	-81.6	-126.5	90.6	-59.7	165.5	55.1	91.2	-168.8	-87.4	-136	89.2	-57.2	164.7	54.7	86.4	-169.8	-81.4	-148.4	84.7
14 A	-73.7	173.2	51	109.4	173.1	-86.8	-111.1	117.3	-56.1	1/9.1	54.4	135.9	-179.6	-85.8	-107.9	162.5	-62	169.3	63.2	131.8	178.4	-84.4	-106.6	154.6
A3 T.	-56.7	179.6	52.7	142	-1/0.1	-84.8	-120	184.6	-68.6	-177	42.9	122.2	173.1	-104.3	-113.3	134.8	-61.2	1/9.8	48.2	118.7	-179	-103.7	-116	128.6
G.	-/5.0	173.7	56.0	139.5	1/8.3	-110./	-112./	141.0	-65	109./	59.5	130.2	-1/0.1	-92.1	-118	141.8	-65.6	-1/8.3	57 5	129./ 86.6	1//.4	-88./	-110.3	149.8 70.4
5'		-1/2./	30.9	128.1	-105.4	-104.6	-132.5	141.9		-1/0.4	38.3	110.2	-1/2./	-92.5	-130.4	111		1/2.8	57.5	80.0	-1/3./	-80	-137.6	70.4
5					1	1									1			1						I

Table 7S continued. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double stranded oligodeoxynucleotides contained at position 7A 2'-deoxyadenosine in one strand and at different positions T6 (Ap-1) or T7 (Ap0) or T8 (Ap+1) the apurinic/apyrimidinic site (Ap) in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

STRAND										doubl	e strar	nded ol	igodeo	xynucle	eotide									
				dA	(Ap0)							dA(Ap-1)							dA(Ap+1)			
5'	α	β	γ	δ	3	ζ	χ	Р	α	β	γ	δ	8	ζ	χ	Р	α	β	γ	δ	ε	ζ	χ	Р
¹ T		167	50.1	139.5	179.9	-90.8	-100.6	178.5		-171.1	41.4	142.7	177.2	-101	-118.7	175		170.8	50.2	136.9	-174.3	-95.7	-108.2	173.9
^{2}A	-60.1	168	53.8	124	-173.7	-106	-107.6	135.3	-61.4	-176.9	54.3	136	-178.7	-97.9	-109.4	166.7	-62.5	168.3	56.3	135.9	-172.2	-131.5	-97.6	149.4
³ T	-65.4	163.7	59.1	103.1	-176.2	-81.2	-124.1	94	-65.4	173.7	55.6	131.8	-174.3	-119.3	-107.9	142.9	-58.9	167.7	54.1	141.6	179.2	-88.9	-101.8	165.1
⁴ A	-69	174	55.9	115.4	-176.5	-85.2	-126.3	124.4	-64.8	-174	49.4	136.8	-179.9	-86.1	-108.4	182.1	-74.5	177.4	53.3	104.6	-171.9	-86.2	-129.5	107
⁵ C	-62.9	167.6	53.2	93.5	-179.5	-88.1	-137	80.3	-60.8	168.4	53.8	112.2	174.4	-97.4	-121.3	120.5	-65.5	167	55.3	92.9	173.9	-89.2	-130.6	80.8
⁶ A	-56.1	176.2	57.8	143.1	177	-87.3	-100.3	183.8	-57.9	-161.3	46.3	145.7	176.5	-95.7	-92.6	192.1	-49.2	179.6	56.7	143	178.1	-94	-93.2	194.6
⁷ A	-61.5	168.2	50.1	84.6	-174.9	-85.3	-146.3	78.7	-65.3	175.3	48.2	127.5	179.1	-105.4	-108.8	140.9	-62.2	179.8	40.5	125.7	171.4	-90	-103.9	143.8
⁸ A	-63.4	-174.6	50.4	132.7	173.9	-94.4	-112.1	171.6	-63.3	175	54.1	118.1	-174.1	-88.2	-132.1	126.4	-54.6	177.9	46.7	133.3	172.8	-104.8	-115.1	145.4
°G	-51.9	172.6	58.8	135	-177.7	-96.2	-107.9	154	-57.1	176.8	46.9	136.8	162.7	-88.6	-109.9	156.7	-62.2	-161.1	43.9	140	175.2	-88.5	-113	179.8
¹⁰ A	-69.1	-175.2	45	118.7	177.4	-83.8	-118	133.4	-62.8	-134.9	31.3	139.6	-179.3	-88.2	-103.4	201.7	-58.9	178.6	50.4	110.7	-175.1	-90.8	-123.9	117.4
¹¹ T	-57.4	168	54.3	100.3	-175.6	-89.4	-133.9	97.7	-58.1	161.9	57.3	100.7	176.4	-83.7	-122	105.3	-61.2	165	55.5	94.1	-177.1	-85.4	-131.9	89.9
¹² A	-62.5	179	47.2	140.4	-174.8	-107.4	-106.5	163.1	-56.8	171.4	52.3	122.2	-175.8	-95.1	-121.7	133.5	-62.5	172.8	54.1	134.6	173.4	-104	-107.1	157
¹³ C	-67.8	169.4	61.4	132.9			-114.7	141.5	-60	167.1	58	131.8			-117.4	139.3	-58	172.3	60.3	141.2			-115	154.1
3'																								
3'			Α	p at p	osition	T7					Α	p at p	osition	T6					Α	p at p	osition	T8		
A ₁₃	-61	173.4	56.3	142.1			-108.5	157.8	-59.7	168.7	59	146.1			-117.2	176.4	-59.9	172.8	51.6	136.9			-96.8	155.6
T ₁₂	-59.1	170.9	57.4	98.8	-179.6	-88.1	-137.9	92.6	-58.2	170.9	50.6	129.1	-176.7	-127.8	-115.5	139.1	-55.2	167.1	52.9	94	-178.2	-84.5	-125	87.7
A ₁₁	-64.7	-129.2	22.6	150.1	168	-89.6	-93.5	210.7	-62.2	-150.7	32.3	143.7	173.8	-89.1	-100.1	202.3	-72.7	-109.1	14.1	153.4	172.3	-86.5	-93.1	222.8
T ₁₀	-62.7	176.7	55.4	138.2	171.8	-88.5	-118.4	151.1	-58.4	179.9	50.2	136.9	175.3	-97.8	-112.5	150.7	-60.1	165.9	59.3	132.3	165.6	-82.7	-116.3	145.4
G9	-58.8	175.1	54.2	136	175.9	-99.3	-109.1	162.8	-59.5	156.7	63.1	107.8	179	-88.7	-134.6	115.7		171.2	70.2	124.8	-177.1	-90.6	-115.8	144.7
T ₈	-110.2	-179.6	60.5	100.2	-174.4	-81.8	-137.6	86.2	-63.2	-179.2	52.6	118.9	-175.9	-91.7	-112.7	127.7								
T ₇										-171.8	55.4	130.4	176.8	-95.3	-117.9	153.1	-55.4	164.3	57.9	110.8			-127.5	116.3
T ₆	-63	170.2	54.7	135.4			-109	148.9									-60.8	173.9	53.6	112.9	-178.7	-88.6	-122	117.6
C ₅	-57	164.6	55.3	89.4	-169.6	-84.9	-138.6	85.1	-51.7	164.7	56.7	82.6			-142.3	72.8	-54.2	163.9	53.3	102.8	-177.1	-94.2	-118	108
T ₄	-59	-176.1	53.1	130.1	-179.4	-89	-111.7	152	-62.2	172.2	46.7	109.5	170.1	-84.6	-111.6	116.9	-68.5	173.8	53.6	108.2	179	-86	-114.8	115.3
A ₃	-70.7	-173.4	51	131	172.4	-100.2	-116.9	156.1	-59.1	-179.4	48.9	130.9	-169	-89.8	-122.2	159.6	-66.2	179.9	57.3	141.5	-173.9	-91.2	-115.6	178.4
T ₂	-65.9	-178.5	61.6	140.2	177.7	-97.1	-116.7	162.9	-70.2	179.2	57.9	137.3	-178.1	-112.9	-110.8	152.9	-66.1	173.3	68.4	144.1	-173.9	-120.6	-123.5	161.5
G ₁		173.4	52.3	80.1	-172.3	-78.9	-168.3	58.9		-171.1	52.1	138.7	-174.4	-100.8	-122.7	161.6		162.4	54	84.1	-167	-71.2	-164	31
5'																								

Table 7S continued. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double stranded oligodeoxynucleotides that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine in one strand and at different positions T6 (Ap-1) or T7 (Ap0) or T8 (Ap+1) an apurinic/apyrimidinic site (Ap) in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

STRAND										doubl	e strar	nded ol	igodeo	xynucle	eotide									
				cdA	(Ap0)							cdA	(Ap-1)							cdA	(Ap+1)			
5'	α	β	γ	δ	3	ζ	χ	Р	α	β	γ	δ	ε	ζ	χ	Р	α	β	γ	δ	3	ζ	χ	Р
¹ T		174.2	50.9	142.6	-178.6	-109.1	-125.1	164.3		-178.7	43.3	142.1	178.7	-98.8	-109.7	181.1		168.3	45.9	145.8	179.4	-98.9	-111.2	171.5
^{2}A	-63.5	-172.7	51.4	140.7	174.7	-90	-104.2	192.4	-62.4	174.4	57.4	126.4	-176.6	-95.8	-120.6	146.8	-63.1	-173.7	50.7	136.3	177.1	-89.1	-100.6	179.2
³ T	-64.1	169	57.4	105	-177.3	-87	-128.7	103.8	-71.6	177.6	57.3	131.8	177.5	-104.7	-105	147.3	-63.1	174.3	47.9	112.9	-178	-93.1	-113.1	114.9
⁴ A	-63.9	170.2	54.3	108.7	-175.7	-86.2	-123.7	110.3	-61.8	-178.7	54	129	-176.6	-87.3	-114.8	154.2	-61.6	163.3	56.3	96.2	-176	-85.8	-137.8	85.8
⁵ C	-60.2	171	54.7	106.1	-172.1	-86.2	-124.2	107	-62.4	165	57.6	97	-177.3	-89.6	-135.5	96.2	-61	172.4	58.9	113.6	-176.5	-88.1	-122	118.5
⁶ A	-62.6	166	56.8	140.9	-179.3	-83.4	-102.7	157	-62.9	179.1	53.6	141.9	178	-85.1	-97.4	167.9	-55.8	170.4	47.3	138.1	-178.7	-82.1	-110.1	153.6
⁷ A	-51.1	-82.7	-70.7	137.5	-157.4	-68.7	-153.7	290.9	-52.9	-87.5	-72.9	143.2	-156.5	-56.7	-167	286	-54.6	-83.7	-70.3	143.7	-160.2	-57.9	-166.1	284.4
⁸ A	-66.7	172.1	63	142.3	173.1	-97	-108.3	177.1	-73	165.4	69.5	136.6	-178.6	-103.1	-135.7	155.9	-73.8	171	69.5	138.6	176.3	-95.7	-121.2	166.9
°G	-59.1	-178.1	53.6	138.3	-177.6	-93.7	-116.5	159.2	-64.5	-167.8	52.9	141	175.9	-87	-112.3	177.5	-60.8	-175.8	51	131.2	-179.9	-93.8	-129.5	148.7
¹⁰ A	-64.2	-156.9	27.2	140.5	178.1	-95.2	-103	175.7	-63	-165.2	35.5	125.8	179.2	-92.7	-110.9	143.7	-69	-168.6	48.6	114.9	-176.6	-87	-119.9	125.5
¹¹ T	-57.8	162.9	57.4	86.7	179.6	-86	-145.9	71.5	-59.1	164.1	59.3	99.5	-175.4	-86.2	-130.6	97.1	-58.6	164.7	57.9	100	-173	-85.3	-125.9	100.4
¹² A	-58.1	179.2	58.3	143.5	-176.7	-85.2	-108.3	178	-65.6	168	59.8	119.4	177.3	-87.6	-127.2	135	-66.5	169.1	51.7	120.7	170.2	-96	-115.6	136.1
¹³ C	-63.4	170.2	47.1	127.6			-107.1	132.6	-57.3	175.7	52.7	137.2			-106.9	147.4	-53.9	169	63.8	138.6			-118.9	154.2
3'																								
3'			A	p at po	osition	T7					Α	p at p	osition	T6					A	p at p	osition	T8		
A ₁₃	-58.9	169.9	55.9	145.9			-113	179	-60.5	175.9	54.7	140			-117.8	171.5	-70.6	165.2	59.1	140			-118.4	170.7
T ₁₂	-53.8	174.4	47.3	131.7	-172.8	-129.7	-111.3	144	-57.5	167.6	56.2	124.5	178.2	-115.9	-111.6	137.3	-53.7	179.6	44.1	138.9	-162.9	-139.6	-101.4	153.9
A ₁₁	-70.6	-120.8	25.6	148.2	165.6	-85.1	-94.4	222.1	-67.6	-123.8	22.1	151.2	172.3	-88.2	-91.4	220.9	-76.7	-110.9	16.8	152.6	158.1	-83.2	-83.8	228.9
T ₁₀	-65.5	174.1	53.6	136.8	165	-89.4	-109	151.7	-66.8	175.4	53.8	132.4	168	-90.7	-112.9	145.2	-60.7	174.6	62.4	137.3	166.7	-82.7	-117.2	153.3
G9	-50.7	165.6	53.2	128.9	-172.6	-102.5	-118.5	142.8	-59	165.1	62.9	122.6	-176.9	-92.2	-121.1	137.3	-71.2	173	64.6	129.9	174.3	-96.2	-113	153.2
T ₈	-120.9	172.1	56.9	98.7	178.9	-88.2	-128.8	97.4	-61.0	171.2	59.6	115.1	-177.7	-91.2	-122.5	121.2								
T ₇										179.6	54.1	99.8	-169.6	-85.2	-144.3	97.5	-54.6	163.5	55.6	111.2			-123.7	119.4
T ₆	-65	168.8	54.9	129			-120.1	141.8									-58.3	169.4	51.7	106.1	-179.1	-87.2	-122.8	113.6
C ₅	-53.7	163.2	56.1	94.2	-166.5	-86.5	-138.8	91.4	-49.6	162.3	59.5	91.6			-132.6	94.8	-51.9	170	45.8	99.2	-179	-85	-119.5	104.6
T ₄	-55.4	171.7	54.6	128	-178.8	-88.7	-114.4	143.9	-64.5	-178.1	49.4	117.6	177.8	-87.6	-111.7	129.4	-59.5	166.7	54.2	109.1	-179.3	-82.1	-117.4	117.2
A ₃	-67.1	160	54.6	87.6	177.1	-84.7	-135.8	74.4	-57.5	-175.2	45.9	140.6	176.8	-91.1	-113.4	177.3	-56.7	-170	47.1	135.3	-177.3	-88.5	-109.6	188.8
T ₂	-63.2	179.2	58.2	128.3	-172.4	-89	-113.4	143.5	-70.1	178.3	54.6	135.8	179.3	-115	-108.9	152.7	-69.7	177.2	59	137.4	174.8	-108.5	-114.3	159.5
G ₁		176.9	48.7	127.4	-176.9	-102.6	-125.6	145.3		171.8	51.5	125.6	-169.1	-101.6	-130.7	135.9		173.8	51.6	133.6	-171.5	-108.9	-129	149.7
5'																								

Table 7S continued. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double stranded oligodeoxynucleotides that contained at position 7A 2'-deoxyadenosine in one strand and at different positions T6 (Ga-1) or T7 (Ga0) or T8(Ga+1) a single strand break e.i. gap (Ga) in the opposite strand. The structures of *ds*-oligodeoxynucleotides obtained under Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions to neutralize the negative charge of *ds*-DNA.

STRAND										doubl	e stra	nded o	ligodec	oxynucl	eotide									
				dA	(Ga0)							dA(Ga-1)							dA(Ga+1)			
5'	α	β	γ	δ	3	ζ	χ	Р	α	β	γ	δ	ε	ζ	χ	Р	α	β	γ	δ	3	ζ	χ	Р
¹ T		172.1	43.5	139.9	-177.2	-85.6	-112.4	177.8		-167.8	46.4	138.2	178.4	-105.2	-105	155.7		-177.3	44.6	137.7	179	-101.6	-116	174.2
^{2}A	-61.4	168.3	54.2	109.2	-175.4	-97.7	-127.3	113.2	-55.4	-160.9	34.2	145.9	174.7	-93.2	-100.9	205.3	-61.1	177.2	56.1	128.1	-179.8	-92	-109.8	150.1
³ T	-61.1	173.9	55.2	116	-178.1	-85.4	-118.7	126.5	-59.5	170.5	53.6	126.5	-175.1	-105.1	-113.9	136.8	-64	171.8	56	121	-179.9	-100.7	-113.3	130.4
⁴ A	-58.6	169.4	51.6	118.8	174	-94.4	-104.8	131.5	-71.1	-161.4	35.9	131.7	174.3	-88.9	-109.6	183.6	-64.1	-165.1	39.5	137.6	169.3	-90	-106.3	181.8
⁵ C	-56.3	170.9	49	93.3	-177.2	-88	-130.6	78.5	-54.1	162.2	61.6	117.3	172.5	-96.1	-121.8	128.2	-57.2	176.1	55.1	115.6	-176	-91.1	-124.1	123.1
⁶ A	-59.4	-179.1	53.3	132	175.6	-87.9	-100.8	176.7	-58.5	-162	43.8	137.1	178.4	-88.3	-109.6	175.3	-58.2	173.3	51.8	131	-176.9	-110.4	-103.8	147.2
⁷ A	-55.8	163.2	50.7	88.1	-177	-85.3	-145.2	81.2	-55.4	173.1	43.2	106.2	-178	-86.7	-127.3	110.4	-65	179.6	49.6	133.3	-179.9	-101.4	-116.9	152.5
⁸ A	-55.0 105.2 56.7 66.1 177 65.5 145.2 64.1 -58.4 177.9 56.2 142.3 -174.9 -88.8 -107 17 -55.2 160.0 56.7 85.0 170.2 88.2 107 17									164.3	55.6	101.3	-173.8	-87.2	-134.7	105.5	-65.6	-172.8	52.4	125.2	176.6	-92.9	-109.3	152.3
°G	-58.4 177.9 56.2 142.3 -174.9 -88.8 -107 177 -65.3 160.9 56.7 85.9 179.3 -88.2 -143.1 80.5									171.3	51.1	136.8	-177	-121.4	-109.2	151.2	-54.9	160.5	61.7	103.5	-177.7	-86.9	-135	105
¹⁰ A	-61.7	-174.4	54.6	136	172.4	-93.3	-104.2	171.8	-62.1	-176.8	49.9	141.2	178.3	-92.9	-111.7	179.8	-57.5	172.9	49.5	125.9	-174.4	-93.2	-121.1	139.3
¹¹ T	-59.7	176.8	53.5	123.1	-174	-85.2	-118.6	137.3	-60	163.8	59.2	95.9	-177.6	-88.2	-142.8	90.4	-62	166.9	60	94.5	-179.5	-86.3	-143.7	93.6
¹² A	-62	173	44.8	128.8	-172.5	-128.9	-110.2	137.9	-60	-171.7	48.9	140.5	-178.4	-92.2	-95.4	182.9	-56.1	179.4	48.1	137.5	-177.2	-94.7	-102.4	160.6
¹³ C	-59	160.2	63.8	139.9			-125.6	159.6	-59.2	164.6	55.4	119.4			-118	125	-63.2	165	56.3	104.7			-127.3	103.1
3'																								
3'			G	Fa at p	osition	T7					G	a at p	osition	T6					6	Fa at p	osition	T8		
A ₁₃	-62.1	176.6	54.6	141.3			-107.3	157.4	-64.3	-174.1	42.6	143.9			-99.2	202.5	-64	173.1	43.3	137.9			-101.7	146.7
T ₁₂	-53.6	164.8	58.5	105.7	-179.8	-94.3	-132.6	108.7	-62.2	177.1	48.7	133.8	-169.1	-125.3	-99	143.1	-53.5	165.2	53.7	116.2	-173.3	-84	-117	124.7
A ₁₁	-67.9	-170.8	50.4	141.3	174.8	-85.8	-102.5	196.1	-61.4	179	53.8	133.5	178.4	-87.7	-110.4	160	-56.9	169.3	54.4	110.6	179.8	-90.2	-117.4	117
T ₁₀	-58.9	178.8	57.9	137.9	-174.8	-119.8	-120.6	158.7	-59.4	176.9	57.7	133.4	179.5	-102.1	-114.8	152.9	-62	-174.7	53.2	113.4	-179.1	-87.4	-124.8	121.5
G9	-58.2	162.8	59.8	137	178.8	-118.5	-111.3	150.9	-57.8	162.6	53.5	81.2	-174.1	-81.6	-153.8	65.5	-72		54.9	142.3	173.3	-95.8	-114.1	178.9
T ₈		-164.7	48	123.9	-173.6	-90.8	-127	150	-53.9	-173.5	52.3	133.8	-179.2	-88	-110.7	159.8	-26.2							
T ₇										179	46.8	135.8	170.0	-95.9	-127.7	165.6	-62.5	173.4	51.5	123.2			-118.6	128
T ₆	-61.9	171.3	45.2	131.4			-108.8	136.4									-60.4	174.7	50.5	118.8	-177.8	-88.9	-113.1	130.2
C ₅	-61	167.9	56.7	119.8	-172.1	-87.4	-112.6	130.5	-65.3	169.2	42.7	88.6			-109.9	51.9	-62	166.2	54.5	95.9	-171.9	-81.8	-129.5	91.9
T ₄	-62.5	173.6	56.4	110.1	-176.3	-89.3	-122.4	113.8	-61.1	167.7	54.3	107.5	-174.9	-89.1	-116.5	113	-61.2	171.3	58.1	115.3	-177.1	-85.1	-117.5	124.9
A ₃	-68.2	-165.1	47	135.7	176.3	-91.7	-111.4	173.4	-61.4	-165.4	48.8	140.6	177.8	-89.4	-97.2	197.4	-65.1	-164.2	44.6	141	172.6	-97.1	-94.8	197.5
T ₂	-66.1	172.4	60.7	139.4	178.9	-105	-115.7	155	-63.4	-178.5	50.1	134.7	174	-107.7	-107.7	150.8	-62.9	176.7	55.4	130	-178	-105.1	-124.5	140.2
G ₁		-178.6	49.8	127.6	178.5	-103.9	-106.2	142.9		-173.8	48.6	147.2	175.3	-96.5	-105.4	190.9		178.3	54.3	139.2	-175	-93.8	-127.2	172.8
5'																								

Table 7S continued. Sugar-phosphate backbone torsion angles and sugar ring pseudorotation phase of double strandedoligodeoxynucleotides that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine in one strand and at different positions T6 (Ga-1)or T7 (Ga0) or T8 (Ga+1) a single strand break e.i. gap (Ga) in the opposite strand. The structures of ds-oligodeoxynucleotides obtainedunder Molecular Mechanics (Amber 94 force field) calculation in solvation box, the sodium ions have been used as counterions toneutralize the negative charge of ds-DNA.

STRAND										doub	e stra	nded of	ligodeo	xynucl	eotide									
	cdA(Ga0)								cdA(Ga-1)								cdA(Ga+1)							
5'	α	β	γ	δ	ε	ζ	χ	Р	α	β	γ	δ	ε	ζ	χ	Р	α	β	γ	δ	ε	ζ	χ	Р
¹ T		177.1	45.3	140.6	-173.5	-88.8	-104.4	185.9		160.7	52.8	144.1	176.2	-107.5	-110	167.7		168.2	51.2	139.8	174.9	-91	-106.3	176.3
^{2}A	-67	156.3	73.7	114.5	-173.9	-96	-124.7	123.9	-60.7	-175.9	53	137.4	178.4	-91.1	-112	175.2	-63	175.8	51.6	115.7	180	-102.1	-120.2	123.7
³ T	-70.9	179	50.6	115.9	-179.3	-88.9	-111.7	123.9	-66.8	170.8	58.5	91.6	-175.9	-82.8	-140.4	84.9	-64.2	179.9	53.5	124.1	-179.1	-93	-109.6	137.8
⁴ A	-54.9	163.6	55.6	119.5	-175.8	-107.9	-111.4	128.3	-61.7	-178.1	49	131.8	-179.9	-98.6	-103.9	159.9	-58.7	163.7	56.2	96.1	-175.8	-83.5	-139.4	89.4
⁵ C	-58.7	179.7	42.4	115	-177.7	-83.2	-126	124	-57	152.6	73.7	114.5	-166.2	-81.6	-130.7	123	-61.4	172.9	59.8	123.9	-174	-87.8	-116	140.5
⁶ A	-60	165.2	55.7	136.7	-177.4	-80.2	-110.1	151.6	-74.5	175.4	42.7	135.8	174.6	-89.9	-101.1	151	-58.8	162.9	51.8	127.9	179.1	-86.3	-118.2	138.7
⁷ A	-55.2	-82.4	-64.9	144	-162.9	-64	-154.2	281.4	-46.4	-72.4	-48.1	173.6	176.2	-69.7	-138.5	236.4	-52.3	-76.3	-70.9	138	-156.5	-63	-164.9	289.8
⁸ A	-71.9	168	70.9	136.8	178.2	-95.2	-104.4	172	-57.5	162.4	41.4	121.1	-178.1	-105.4	-111.6	135	-65.9	166.9	69.9	142.1	179.5	-89.6	-122.8	179.4
°G	-64.4	174.1	54.1	133.7	-164.2	-134.3	-114.5	143.6	-58.9	161.5	63.8	105.2	-171.4	-86	-138.3	100	-65.7	179.8	50	129.9	-179.4	-103.5	-119.6	140.8
¹⁰ A	-61.3	179.1	45.4	136.5	-177.6	-91.8	-112.4	182.8	-73.4	-177.4	52.2	134.5	175.6	-85.5	-108.2	173	-65.9	-168.5	48.2	135	178.4	-94.8	-103.8	166.4
¹¹ T	-57.5	165.4	57.2	116.7	-178.3	-87.2	-119.6	126.6	-58.4	167.2	53.8	124.2	-176.4	-116.7	-124.6	132.9	-64.3	170.6	57.4	96.7	-172.6	-83	-129.4	94.8
¹² A	-57.9	170	50	120.3	-168.2	-123.1	-127.8	126.4	-64.9	-163.8	49.3	144.6	-172.6	-88.8	-98	198.2	-62.4	170.9	54.7	132.4	169.8	-106.4	-99.1	154.7
¹³ C	-59.6	177.8	52.8	143.5			-101.9	179.1	-65.4	166.7	50.6	130.1			-92.5	135.9	-59.9	179.4	57.1	140.1			-117.9	159.1
3'																								
3'	Ga at position T7							Ga at position T6							Ga at position T8									
A ₁₃	-59.7	-176.9	48.6	141.4			-93.2	184.8	-60.4	176.9	43.4	142			-111.5	191.4	-56.9	170.8	52.5	138.9			-114.5	154.4
T ₁₂	-56.8	168.2	57.5	95.7	-177.1	-88.7	-141.8	90.6	-61.4	178.3	48.3	127.8	-164.6	-136.1	-115.3	134.5	-56.6	163.4	56.3	96.1	-175.9	-86.8	-135.2	91.3
A ₁₁	-67.1	-167.7	45.9	143.2	173.5	-88.2	-103.1	190.8	-69.7	177.9	55.1	137.7	173.2	-86.8	-103.7	162.9	-65.5	-159.4	39.7	135.7	-179.2	-90.8	-108.4	167.1
T ₁₀	-57.1	-173.2	53.9	138.7	-178.3	-110.8	-117.6	163.1	-57.9	-175.3	51.4	144.4	-177.4	-106.3	-104.4	173.7	-70.5	175.6	59.6	132	171.7	-94.4	-113.9	151.2
G9	-70.7	168.9	58.7	125.9	173.7	-103.2	-123.2	137.9	-53.7	167.4	55.2	116.9	179.2	-104.3	-130.4	124.7		174.7	50.3	144.2	-172	-100.6	-124.8	179.6
T ₈		-178.1	43.7	135.4	-172.9	-90.1	-121.8	176.9	-56.5	-170.9	52.3	126.3	179.8	-90.9	-119	152.4								
T ₇										176	38.8	141.7	170.5	-94.1	-122.1	175.5	-57.7	162.7	55.1	115.2			-116.2	117.6
T ₆	-69.5	169.3	54.3	118.1			-128	121.5								192.3	-60.7	179.5	45.3	109.6	-176.1	-87.7	-120.3	114.4
C ₅	-60.5	162.8	58.4	122.4	-174.2	-88.5	-117	131.8	-55.4	177	46.8	135			-97	148.9	-59.1	166	56.1	112	-174.4	-85.9	-119.5	119.8
T ₄	-56.8	172.7	55.9	121.2	-176.4	-91.2	-113.2	132.4	-60.2	167.4	55.7	97.6	-179.2	-87.5	-128.1	100.3	-58.4	172.9	56.4	108.9	-179.1	-87.6	-121.7	115.8
A ₃	-66.5	167.8	54.6	101.1	179.7	-90.1	-130.2	102	-63.7	-178.1	54.4	126.4	-178.5	-90.4	-111.7	146	-63.4	-171	43.4	136.7	169.8	-89.3	-99.1	183.4
T ₂	-65.4	178.5	60.2	134.6	-177.6	-95.5	-108.7	161	-62.3	175.2	51.1	125.9	178.2	-106.5	-118.6	136.6	-60.1	173.9	56.9	103.9	-173	-84.1	-139.3	99.2
G ₁		-177.3	54.5	125.2	-177	-105.4	-126.5	135.6			43.5	146.3	169.5	-86.1	-97.8	204.3		166.3	47.2	146.7	170.1	-92.5	-100	188.8
5'																								

$$5'^{1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C^{-3}$$

dA(U0)/cdA(U0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹T²A³T⁴A⁵C⁶A⁷A⁸A⁹G¹⁰A¹¹T¹²A¹³C-3' as a part of a double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T7 (U0) 2'-deoxyuridine in the opposite strand (dA(U0)) with a double stranded oligodeoxynucleotide that contained at position T7 (cdA(U0)).

$$5'^{1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C^{-3}$$

dA(U-1)/cdA(U-1). Comparison of dihedral angles (α , β , γ , δ , ϵ , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: $5'^{-1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C^{-3}$ ' as a part of a double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T6 (U-1) 2'-deoxyuridine in the opposite strand (dA(U-1)) with a double stranded oligodeoxynucleotide that contained at position T6 (cdA(U-1)).

$5'^{-1}T^2A^3T^4A^5C^6A^7\!\!A^8A^9G^{10}A^{11}T^{12}A^{13}C^{-3'}$

dA(U+1)/cdA(U+1). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹T²A³T⁴A⁵C⁶A⁷A⁸A⁹G¹⁰A¹¹T¹²A¹³C-3' as a part of double stranded oligodeoxynucleotides contained at position 7A 2'-deoxyadenosine in one strand and at T8 (U+1) 2'-deoxyuridine in the opposite strand (dA(U+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S) 5',8-cyclo-2'- deoxyadenosine and 2'-deoxyuridine T8 (cdA(U+1)).

dA(Ap0)/cdA(Ap0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'- $^{1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C-3'$ as a part of double stranded oligodeoxynucleotides contained at position 7A 2'-deoxyadenosine in one strand and at T7 (Ap0) an apurinic/apyrimidinic site in the opposite strand (dA(Ap0)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and an apurinic/apyrimidinic site at the position T7 (cdA(Ap0)).

$5'\text{-}{}^{1}\text{T}^{2}\text{A}{}^{3}\text{T}^{4}\text{A}{}^{5}\text{C}{}^{6}\text{A}{}^{7}\text{A}{}^{8}\text{A}{}^{9}\text{G}{}^{10}\text{A}{}^{11}\text{T}{}^{12}\text{A}{}^{13}\text{C-3'}$

dA(**Ap-1**)/**cdA**(**Ap-1**). Comparison of dihedral angles (α, β, γ, δ, ε, ζ, χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: $5' \cdot {}^{1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C-3'$ as a part of double stranded oligodeoxynucleotides contained at position **7A** 2'-deoxyadenosine in one strand and at **T6** (**Ap-1**) an apurinic/apyrimidinic site in the opposite strand (**dA**(**Ap-1**)) with a double stranded oligodeoxynucleotide that contained at position **7A** (5'S)-5',8-cyclo-2'- deoxyadenosine and an apurinic/apyrimidinic site at position **T6** (**cdA**(**Ap-1**)).

$5'^{-1}T^2A^3T^4A^5C^6A^7\!A^8A^9G^{10}A^{11}T^{12}A^{13}C\text{-}3'$

dA(Ap+1)/cdA(Ap+1). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: $5'-{}^{1}T^{2}A^{3}T^{4}A^{5}C^{6}A^{7}A^{8}A^{9}G^{10}A^{11}T^{12}A^{13}C-3'$ as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T8 (Ap+1) an apurinic/apyrimidinic site in the opposite strand (dA(Ap+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and an apurinic/apyrimidinic site at position T8 (cdA(Ap+1)).

dA(Ga0)/cdA(Ga0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹T²A³T⁴A⁵C⁶A⁷A⁸A⁹G¹⁰A¹¹T¹²A¹³C-3' as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T7 (Ga0) a single strand break e.i. gap in the opposite strand (dA(Ga0)) with a double stranded oligodeoxynucleotide that contained at position T7 (cdA(Ga0)).

$5'^{-1}T^2A^3T^4A^5C^6A^7\!\!A^8A^9G^{10}A^{11}T^{12}A^{13}C^{-3'}$

dA(Ga-1)/cdA(Ga-1). Comparison of dihedral angles (α , β , γ , δ , ϵ , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹T²A³T⁴A⁵C⁶A⁷A⁸A⁹G¹⁰A¹¹T¹²A¹³C-3' as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T6 (Ga-1) a single strand break e.i. gap in the opposite strand (dA(Ga-1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8- cyclo-2'-deoxyadenosine and a single strand brake at position T6 (cdA(Ga-1)).

$5'^{-1}T^2A^3T^4A^5C^6A^7\!\!A^8A^9G^{10}A^{11}T^{12}A^{13}C^{-3'}$

dA(Ga+1)/cdA(Ga+1). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹T²A³T⁴A⁵C⁶A⁷A⁸A⁹G¹⁰A¹¹T¹²A¹³C-3' as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T8 (Ga+1) a single strand break e.i. gap in the opposite strand (dA(Ga+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8- cyclo-2'-deoxyadenosine and a single strand brake at position T6 (cdA(Ga+1)).

$$5'-{}^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(U0)/cdA(U0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3', as a part of double stranded oligodeoxynucleotide contained at position 7A 2'-deoxyadenosine in one strand and at T7 (U0) 2'-deoxyuridine in the opposite strand (dA(U0)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and 2'-deoxyuridine at position T7 (cdA(U0)).

$$5'-{}^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(U-1)/cdA(U-1). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3', as a part of double stranded oligodeoxynucleotide contained at position 7A 2'-deoxyadenosine in one strand and at T6 (U-1) 2'-deoxyuridine in the opposite strand (dA(U-1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and 2'-deoxyuridine at position T6 (cdA(U-1)).

$$5'^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(U+1)/cdA(U+1). Comparison of dihedral angles (α , β , γ , δ , ϵ , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3', as a part of double stranded oligodeoxynucleotide contained at position 7A 2'-deoxyadenosine in one strand and at T8 (U+1) 2'-deoxyuridine in the opposite strand (dA(U+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and 2'-deoxyuridine at position T8 (cdA(U+1))."

$$5'-{}^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ap0)/cdA(Ap0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'- $^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$ as a part of double stranded oligodeoxynucleotide contained at position 7A 2'-deoxyadenosine in one strand and at T7 (Ap0) the apurinic/apyrimidinic site in the opposite strand (dA(Ap+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and an apurinic/apyrymidinic site at position T7 (cdA(Ap0)).

$$5'^{-13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ap-1)/cdA(Ap-1). Comparison of dihedral angles (α , β , γ , δ , ϵ , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: $5'^{-13}A^{12}T^{11}A^{10}T^{9}G^{8}T^{7}T^{6}T^{5}C^{4}T^{3}A^{2}T^{1}G^{-3}$ as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T6 (Ap-1) an apurinic/apyrimidinic site in the opposite strand (dA(Ap-1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8- cyclo-2'-deoxyadenosine and an apurinic/apyrimidinic site at position T6 (cdA(Ap-1)).

$$5'-{}^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ap+1)/cdA(Ap+1). Comparison of dihedral angles (α, β, γ, δ, ε, ζ, χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3' as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T8 (Ap+1) an apurinic/apyrimidinic site in the opposite strand (dA(Ap+1)) a with double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8cyclo-2'-deoxyadenosine and an apurinic/apyrimidinic site at position T8 (cdA(Ap+1)).

$$5'^{-13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ga0)/cdA(Ga0). Comparison of dihedral angles (α , β , γ , δ , ε , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3' as a part of double stranded oligodeoxynucleotide contained at position 7A 2'-deoxyadenosine in one strand and at position T7 (Ga0) a single strand break e.i. gap in the opposite strand (dA(Ga0)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8-cyclo-2'-deoxyadenosine and a single strand break at position T7 (cdA(Ga0)).

$$5'^{-13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ga-1)/cdA(Ga-1). Comparison of dihedral angles (α , β , γ , δ , ϵ , ζ , χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'-¹³A¹²T¹¹A¹⁰T⁹G⁸T⁷T⁶T⁵C⁴T³A²T¹G-3' as a part of double stranded oligodeoxynucleotide contained at position **7A** 2'-deoxyadenosine in one strand and at **T6** (Ga-1) the single strand brake e.i. gap opposite chain (dA(Ga-1)) a with double stranded oligodeoxynucleotide that contained at position **7A** (5'S)-5',8-cyclo-2'-deoxyadenosine and a single strand brake at position **T6** (cdA(Ga-1)).

$$5'^{-13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$$

dA(Ga+1)/cdA(Ga+1). Comparison of dihedral angles (α, β, γ, δ, ε, ζ, χ) and sugar pseudorotation phase (P) vales obtained for the strand with the following base sequence: 5'- $^{13}A^{12}T^{11}A^{10}T^9G^8T^7T^6T^5C^4T^3A^2T^1G-3'$ as a part of double stranded oligodeoxynucleotide that contained at position 7A 2'-deoxyadenosine in one strand and at T8 (Ga+1) a single strand break e.i. gap in the opposite strand (dA(Ga+1)) with a double stranded oligodeoxynucleotide that contained at position 7A (5'S)-5',8cyclo-2'-deoxyadenosine and a single strand break at position T8 (cdA(Ga+1)).

