Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Copper-Catalyzed Direct Alkylation of 1,3-Azoles with *N*-Tosylhydrazones Bearing a Ferrocenyl Group: A Novel Method for the Synthesis of Ferrocenyl-based Ligands

Supporting Information

Qiang Teng[†], Jianfeng Hu[†], Li Ling[†], Ranfeng Sun[†][‡], Junyang Dong[†], Shufeng Chen[†], Hao Zhang[†]*

†College of Chemical and Chemical Engineering, Inner Mongolia University, Hohhot

010021, P. R. China

‡ State Key Laboratory of Elemento-organic Chemistry, Nankai University

Table of Contents

- **1. General Procedure for Cu-Catalyzed Reaction**
- 2. Table 1. Optimization of Reaction Conditions
- 3. Crystal data for compound 3a and HPLC charts for compound 3a,5a
- 4. ¹H, ¹³C NMR and HRMS (ESI-TOF) spectra for all compounds.
- 5. Comparison of IR spectra of 5a and 6a

1. General Procedure for Cu-Catalyzed Reaction

The oxazoles (1.0 mmol, 4 equiv), *N*-tosylhydrazones (0.25 mmol), lithium *t*-butoxide (1.5 mmol, 6equiv), copper bromide (0.125 mmol, 50 mol%) and 10 mL toluene were mixed in a dry reaction tube. The mixture was stirred at $110 \,^{\circ}$ C under nitrogen atmosphere for 12 hours. When the reaction was completed, the crude reaction mixture was allowed to reach room temperature, the solvent was eliminated. Then ethyl acetate and ammonia were added and the layers were separated. The aqueous phase was extracted three times with ethyl acetate. The combined organic layers were washed with water and then dried over MgSO₄ and filtered. The solvents were evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel.

2. Table 1. Optimization of Reaction Conditions^a

	1	cat.(mol%)	solvont(ml)	base	4(⁰ C)	yield ^b
entry	1a : 4a		solvent(ml)	(equiv)	t(C)	(%)
1	4:1	CuI(50%)	toluene(5)	LiO ^t Bu(6)	120	13
2	4:1	CuBr(50%)	toluene(5)	LiO ^t Bu(6)	120	47
3	4:1	CuCl(50%)	toluene(5)	LiO ^t Bu(6)	120	38
4	4:1	Cu(OTf) ₂ (50%)	toluene(5)	LiO ^t Bu(6)	120	39
5	4:1	Ni(PPh ₃) ₂ Br ₂ (50%)	toluene(5)	LiO ^t Bu(6)	120	trace
6	4:1	CuBr(30%)	toluene(5)	LiO ^t Bu(6)	120	20
7	4:1	CuBr(40%)	toluene(5)	LiO ^t Bu(6)	120	42
8	3:1	CuBr(50%)	toluene(5)	LiO ^t Bu(6)	120	44
9	7:1	CuBr(50%)	toluene(5)	LiO ^t Bu(6)	120	48
10	4:1	CuBr(50%)	toluene(5)	LiO ^t Bu(4)	120	42
11	4:1	CuBr(50%)	toluene(5)	LiO ^t Bu(5)	120	44
12	4:1	CuBr(50%)	toluene(5)	LiO ^t Bu(8)	120	48
13	4:1	CuBr(50%)	dioxane(5)	LiO ^t Bu(6)	120	38
14	4:1	CuBr(50%)	toluene(4)+ DMF(1)	LiO ^t Bu(6)	120	25
15	4:1	CuBr(50%)	toluene(4)+ DMF(0.2)	LiO ^t Bu(6)	120	40
16	4:1	CuBr(50%)	toluene(10)	LiO ^t Bu(6)	120	67
17	4:1	CuBr(50%)	toluene(20)	LiO ^t Bu(6)	120	69
18	4:1	CuBr(50%)	toluene(10)	LiO ^t Bu(6)	90	69
19	4:1	CuBr(50%)	toluene(10)	LiO ^t Bu(6)	100	73
20	4:1	CuBr(50%)	toluene(10)	LiO ^t Bu(6)	110	75
21	4:1	CuBr(50%)	toluene(10)	LiO ^t Bu(6)	120	67

^{*a*} Reactions were carried out with 1.0 mmol of 1a and 0.25 mmol of 4a in the presence of 50 mol% of catalyst and 6 equiv of base at 110° C temperature under a N₂ atmosphere for 12 h. ^b Yield of isolated product after chromatography.

3. Molecular structure of compound 3a

Crystal Structure Report for work

A specimen of C19H17FeNO, approximate dimensions 0.120 mm x 0.150 mm x 0.220 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The integration of the data using a monoclinic unit cell yielded a total of 8372 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 2643 were independent (average redundancy 3.168, completeness = 98.3%, Rint = 2.70%) and 2499 (94.55%) were greater than $2\sigma(F2)$. The final cell constants of a = 6.121(5) Å, b = 30.224(5) Å, c = 8.524(5) Å, α = 90.000(5)°, β = 104.105(5)°, γ = 90.000(5)°, volume = 1529.4(16) Å3, are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8120 and 0.8910.

The final anisotropic full-matrix least-squares refinement on F2 with 199 variables converged at R1 = 9.65%, for the observed data and wR2 = 19.37% for all data. The goodness-of-fit was 1.140. The largest peak in the final difference electron density synthesis was 0.678 e-/Å3 and the largest hole was -0.860 e-/Å3 with an RMS deviation of 0.087 e-/Å3. On the basis of the final model, the calculated density was 1.438 g/cm3 and F(000), 688 e-.

Table 1. Sample and crystal data for work.

Identification code	work	
Chemical formula	C19H17FeNO	
Formula weight	331.18	
Temperature	163(2) K	
Wavelength 0.71073 Å		
Crystal size	0.120 x 0.150 x 0.22	0 mm
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 6.121(5) Å	$\alpha = 90.000(5)^{\circ}$
	b = 30.224(5) Å	$\beta = 104.105(5)^{\circ}$
	c = 8.524(5) Å	$\gamma = 90.000(5)^{\circ}$
Volume	1529.4(16) Å3	
Ζ	4	
Density (calculated)	1.438 g/cm3	
Absorption coefficient	0.986 mm-1	
F(000)	688	

Table 2. Data collection and structure refinement for work.

Theta range for data collection	1.35 to 25.00°			
Index ranges	-7<=h<=7, -34<=k<=35, -10<=l<=9			
Reflections collected	8372			
Independent reflections	2643 [R(int) = 0.0270]			
Max. and min. transmission	0.8910 and 0.8120			
Refinement method	Full-matrix least-squares on F2			
Refinement program	SHELXL-2013 (Sheldrick, 2013)			
Function minimized	$\Sigma \text{ w(Fo2 - Fc2)2}$			
Data / restraints / parameters	2643 / 0 / 199			
Goodness-of-fit on F2	1.140			
Final R indices	2499 data; I> $2\sigma(I)$ R1 = 0.0965, wR2 =			
0.1923				
	all data $R1 = 0.0997, wR2 = 0.1937$			
Weighting scheme	$w=1/[\sigma 2(Fo2)+12.0000P]$			
	where $P=(Fo2+2Fc2)/3$			
Largest diff. peak and hole	0.678 and -0.860 eÅ-3			
R.M.S. deviation from mean	0.087 eÅ-3			

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2) for

work. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x/a	y/b	z/c	U(eq)
C1	0.2831(13)	0.1476(2)	0.0909(9)	0.0503(18)
C2	0.442(2)	0.1714(3)	0.0069(12)	0.091(3)
C3	0.1644(13)	0.1099(3)	0.9894(9)	0.0527(19)
C4	0.9143(13)	0.0596(3)	0.9060(8)	0.0490(18)
C5	0.7318(14)	0.0316(3)	0.8798(11)	0.063(2)
C6	0.7363(16)	0.9967(3)	0.7731(11)	0.067(3)
C7	0.9096(16)	0.9908(3)	0.7025(10)	0.062(2)
C8	0.0923(16)	0.0192(3)	0.7291(10)	0.062(2)
C9	0.0884(13)	0.0545(2)	0.8330(8)	0.0480(18)
C10	0.3999(12)	0.1288(2)	0.2543(8)	0.0444(17)
C11	0.6169(12)	0.1087(2)	0.2985(9)	0.0478(18)
C12	0.6510(14)	0.0927(3)	0.4573(10)	0.056(2)
C13	0.4581(16)	0.1019(3)	0.5133(9)	0.063(2)
C14	0.3025(13)	0.1235(3)	0.3884(9)	0.054(2)
C15	0.598(2)	0.2252(3)	0.4181(15)	0.093(4)
C16	0.8151(19)	0.2080(3)	0.4346(13)	0.076(3)
C17	0.8827(17)	0.1882(3)	0.5827(13)	0.076(3)
C18	0.718(2)	0.1919(4)	0.6628(12)	0.089(4)
C19	0.540(2)	0.2152(4)	0.5659(19)	0.102(4)
N1	0.2500(10)	0.0870(2)	0.8885(8)	0.0536(16)
01	0.9650(9)	0.09683(18)	0.0058(6)	0.0568(14)
Fe1	0.59388(19)	0.15908(4)	0.45441(13)	0.0515(4)

Table 4. Bond lengths (Å) for work.

C1-C3	1.504(10)	C1-C10	1.513(10)	C1-C2
1.521(13)				
C3-N1	1.309(10)	C3-O1	1.323(9)	C4-C9
1.367(11)				
C4-C5	1.377(11)	C4-O1	1.398(9)	C5-C6
1.397(12)				
C6-C7	1.353(13)	C7-C8	1.383(12)	C8-C9
1.390(11)				
C9-N1	1.394(9)	C10-C14	1.421(11)	C10-C11
1.426(10)				
C10-Fe1	2.042(7)	C11-C12	1.404(11)	C11-Fe1

2.049(7)				
C12-C13	1.404(12)	C12-Fe1	2.035(8)	C13-C14
1.405(11)				
C13-Fe1	2.033(8)	C14-Fe1	2.041(7)	C15-C16
1.399(15)				
C15-C19	1.422(17)	C15-Fe1	2.024(9)	C16-C17
1.367(14)				
C16-Fe1	2.039(9)	C17-C18	1.354(14)	C17-Fe1
2.038(9)				
C18-C19	1.387(16)	C18-Fe1	2.015(8)	C19-Fe1
2.011(10)				
Table 5. Bond	angles (°) for work.			
C3-C1-C10	107.4(6)	C3-C1-C2	111.3(7)	C10-C1-C2
113.5(7)				
N1-C3-O1	116.0(7)	N1-C3-C1	124.3(7)	O1-C3-C1
119.7(7)				
C9-C4-C5	123.1(7)	C9-C4-O1	106.7(7)	C5-C4-O1
130.2(8)				
C4-C5-C6	115.3(8)	C7-C6-C5	122.0(9)	C6-C7-C8
122.4(8)				
C7-C8-C9	116.2(8)	C4-C9-C8	121.0(8)	C4-C9-N1
109.4(7)				
C8-C9-N1	129.5(8)	C14-C10-C11	106.6(7)	C14-C10-C1
125.9(7)	C11-C10-C1	127.2(7)	C14-C10-Fe1	69.6(4)
C11-C10-Fe1	69.9(4)			
C1-C10-Fe1	130.5(5)	C12-C11-C10	108.1(7)	C12-C11-Fe1
69.3(5)				
C10-C11-Fe1	69.4(4)	C11-C12-C13	108.7(7)	C11-C12-Fe1
70.4(4)				
C13-C12-Fe1	69.7(5)	C12-C13-C14	107.8(7)	C12-C13-Fe1
69.9(5)				
C14-C13-Fe1	70.1(5)	C13-C14-C10	108.7(7)	C13-C14-Fe1
69.5(5)				
C10-C14-Fe1	69.7(4)	C16-C15-C19	105.6(10)	C16-C15-Fe1
70.5(5)				
C19-C15-Fe1	68.9(6)	C17-C16-C15	108.8(10)	C17-C16-Fe1
70.4(5)				
C15-C16-Fe1	69.3(6)	C18-C17-C16	109.5(11)	C18-C17-Fe1
69.6(5)				
C16-C17-Fe1	70.5(5)	C17-C18-C19	108.3(11)	C17-C18-Fe1
71.4(5)				
C19-C18-Fe1	69.7(5)	C18-C19-C15	107.8(10)	C18-C19-Fe1
70.0(6)				

C15-C19-Fe1	69.8(6)	C3-N1-C9	103.4(7)	C3-O1-C4
104.5(6)				
C19-Fe1-C18	40.3(5)	C19-Fe1-C15	41.3(5)	C18-Fe1-C15
68.4(5)				
C19-Fe1-C13	118.5(5)	C18-Fe1-C13	106.8(4)	C15-Fe1-C13
154.0(5)				
C19-Fe1-C12	150.9(5)	C18-Fe1-C12	116.6(4)	C15-Fe1-C12
165.1(5)				
C13-Fe1-C12	40.4(3)	C19-Fe1-C17	66.6(4)	C18-Fe1-C17
39.0(4)				
C15-Fe1-C17	67.2(4)	C13-Fe1-C17	126.0(4)	C12-Fe1-C17
107.2(4)				
C19-Fe1-C16	67.4(5)	C18-Fe1-C16	66.5(4)	C15-Fe1-C16
40.3(4)				
C13-Fe1-C16	163.0(4)	C12-Fe1-C16	126.9(4)	C17-Fe1-C16
39.2(4)				
C19-Fe1-C14	110.0(4)	C18-Fe1-C14	128.2(4)	C15-Fe1-C14
121.4(4)				
C13-Fe1-C14	40.3(3)	C12-Fe1-C14	67.7(3)	C17-Fe1-C14
163.9(4)				
C16-Fe1-C14	155.8(4)	C19-Fe1-C10	130.1(5)	C18-Fe1-C10
167.1(4)				
C15-Fe1-C10	110.0(4)	C13-Fe1-C10	68.6(3)	C12-Fe1-C10
68.4(3)				
C17-Fe1-C10	153.3(4)	C16-Fe1-C10	121.2(4)	C14-Fe1-C10
40.7(3)				
C19-Fe1-C11	168.2(5)	C18-Fe1-C11	150.2(5)	C15-Fe1-C11
129.0(5)				
C13-Fe1-C11	68.0(3)	C12-Fe1-C11	40.2(3)	C17-Fe1-C11
118.8(4)				
C16-Fe1-C11	109.5(4)	C14-Fe1-C11	67.9(3)	C10-Fe1-C11
40.8(3)				

Table 6. Anisotropic atomic displacement parameters (Å2) for work. The anisotropic atomic displacement factor exponent takes the form: $-2\pi 2$ [h2 a*2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C1	0.056(5)	0.047(4)	0.045(4)	0.003(3)	0.007(3)	
0.005(3)						
C2	0.123(10)	0.071(6)	0.072(7)	0.010(5)	0.007(6)	
0.000(6)						
C3	0.047(4)	0.064(5)	0.040(4)	0.008(4)	-0.002(3)	

0.000(4)					
C4	0.052(4)	0.053(4)	0.036(4)	-0.003(3)	-0.001(3)
0.000(4)					
C5	0.049(5)	0.073(6)	0.065(5)	0.004(5)	0.010(4)
-0.003(4)					
C6	0.073(6)	0.052(5)	0.062(5)	0.001(4)	-0.012(5)
-0.010(4)					
C7	0.074(6)	0.058(5)	0.047(5)	-0.004(4)	0.003(4)
0.000(5)					
C8	0.072(6)	0.068(6)	0.046(5)	-0.002(4)	0.013(4)
-0.002(5)					
C9	0.053(4)	0.053(4)	0.032(4)	0.002(3)	-0.001(3)
-0.001(4)					
C10	0.047(4)	0.039(4)	0.042(4)	-0.001(3)	0.001(3)
-0.008(3)					
C11	0.042(4)	0.042(4)	0.054(5)	-0.006(3)	0.002(3)
-0.002(3)					
C12	0.056(5)	0.050(4)	0.054(5)	0.003(4)	-0.004(4)
0.002(4)					
C13	0.092(7)	0.063(5)	0.031(4)	-0.002(4)	0.013(4)
-0.020(5)					
C14	0.046(4)	0.062(5)	0.055(5)	-0.007(4)	0.013(4)
-0.016(4)					
C15	0.124(10)	0.038(5)	0.090(8)	-0.007(5)	-0.025(8)
-0.003(6)					
C16	0.091(8)	0.061(6)	0.076(7)	-0.008(5)	0.024(6)
-0.033(6)					
C17	0.067(6)	0.079(7)	0.080(7)	-0.029(6)	0.013(5)
-0.026(5)					
C18	0.114(9)	0.101(8)	0.049(5)	-0.037(6)	0.013(6)
-0.042(7)					
C19	0.077(7)	0.091(8)	0.139(12)	-0.073(8)	0.030(8)
-0.010(6)					
N1	0.049(4)	0.058(4)	0.049(4)	-0.017(3)	0.002(3)
0.007(3)					
01	0.052(3)	0.065(4)	0.051(3)	-0.011(3)	0.010(3)
0.004(3)					
Fe1	0.0553(7)	0.0461(6)	0.0468(6)	-0.0059(5)	0.0003(5)
-0.0103(6)					

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2) for
work.

	x/a	y/b	z/c	U(eq)
H1	0.1667	0.1692	0.1069	0.06
H2A	0.5157	0.1958	0.0753	0.137
H2B	0.3556	0.1832	-0.0970	0.137
H2C	0.5556	0.1507	-0.0117	0.137
H5	-0.3886	0.0356	-0.0693	0.076
H6	-0.3861	-0.0236	-0.2505	0.081
H7	-0.0944	-0.0336	-0.3681	0.074
H8	0.2136	0.0148	-0.3207	0.075
H11	0.7205	0.1064	0.2320	0.057
H12	0.7826	0.0781	0.5170	0.067
H13	0.4367	0.0947	0.6170	0.075
H14	0.1562	0.1331	0.3929	0.065
H15	0.5090	0.2404	0.3273	0.112
H16	0.9010	0.2098	0.3559	0.091
H17	1.0237	0.1740	0.6232	0.091
H18	0.7228	0.1805	0.7675	0.107
H19	0.4040	0.2232	0.5933	0.122

HPLC Charts of Products

4. ¹H, ¹³C NMR and HRMS (ESI-TOF) spectra for all compounds.

¹H NMR and ¹³C NMR Spectra for the Products

-0.00

00.0~

7.7.7.7 7.7.

 $-168.2 \\ -150.4 \\ -132.7 \\ -132.7 \\ -132.7 \\ -132.7 \\ -124.5 \\ -110.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -100.5 \\ -$

-166.8 -150.7 -150.7 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -150.2 -

00.0-

 $<^{1.69}_{1.68}$

7.677.437.417.297.297.287.287.287.28

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 ppm 40

$\begin{array}{c} -0.00 \\$

7.25. 7.

7.77 7.75 7.75 7.73 7.73 7.73 7.73

-167.6 -140.6 -140.6 -140.6 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.7 -10.5 -10.7 -20.2-20.2

7.75 7.75 7.73 7.70 7.70 7.38

5. Comparison of IR spectra of 5a and 6a