Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock (Germany) E-mail: xiao-feng.wu@catalysis.de

General Methods

NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. Multiplets were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). All measurements were carried out at room temperature unless otherwise stated. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HRMS) were recorded on Agilent 6210. The data are given as mass units per charge (m/z). Gas chromatography analysis was performed on an Agilent HP-5890 instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 µm film thickness) using argon as carrier gas. The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck).

General Procedure:

The reaction was carried out in a Parr Instruments 4560 series 300 mL autoclave containing an alloy plate with wells for six 4 mL Wheaton vials. $Pd(TFA)_2$ (5.0 mol%), DPPP (**10**.0 mol%), Ag₂O (2 equiv.), phenylboronic acid (0.5 mmol), NaOAc (2 equiv.) and a magnetic stir bar were placed in each vials under air, which were then capped with a septum equipped with an inlet needle. Then 1-hexyne (1.2 equiv.) and acetone (1 mL) were added to the vial *via* syringe. The vials were placed in an autoclave, filled with 8 bar of CO at room temperature and keep the reaction at room temperature for 12 h. After the reaction was completed, the autoclave was vented to discharge N₂. The product was extracted with ethyl acetate (5×3 mL). The organic layers were washed with brine, dried over Na₂SO₄, and evaporated to yield the crude reaction mixture. The purification occurred by flash chromatography on silica gel (eluent: heptane/EtOAc 95:05).

1-Phenylhept-2-yn-1-one

¹**H NMR (300 MHz, Chloroform-***d***)** δ 8.27 – 8.01 (m, 2H), 7.64 – 7.54 (m, 2H), 7.49 (m, 1H), 2.51 (t, 2H), 1.75 – 1.61 (m, 2H), 1.59 – 1.43 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 178.39, 137.06, 133.99, 129.67, 128.61, 96.99, 79.80, 29.98, 22.22, 19.06, 13.67.

MS (EI, 70 eV): *m/z* (%) = 186 ([M]⁺, 20), 171 (10), 157 (40), 144 (100), 129 (30), 115 (60), 105 (62), 77 (50), 66 (10), 51 (12).

1-(4-(Trifluoromethyl)phenyl)hept-2-yn-1-one

¹**H NMR (300 MHz, Chloroform-***d***)** δ 8.29 – 8.07 (m, 3H), 7.74 – 7.59 (m, 2H), 2.46 (t, *J* = 7.1 Hz, 2H), 1.74 – 1.52 (m, 2H), 1.51 – 1.36 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 176.94, 139.45, 135.01 (q, *J* = 32.51 Hz), 129.81, 125.60 (q, *J* = 3.86 Hz), 123.60 (q, *J* = 273.12 Hz), 98.45, 79.48, 29.78, 22.12, 18.98, 13.53.

MS (EI, 70 eV): *m/z* (%) = 254 ([M]⁺, 5), 235 (10), 225 (20), 212 (100), 173 (90), 185 (20), 173 (90), 145 (50), 109 (15), 79 (10).

1-(4-Chlorophenyl)hept-2-yn-1-one

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.04 – 7.92 (m, 2H), 7.42 – 7.33 (m, 2H), 2.43 (t, *J* = 7.1 Hz, 2H), 1.66 – 1.51 (m, 2H), 1.48 – 1.34 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.90, 140.46, 135.37, 130.87, 128.87, 97.46, 79.42, 29.83, 22.12, 18.96, 13.54.

MS (EI, 70 eV): = 220 ([M]⁺, 10), 191 (15), 178 (100), 157 (10), 139 (90), 128 (7), 111 (40), 79 (20).

1-(3,5-Dimethylphenyl)hept-2-yn-1-one

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.67 (s, 2H), 7.54 – 7.47 (m, 1H), 2.43 (t, *J* = 7.1 Hz, 2H), 2.30 (s, 6H), 1.66 – 1.51 (m, 2H), 1.52 – 1.39 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 138.19, 135.64, 132.18, 127.37, 97.46, 79.93, 29.89, 23.02, 22.11, 21.44, 21.29.

MS (EI, 70 eV): = 214 ([M]⁺, 96), 199 (70), 172 (100), 157 (30), 143 (85), 133 (80), 115 (20), 105 (15), 91 (10), 79 (40), 66 (5), 53 (8).

1-(4-(Methylthio)phenyl)hept-2-yn-1-one

¹**H NMR (300 MHz, Chloroform-***d***)** δ 8.00 – 7.86 (m, 2H), 7.24 – 7.12 (m, 2H), 2.5 (s, 3H), 2.47 – 2.37 (m, 2H), 1.63 – 1.50 (m, 2H), 1.48 – 1.33 (m, 2H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.25, 147.18, 133.50, 129.87, 124.72, 96.44, 79.60, 29.87, 22.09, 18.92, 14.73, 14.70, 13.54.

MS (EI, 70 eV): = 232 ([M]⁺, 100), 203 (5), 190 (10), 175 (8), 161 (10), 151 (12).

1-(Naphthalen-2-yl)hept-2-yn-1-one

¹**H NMR (300 MHz, Chloroform-***d***)** δ 8.67 – 8.58 (s, 1H), 8.07 (dd, *J* = 8.7, 1.7 Hz, 2H), 7.96 – 7.90 (m, 2H), 7.81 (dd, *J* = 8.1, 1.7 Hz, 2H), 2.49 (t, *J* = 7.0 Hz, 2H), 1.73 – 1.57 (m, 2H), 1.53 – 1.40 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ178.19, 136.06, 134.49, 132.62, 132.41, 129.81, 128.86, 128.38, 127.89, 126.85, 124.02, 96.79, 79.84, 29.90, 22.14, 19.01, 13.57.

MS (EI, 70 eV): = 236 ([M]⁺, 100), 207 (20), 194 (18), 179 (10), 165 (50), 155 (15).

1-(3-Fluorophenyl)hept-2-yn-1-one

¹**H NMR (300 MHz, Chloroform-***d***)** δ 7.86 (dt, *J* = 7.7, 1.3 Hz, 2H), 7.72 (ddd, *J* = 9.3, 2.7, 1.5 Hz, 2H), 7.39 (td, *J* = 8.0, 5.4 Hz, 1H), 2.44 (t, *J* = 7.1 Hz, 2H), 1.72 – 1.54 (m, 2H), 1.47 – 1.35 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.81 (d, *J* = 2.9 Hz), 162.68 (d, *J* = 248.1 Hz), 139.01 (d, *J* = 6.7 Hz), 134.16 (d, *J* = 7.5 Hz), 125.34 (d, *J* = 2.97 Hz), 120.87 (d, *J* = 21.8 Hz), 115.99 (d, *J* = 23.1 Hz), 97.56, 79.40, 29.79, 22.09, 18.93, 13.51.

MS (EI, 70 eV): = 203 ([M]⁻, 10), 175 (25), 162 (100), 146 (10), 133 (50), 12 (90), 109 (40), 95 (45), 79 (20), 66 (10), 53 (7).

1-(4-Iodophenyl)hept-2-yn-1-one

¹H NMR (300 MHz, CDCl₃) δ 7.84 (m, 4H), 2.50 (t, *J* = 7.0 Hz, 2H), 1.88 – 1.54 (m, 2H), 1.60 – 1.36 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 137.8, 136.3, 130.8, 102.3, 97.5, 79.3, 29.8, 22.1, 18.9, 13.5. MS (EI, 70 eV): = 312 ([M]⁺, 100), 283 (40), 270 (100), 241 (10), 231 (90), 203 (15), 157 (5).

1-(4-Bromophenyl)hept-2-yn-1-one

¹H NMR (300 MHz, CDCl₃) δ 8.10 – 7.90 (m, 2H), 7.82 – 7.47 (m, 2H), 2.50 (t, *J* = 7.0 Hz, 2H), 1.66 (m, 2H), 1.55 – 1.37 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.1, 135.1, 131.1, 130.0, 129.3, 97.5, 79.4, 29.8, 22.1, 18.1, 13.5. MS (EI, 70 eV): =265 ([M]⁻, 10), 237 (10), 222 (100), 193 (10), 185 (96), 167 (8), 157 (60).

2-(3-Phenylprop-2-yn-1-yl)-1H-indene-1,3(2H)-dione

¹H NMR (300 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.66 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.41 – 7.29 (m, 2H), 7.25 – 7.11 (m, 3H), 4.61 (s, 2H).
¹³C NMR (75 MHz, CDCl₃) δ 167.1, 134.3, 132.1, 131.9, 128.5, 128.2, 123.1, 122.3, 82.9, 82.6, 27.4.
MS (EI, 70 eV): =261 ([M]⁺, 100), 232 (70), 204 (50), 178 (15), 165 (10), 165 (5).

(3-Phenoxyprop-1-yn-1-yl)benzene

¹**H NMR (300 MHz, Chloroform-***d***)** δ 7.45 – 7.31 (m, 2H), 7.30 – 7.15 (m, 5H), 7.01 – 6.86 (m, 3H), 4.84 (d, J = 0.8 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 157.8, 131.8, 129.5, 128.6, 128.3, 122.3, 121.0, 115.0, 87.0, 83.3, 56.1. MS (EI, 70 eV): =208 ([M]⁺, 5), 115 (100), 105 (5), 89 (3), 65 (5).

3-Phenylprop-2-yn-1-yl benzoate

¹**H NMR (300 MHz, Chloroform-***d***)** δ 8.23 – 8.00 (m, 2H), 7.66 – 7.54 (m, 1H), 7.52 – 7.40 (m, 4H), 7.38 – 7.28 (m, 3H), 5.16 (s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 165.9, 133.2, 131.9, 129.8, 129.6, 128.7, 128.4, 128.3, 122.2, 86.6, 83.0, 53.3. MS (EI, 70 eV): =236 ([M]⁺, 100), 208 (25), 191 (5).

Failed substrates:

140516.1333.10.1td NK1083 PROTON CDCI3 {C:\Bruker\TopSpin3.2} 1405 3

* The peak belongs to side product

