ESI OBC 2014

Delbianco, Parker and Lamarque

Electronic Supplementary Information

Synthesis of *meta* and *para*-substituted aromatic sulfonate derivatives of polydentate phenylazaphosphinate ligands: enhancement of the water solubility of emissive europium (III) EuroTracker dyes

Martina Delbianco^a, Laurent Lamarque^b and David Parker *^a

^a Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

^b CisBio Bioassays, Parc Marcel Boiteux, BP 84175, 30200 Codolet, France

email: david.parker@dur.ac.uk

NMR Spectroscopy and Mass Spectrometry

¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded in commercially-available deuteriated solvents on a Varian Mercury-200 (¹H at 199.975 MHz, ¹³C at 50.289 MHz), Varian Mercury-400 or Bruker Avance-400 (¹H at 399.960 MHz, ¹³C at 100.572 MHz, ³¹P at 161.943 MHz), Varian Inova-500 (¹H at 499.772 MHz, ¹³C at 125.671 MHz,) or Varian VNMRS-700 (¹H at 699.731 MHz, ³¹P at 283.256 MHz) spectrometer. All chemical shifts are given in ppm and coupling constants are in Hz. Electrospray mass spectra were recorded on a Waters Micromass LCT or Thermo-Finnigan LTQ FT instrument operating in positive or negative ion mode as stated, with methanol as the carrier solvent. Accurate mass spectra were recorded using the Thermo-Finnigan LTQ FT mass spectrometer.

CPL Spectroscopy

CPL was measured with a home-built (modular) spectrometer. The excitation source was a broad band (200 - 1000 nm) laser- driven light source EQ 99 (Elliot Scientific). The excitation wavelength was selected by feeding the broadband light into an Acton SP-2155 monochromator (Princeton Instruments); the collimated light was focused into the sample cell (1 cm Quarts cuvette). Sample PL emission was collected perpendicular to the excitation direction with a lens (f = 150 mm). The emission was fed through a photoelastic modulator (PEM) (Hinds Series II/FS42AA) and through a linear sheet polariser (Comar). The light was then focused into a second scanning monochromator (Acton SP-2155) and subsequently on to a photomultiplier tube (PMT) (Hamamatsu H10723 series). The detection of the CPL signal was achieved using the field modulation lock-in technique. The electronic signal from the PMT was fed into a lock-in amplifier (Hinds Instruments Signaloc Model

2100). The reference signal for the lock-in detection was provided by the PEM control unit. The monchromators, PEM control unit and lock-in amplifier were interfaced to a desktop PC and controlled by a Labview code. The lock-in amplifier provided two signals, an AC signal corresponding to $(I_L - I_R)$ and a DC signal corresponding to $(I_L + I_R)$ after background subtraction. The emission dissymmetry factor was therefore readily obtained from the experimental data, as 2 AC/DC. Spectral calibration of the scanning monochromator was performed using a Hg-Ar calibration lamp (Ocean Optics). A correction factor for the wavelength dependence of the detection system was constructed using a calibrated lamp (Ocean Optics). The measured raw data was subsequently corrected using this correction factor. The validation of the CPL detection systems was achieved using light emitting diodes (LEDs) at various emission wavelengths. The LED was mounted in the sample holder and the light from the LED was fed through a broad band polarising filter and 1/4 wave plate (Ocean Optics) to generate circularly polarised light. Prior to all measurements, the $\lambda/4$ plate and a LED were used to set the phase of the lock-in amplifier correctly. The emission spectra were recorded with 0.5 nm step size and the slits of the detection monochromator were set to a slit width corresponding to a spectral resolution of 0.25 nm. CPL spectra (as well as total emission spectra) were obtained through an averaging procedure of several scans. The CPL spectra have been smoothed using Savitzky-Golay smoothing (polynomial order 5, window size 9 with reflection at the boundaries) to enhance visual appearance; all calculations and error analyses were carried out using raw spectral data. The stated errors refer to the standard deviation from the mean of 5 consecutive CPL spectral acquisitions, for which the observed variation was found to occur in the AC rather than the DC signal, consistent with the high photostability of these systems. Smoothing was carried out simply to enhance the visual appearance of the spectrum.

Chromatography

Flash column chromatography was performed using flash silica gel 60 (230 - 400 mesh) from Merck. Thin layer chromatography (TLC) was performed on aluminum sheet silica gel plates with 0.2 mm thick silica gel 60 F_{254} (E. Merck) using different mobile phase. The compounds were visualized by UV irradiation (254 nm) or Dragendorff reagent staining.

Reverse phase HPLC traces were recorded at 298 K using a Perkin Elmer system equipped with a Perkin Elmer Series 200 Pump, a Perkin Elmer Series 200 Autosampler and a Perkin Elmer Series 200 Diode array detector (operated at 254 nm). Separation was achieved using a semi-preparative Waters XBridge RP-C₁₈ column (5 μ m, 10 × 100 mm) at a flow rate maintained at 4.4 mL/min For purification of the anionic complexes a solvent system composed of 0.1 M NH₄HCO₃/methanol was used over the stated linear gradient. Analytical RP-HPLC was performed using a Waters XBridge RP- C_{18} column (3.5 µm, 4.6 × 100 mm) at a flow rate maintained at 1.0 mL/ min over the stated linear gradient.

Measurement of logP (octanol/water) Three equimolar solutions of complex were prepared in the minimum volume of MeOH or water. The solvent was removed under reduced pressure and the resulting material was dissolved and stirred for 24 h in 0.9 mL of a mixture of water/octanol (2:1, 1:1, 1:2) giving a total concentration of approximately 2 μ M. After equilibration, an emission spectrum for each layer was recorded in MeOH (50 μ L of solution in 1 mL of MeOH), snd the relative amounts in each phase calculated as the ratio of the total emission intensity. For each different mixture, the logP value was calculated, as the mean of three separate experiments with the standard deviation from the mean quoted in parenthesis.

Ligand and complex syntheses

1-Ethynyl-4-methoxy-2-methylbenzene

3-Methyl-4-bromoanisole (700 mg, 3.48 mmol) was dissolved in anhydrous THF (12 mL) and the solution was degassed (freeze-thaw cycle) three times. Ethynyltrimethylsilane (0.74 mL, 5.24 mmol) and triethylamine (2.40 mL, 17.4 mmol) were added and the solution was degassed (freeze-thaw cycle) once more. [1,1-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (400 mg, 0.49 mmol) and CuI (66 mg, 0.35 mmol) were added and the resulting brown solution was stirred at 65 °C under argon for 16 h. The solvent was removed under reduced pressure and the resulting brown oil was purified by column chromatography (silica, n-hexane : DCM 10:0 to 10:1) to give (4methoxy-2-methylphenylethynyl)trimethylsilane as a yellow oil (440 mg, 58%); $R_f = 0.49$ (silica, *n*-hexane : DCM 3:1). This compound (440 mg, 2.0 mmol) was immediately dissolved in anhydrous THF (5 mL) and triethylammonium dihydrofluoride (3.3 mL, 20 mmol) was added. The mixture was stirred at 35 °C under argon for 48 h. The solvent was removed under reduced pressure to give a yellow oil which was subjected to column chromatography (silica, n-hexane/CH₂Cl₂ 3:1 v/v), to afford 1-ethynyl-4-methoxy-2methylbenzene as a colourless oil (200 mg, 68%); $\delta_{\rm H}$ (CDCl₃) 7.39 (1H, d, ${}^{3}J_{\rm H-H}$ 8.6 Hz, H⁸),

6.74 (1H, d, ${}^{4}J_{\text{H-H}}$ 2.6 Hz, H⁵), 6.68 (1H, dd, ${}^{3}J_{\text{H-H}}$ 8.6 Hz, ${}^{4}J_{\text{H-H}}$ 2.6 Hz, H⁷), 3.80 (3H, s, H¹⁰), 3.19 (1H, s, H¹), 2.43 (3H, s, H⁹); δ_{C} (151 MHz, CDCl₃) δ 160.0 (C⁶), 142.7 (C⁴), 134.0 (C⁸), 115.2 (C⁵), 114.3 (C³), 111.3 (C⁷), 82.7 (C²), 79.6 (C¹), 55.4 (C⁹), 21.0 (C¹⁰); (HRMS⁻) *m/z* 145.0667 [M - H]⁻ (C₁₀H₉O requires 145.0653); R_{f} = 0.46 (silica; *n*-hexane/ CH₂Cl₂, 2 : 1). **2,2,2-Trifluoroethyl-4-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2**methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate

2,2,2-Trifluoroethyl

4-((4-bromo-6-(hydroxymethyl)pyridin-2-

yl)(ethoxy)phosphoryl)benzenesulfonate (230 mg, 0.44 mmol) was dissolved in dry THF (2 mL) and the solution was degassed (freeze-thaw cycle) three times. 1-Ethynyl-4-methoxy-2methylbenzene (100 mg, 0.66 mmol) and NEt₃ (1.2 mL) were added and the solution degassed once more. [1,1'-Bis(diphenylphosphino)ferrocene]palladium(II) chloride (51 mg, 63 µmol) and CuI (8 mg, 42 µmol) were added and the solution was degassed a further three times. The solution was stirred at 65 °C under argon for 16 h, solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 – 2 %) to give a pale orange oil (185 mg, 72 %); $\delta_{\rm H}$ (CDCl₃) 8.19 (2H, dd, ³J_{H-P} 11 Hz, ³J_{H-H} 8 Hz, H¹¹), 8.08 (1H, s, H⁴), 7.98 (2H, d, ³J_{H-H} 8 Hz, H¹²), 7.48 (1H, s, H²), 7.41 (1H, d, ³*J*_{H-H} 8.5 Hz, H¹⁷), 6.76 (1H, d, ⁴*J*_{H-H} 2.5 Hz, H²⁰), 6.72 (1H, dd, ³*J*_{H-H} 8.5 Hz, ⁴*J*_{H-H} 2.5 Hz, H¹⁸), 4.76 (2H, s, H⁹), 4.39 (2H, q, ³J_{F-H} 8 Hz, H⁶), 4.16 (2H, m, H⁷), 3.80 (3H, s, OMe), 3.57 (1H, br, OH), 2.46 (3H, s, H²²), 1.38 (3H, t, ³J_{H-H} 7 Hz, H⁸); δ_C (CDCl₃) 161.1 (s, C¹), 160.7 (s, C¹⁹), 151.8 (d, ¹J_{C-P} 168 Hz, C⁵), 142.9 (s, C²¹), 138.6 (s, C¹³), 137.3 (d, ¹J_{C-P} 137 Hz, C¹⁰), 134.0 (s, C¹⁷), 133.4 (s, C¹¹), 133.3 (s, C³), 128.9 (s, C⁴), 127.6 (d, ⁴J_{C-P} 13 Hz, C¹²), 124.3 (s, C²), 121.7 (g, ¹J_{C-F} 279 Hz, CF₃), 115.3 (s, C²⁰), 113.4 (s, C¹⁶),111.6 (s, C¹⁸), 95.8 (s, C¹⁵), 88.7 (s, C¹⁴), 64.8 (q, ²J_{C-F} 38.5 Hz, C⁶), 64.1 (s, C⁹), 62.6 (d, ²J_{C-P} 6 Hz, C⁷), 55.3 (s, OMe), 21.0 (s, C^{22}), 16.5 (s, C^{8}); $\delta_{\rm F}$ (CDCl₃) -74.2 (t, ${}^{3}J_{\rm F-H}$ 8 Hz); $\delta_{\rm P}$ (CDCl₃) + 22.6;

m/z (HRMS⁺) 584.1111 [M + H]⁺ (C₂₆H₂₆F₃NO₇PS requires 584.1120); $R_f = 0.52$ (silica, DCM : MeOH 97 : 3).

2,2,2-Trifluoroethyl-4-(ethoxy(4-((4-methoxy-2-methylphenyl)ethynyl)-6-((methylsulfonyloxy)methyl)pyridin-2-yl)phosphoryl)benzenesulfonate, 13

2,2,2-Trifluoroethyl-4-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2 methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate (185 mg, 0.32 mmol) was dissolved in anhydrous THF (5 mL) and NEt₃ (0.14 mL, 0.96 mmol) was added. The mixture was stirred at 5 °C and methanesulfonyl chloride (37 µL, 0.48 mmol) was added. The reaction was monitored by TLC (silica; CH_2Cl_2 : 5 % CH_3OH , R_4 (product) = 0.75, $R_{\text{(reactant)}} = 0.61$) and stopped after 30 min. The solvent was removed under reduced pressure and the residue dissolved in CH₂Cl₂ (15 mL) and washed with NaCl solution (saturated, 10 mL). The aqueous layer was re-extracted with CH_2Cl_2 (3 × 10 mL) and the organic layers combined, dried over MgSO₄ and the solvent removed under reduced pressure to leave a colourless oil (160 mg, 76 %); $\delta_{\rm H}$ (CDCl₃) 8.23 (2H, dd, ${}^{3}J_{\rm H-P}$ 11 Hz, ${}^{3}J_{\rm H-H}$ 8 Hz, H^{11}), 8.08 (1H, d, ${}^{4}J_{H-H}$ 2.5 Hz, H^{4}), 8.03 (2H, d, dd, ${}^{3}J_{H-H}$ 8 Hz, ${}^{4}J_{H-P}$ 2 Hz, H^{12}), 7.59 (1H, s, H²), 7.44 (1H, d, ${}^{3}J_{H-H}$ 8.5 Hz, H¹⁷), 6.78 (1H, s, H²⁰), 6.74 (1H, dd, ${}^{3}J_{H-H}$ 8.5 Hz, ${}^{4}J_{H-H}$ 2.5 Hz, H¹⁸), 5.29 (2H, m, H⁹), 4.42 (2H, q, ³J_{F-H} 8 Hz, H⁶), 4.18 (2H, m, H⁷), 3.82 (3H, s, OMe), 3.07 (3H, s, Ms), 2.48 (2H, s, H^{22}), 1.39 (3H, t, ${}^{3}J_{H-H}$ 7 Hz, H^{8}); δ_{F} (CDCl₃) -74.1 (t, ${}^{3}J_{F-H}$ 8 Hz); δ_P (CDCl₃) + 21.9; m/z (HRMS⁺) 662.0900 [M + H]⁺ (C₂₇H₂₈NO₉F₃PS₂ requires 662.0895); $R_f = 0.75$ (silica, DCM : MeOH 95 : 5).

2,2,2-Trifluoroethyl 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(ethoxy phosphoryl benzenesulfonate)

1,4,7-Triazacyclononane hydrochloride salt (3.0 mg, 12 µmol) and 2,2,2-trifluoroethyl 4-(ethoxy(4-((4-methoxy-2-methylphenyl)ethynyl)-6-((methylsulfonyloxy)methyl)pyridin-2yl)phosphoryl)benzenesulfonate (24 mg, 36 µmol) were dissolved in anhydrous CH₃CN (1 mL) and K₂CO₃ (10 mg, 72 µmol) was added. The mixture was stirred under argon at 60 °C for 16 h. KI (catalytical) was added to the reaction and the mixture was heated for further 1 h. The reaction was cooled and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure to give a yellow oil (15 mg, 69 %); $\delta_{\rm H}$ (CDCl₃) 8.21 (6H, dd, ³J_{H-P} 11 Hz, ³J_{H-H} 8 Hz, H¹¹), 8.03 (3H, s, H⁴), 7.98 (6H, d, ³J_{H-H} 8 Hz, H¹²), 7.53 $(3H, s, H^2)$, 7.41 $(3H, d, {}^{3}J_{H-H} 8.5 Hz, H^{17})$, 6.80 $(3H, d, {}^{4}J_{H-H} 2.5 Hz, H^{20})$, 6.74 $(3H, dd, {}^{3}J_{H-H} 2.5 Hz, H^{20})$, 6.74 $(3H, {}^{3}J_{H-H} 2.5 Hz, H^{20})$, 6.75 $(3H, {}^{3}J_{H-H} 2.5 Hz, H^{20})$, 6 _H 8.5 Hz, ${}^{4}J_{H-H}$ 2.5 Hz, H¹⁸), 4.40 (6H, q, ${}^{3}J_{F-H}$ 8 Hz, H⁶), 4.20 - 4.06 (6H, m, H⁷), 3.85 (6H, s, H⁹), 3.80 (9H, s, OMe), 2.46 (9H, s, H²²), 2.81 (12H, br, 9N₃), 1.38 (9H, t, ${}^{3}J_{H-H}$ 7 Hz, H⁸); δ_{C} (CDCl₃) 161.2 (s, C¹), 160.5 (s, C¹⁹), 151.8 (d, ${}^{1}J_{C-P}$ 168 Hz, C⁵), 142.7 (s, C²¹), 138.6 (s, C¹³), 137.4 (d, ¹J_{C-P} 137 Hz, C¹⁰), 134.1 (s, C¹⁷), 133.4 (s, C¹¹), 133.2 (s, C³), 128.9 (s, C⁴), 127.6 (d, ${}^{4}J_{C-P}$ 13 Hz, C¹²), 124.2 (s, C²), 121.7 (q, ${}^{1}J_{C-F}$ 279 Hz, CF₃), 115.1 (s, C²⁰), 113.4 (s, C^{16}),111.6 (s, C^{18}), 95.8 (s, C^{15}), 88.8 (s, C^{14}), 64.8 (g, ${}^{2}J_{C-F}$ 38.5 Hz, C^{6}), 62.9 (s, C^{9}), 62.7 $(d, {}^{2}J_{C-P} 14 Hz, C^{7})$, 55.3 (s, OMe), 55.2-54.5 (br, 9N₃), 21.0 (s, C²²), 16.5 (s, C⁸); δ_{F} (CDCl₃) -74.2 (t, ${}^{3}J_{\text{F-H}}$ 8 Hz); δ_{P} (CDCl₃) + 22.6; m/z (HRMS⁺) 1825.410 [M + H]⁺ $(C_{84}H_{85}N_6O_{18}F_9P_3S_3 \text{ requires } 1825.415).$

Eu(III) complex of 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(hydroxyphosphoryl benzenesulfonate), [Eu.L^{1b}]³⁻

2,2,2-Trifluoroethyl 6,6',6"-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(ethoxyphosphoryl benzenesulfonate) (5.0 mg, 2.7 µmol) was dissolved in CD₃OD (1.5 mL) and a solution of 0.1 M NaOH in D₂O (0.8 mL) was added. The mixture was heated to 60 °C under argon and monitored with ¹⁹F-NMR [δ_F (reactant) = - 76.2, (δ_F (product, trifluoroethanol) = - 78.0] and ³¹P-NMR [δ_F (reactant) = + 22.3, (δ_P (product) = + 13.1]. After 3 h the solution was cooled to RT and the pH was adjusted to 7 with HCl. Eu(Cl)₃6H₂O (1.0 mg, 2.9 µmol) was added and the mixture heated to 65 °C overnight under argon. The solvent was removed under reduced pressure and the product purified by HPLC ((XBridge C₁₈ column, 19 x 100 mm, i.d. 5 µm) flow rate of 17 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 19.8 min) giving the triethylammonium salt of the complex as a white solid (2.6 mg, 60 %); (HRMS⁻) 1644.205 [EuL^{1b}H₂]⁻ (C₇₂H₆₅¹⁵³EuN₆O₁₈P₃S₃ requires 1644.202); $\tau_{HaO} = 1.09$ ms; $\lambda_{max} = 340$ nm.

2,2,2-Trifluoroethyl 3-bromobenzenesulfonate, 2

3-Bromobenzenesulfonyl chloride (5.00 g, 19.5 mmol) was dissolved in DCM (25 mL) and trifluoroethanol (1.40 mL, 19.5 mmol) was added. A solution of DABCO (2.60 g, 23.4 mmol) in DCM (15 mL) was added resulting in precipitate formation. The reaction was stirred for 1 h at RT, after which time a solution of 1 M NaOH (8 mL) was added. The reaction was diluted in EtOAc (100 mL) and washed with 0.5 M NaHCO₃, 0.1 M HCl, water

and brine. The organic layer was dried over MgSO₄ and the solvent removed under reduced pressure to give a clear oil (5.50 g, 88 %); $\delta_{\rm H}$ (CDCl₃) 8.06 (1H, d, ${}^{4}J_{\rm H-H}$ 2 Hz, H²), 7.86 (1H, d, ${}^{3}J_{\rm H-H}$ 8 Hz, ${}^{4}J_{\rm H-H}$ 1.5 Hz, H⁴), 7.84 (1H, d, ${}^{3}J_{\rm H-H}$ 8 Hz, ${}^{4}J_{\rm H-H}$ 1.5, H⁶), 7.48 (1H, t, ${}^{3}J_{\rm H-H}$ 8 Hz, H⁵), 4.41 (2H, q, ${}^{3}J_{\rm H-F}$ 8 Hz, H⁷); $\delta_{\rm C}$ (CDCl₃) 137.7 (C⁶), 136.7 (C³), 131.0 (C⁵), 130.8 (C²), 126.5 (C⁴), 123.4 (C¹), 121.7 (q, *J* 278 Hz, C⁵), 64.8 (q, *J* 38 Hz, CF₃); $\delta_{\rm F}$ (CDCl₃) -73.8 (t, ${}^{3}J_{\rm F-H}$ 7.0 Hz); *m/z* (HRMS+) 340.9077 [M + Na]⁺ (C₈H₆O₃S⁷⁹BrF₃Na requires 340.9071); *R_f* = 0.58 (silica, EtOAc : *n*-hexane 2 : 8).

2,2,2-Trifluoroethyl 4-(ethoxyhydrophosphoryl)benzenesulfonate, 4

To a suspension of anilinium hypophosphite (1.20 g, 7.54 mmol) in dry toluene was added 2,2,2-trifluoroethyl 3-bromobenzenesulfonate (2.00 g, 6.27 mmol). Argon was bubbled through the solution for 30 min, then aminopropyltriethoxysilane (1.80 mL, 7.65 mmol) was added, and Argon was bubbled through the solution for additional 30 min. PdCl₂(dppf)·CH₂Cl₂ (270 mg, 0.33 mmol) was added, and the mixture stirred at 100 °C for 30 min under argon. The reaction was monitored by ³¹P-NMR [δ_P (reactant) = 7.4, δ_P (product) = 20.2, δ_P (diaryl phosphinate) = 24.9]. The solvent was removed under reduced pressure, 1 M HCl (12 mL) was added and the mixture extracted with EtOAc (3 x 30 mL). The organic fractions were combined, dried over MgSO₄ and concentrate to give a pale orange oil. The product was used for the next step without further purification; δ_H (CDCl₃) 8.32 (1H, m, H²), 8.12 (2H, m, H⁴ and H⁶), 7.48 (1H, t, ³J_{H-H} = 8 Hz, H⁵), 7.67 (1H, d, ¹J_{P-H} 576 Hz, PH), 4.45 (2H, q, ³J_{F-H} 9 Hz, H⁷), 4.23 (2H, m, H⁵), 1.42 (3H, t, ³J_{H-H} 7.0 Hz, H⁶); δ_F (CDCl₃) -74.2 (t, ³J_{F-H} 8 Hz); δ_P (CDCl₃) +20.2; *m*/*z* (HRMS+) 333.0167 [M + H]⁺ (C₁₀H₁₃O₅SF₃P requires 333.0173).

2,2,2-Trifluoroethyl 3-(ethoxy(6-methyl-4-nitropyridin-2yl)phosphoryl)benzenesulfonate, 6

2,2,2-Trifluoroethyl-3-(ethoxyhydrophosphoryl)benzenesulfonate (1.60 g, 4.82 mmol) was added to degassed toluene (40 mL), followed by 2-bromo-6-methyl-4-nitropyridine (1.00 g, 4.61 mmol) and freshly distilled triethylamine (2.30 mL, 16.8 mmol). Argon was bubbled through the yellow solution for 30 min, then PdCl₂(dppf)·CH₂Cl₂ (110 mg, 0.13 mmol) was added, and the mixture stirred at 120 °C overnight under argon, during which time the mixture turned brown. The solvent was removed under reduced pressure, with purification of the resulting black oil by column chromatography (silica, EtOAc: *n*-hexane 1:3 to 1:1) giving a clear oil (850 mg, 38 %); $\delta_{\rm H}$ (CDCl₃) 8.61 (1H, dd, ${}^{3}J_{\rm H-P}$ 6.5 ${}^{4}J_{\rm H-H}$ 2 Hz, H⁴), 8.57 $(1H, d, {}^{3}J_{H-P} 12 Hz, H^{11})$, 8.33 $(1H, dd, {}^{3}J_{H-P} 12 Hz, {}^{3}J_{H-H} 7.5 Hz, H^{15})$, 8.09 $(1H, d, {}^{3}J_{H-H} 7)$ Hz, H¹³), 7.94 (1H, s, H²), 7.72 (1H, m, H¹⁴), 4.41 (2H, q, ${}^{3}J_{F-H}$ 8 Hz, H⁶), 4.24 – 4.11 (2H, m, H⁷), 2.71 (3H, s, H⁹), 1.38 (3H, t, ³J_{H-H} 7.0 Hz, H⁸); δ_C (CDCl₃) 163.5 (d, ⁵J_{C-P} 21.5 Hz, C¹), 156.5 (d, ¹J_{C-P} 171.5 Hz, C⁵), 154.2 (d, ³J_{C-P} 14 Hz, C³), 138.4 (d, ²J_{C-P} 9.5 Hz, C¹⁵), 135.7 (d, ³J_{C-P} 14 Hz, C¹²), 132.1 (d, ²J_{C-P} 10.5 Hz, C¹¹), 132.0 (d, ¹J_{C-P} 142 Hz, C¹⁰), 131.7 (d, ⁴*J*_{C-P} 2.5 Hz, C¹³), 129.8 (d, ³*J*_{C-P} 13 Hz, C¹⁴), 121.7 (q, ¹*J*_{C-F} 278 Hz, CF₃), 118.1 (d, ⁴*J*_{C-P} 3 Hz, C²), 118.0 (d, ²J_{C-P} 24.5 Hz, C⁴), 64.8 (q, ²J_{C-F} 38.5 Hz, C⁶), 62.8 (d, ²J_{C-P} 6 Hz, C⁷), 24.7 (s, C⁹), 16.4 (d, ${}^{3}J_{C-P}$ 6 Hz, C⁸); δ_{F} (CDCl₃) -74.2 (t, ${}^{3}J_{F-H}$ 7 Hz); δ_{P} (CDCl₃) + 20.4; m/z(HRMS⁺) 469.0444 $[M + H]^+$ (C₁₆H₁₇N₂O₇SF₃P requires 469.0446); $R_f = 0.70$ (silica, EtOAc : *n*-hexane 2 : 1).

4-Bromo-6-methylpyridin-2-yl(3-(2,2,2-trifluoroethoxysulfonyl)phenyl)phosphinic acid

2,2,2-Trifluoroethyl-3-(ethoxy(6-methyl-4-nitropyridin-2-yl)phosphoryl)benzenesulfonate (300 mg, 0.64 mmol) was dissolved in CH₃COBr (2 mL) and the mixture stirred at 70 °C for 16 h under argon. The brown solution was dropped cautiously into CH₃OH (20 mL) stirred at 0 °C. The solvent was removed under reduced pressure to yield a pale brown solid. The resulting material, containing unidentified contaminants, was used without further purification, assuming quantitative conversion to the bromo-phosphinic acid; $\delta_{\rm H}$ (CD₃OD) 8.53 (1H, d, ${}^{3}J_{\rm H-P}$ 13, H¹¹), 8.46 (1H, d, ${}^{3}J_{\rm H-P}$ 6.5 Hz, H⁴), 8.40 (1H, m, H¹⁵), 8.38 (1H, s, H²), 8.18 (1H, d, ${}^{3}J_{\rm H-P}$ 13, H¹³), 7.91 (1H, td, ${}^{3}J_{\rm H-P}$ 8 Hz, ${}^{4}J_{\rm H-P}$ 3 Hz, H¹⁴), 4.70 (2H, q, ${}^{3}J_{\rm F-H}$ 8 Hz, H⁶), 2.88 (3H, s, H⁹); $\delta_{\rm C}$ (CD₃OD) 158.1 (d, ${}^{5}J_{\rm C-P}$ 7.5 Hz, C¹), 149.9 (d, ${}^{1}J_{\rm C-P}$ 131 Hz, C⁵), 144.2 (d, ${}^{3}J_{\rm C-P}$ 148 Hz, C¹⁰), 132.1 (d, ${}^{4}J_{\rm C-P}$ 2.5 Hz, C¹³), 131.8 (d, ${}^{2}J_{\rm C-P}$ 11.5 Hz, C⁴), 131.3 (d, ${}^{2}J_{\rm C-P}$ 12 Hz, C¹¹), 130.9 (d, ${}^{3}J_{\rm C-P}$ 13.5 Hz, C¹⁴), 122.3 (q, ${}^{1}J_{\rm C-F}$ 277 Hz, CF₃), 65.4 (q, ${}^{2}J_{\rm C-F}$ 37.5 Hz, C⁶), 19.4 (s, C⁹); $\delta_{\rm F}$ (CD₃OD) -76.0 (t, ${}^{3}J_{\rm F-H}$ 7 Hz); $\delta_{\rm P}$ (CD₃OD) + 8.0; *m/z* (HRMS⁺) 473.9389 [M + H]⁺ (C₁₄H₁₃NO₅F₃PS⁷⁹Br requires 473.9388).

2,2,2-Trifluoroethyl 3-((4-bromo-6-methylpyridin-2yl)(ethoxy)phosphoryl)benzenesulfonate, 8

4-Bromo-6-methylpyridin-2-yl(3-(2,2,2-trifluoroethoxysulfonyl)phenyl)phosphinic acid (300 mg, 0.64 mmol) was added to HC(OCH₂CH₃)₃ (13 mL) and the mixture stirred at 140 °C for 16 h under argon. The solvent was removed under reduced pressure and the resulting residue was purified by column chromatography (silica, CH₂Cl₂ : 1 CH₃OH) to yield a yellow oil (256 mg, 77 % over two steps); $\delta_{\rm H}$ (CDCl₃) 8.58 (1H, dt, ³*J*_{H-P} 11.5, ⁴*J*_{H-H} 1.5, H¹¹), 8.32 (1H, m, H¹⁵), 8.11 (1H, d, ³*J*_{H-P} 6.5 Hz, H⁴), 8.07 (1H, dd, ³*J*_{H-H} 8 Hz, ⁴*J*_{H-H} 2 Hz, H¹³), 7.69 (1H, td, ³*J*_{H-H} 8 Hz, ⁴*J*_{H-P} 3 Hz, H¹⁴), 7.43 (1H, s, H²), 4.40 (2H, qd, ³*J*_{F-H} 8 Hz, ²*J*_{H-H} 3.5 Hz, H⁶), 4.12 (2H, m, H⁷), 2.52 (3H, s, H⁹), 1.36 (3H, t, ³*J*_{H-H} 7 Hz, H⁶); $\delta_{\rm C}$ (CDCl₃) 161.3 (d, ⁵*J*_{C-P} 22 Hz, C¹), 153.8 (d, ¹*J*_{C-P} 169.5 Hz, C⁵), 138.3 (d, ²*J*_{C-P} 9.5 Hz, C¹⁵), 135.4 (d, ³*J*_{C-P} 14 Hz, C¹²), 133.6 (d, ³*J*_{C-P} 15.5 Hz, C³), 132.6 (d, ¹*J*_{C-P} 139 Hz, C¹⁰), 132.1 (d, ²*J*_{C-P} 10.5 Hz, C¹¹),

131.4 (d, ${}^{4}J_{C-P}$ 2.5 Hz, C¹³), 129.6 (d, ${}^{3}J_{C-P}$ 12.5 Hz, C¹⁴), 129.1 (d, ${}^{4}J_{C-P}$ 3 Hz, C²), 128.9 (d, ${}^{2}J_{C-P}$ 24 Hz, C⁴), 121.7 (q, ${}^{1}J_{C-F}$ 278 Hz, CF₃), 64.8 (q, ${}^{2}J_{C-F}$ 38 Hz, C⁶), 62.5 (d, ${}^{2}J_{C-P}$ 6 Hz, C⁷), 24.2 (C⁹), 16.4 (d, ${}^{3}J_{C-P}$ 6 Hz, C⁸); δ_{F} (CDCl₃) -74.2 (t, ${}^{3}J_{F-H}$ 7 Hz); δ_{P} (CDCl₃) + 21.1; *m/z* (HRMS⁺) 501.9690 [M + H]⁺ (C₁₆H₁₇NO₅F₃PS⁷⁹Br requires 501.9701); *R_f* = 0.50 (silica, DCM : MeOH 96 : 4).

4-Bromo-2-(ethoxy(3-(2,2,2-trifluoroethoxysulfonyl)phenyl)phosphoryl)-6methylpyridine 1-oxide

2,2,2-Trifluoroethyl 3-((4-bromo-6-methylpyridin-2-yl)(ethoxy)phosphoryl)benzenesulfonate (350 mg, 0.70 mmol) was dissolved in CHCl₃ (10 mL). 3-Chloroperbenzoic acid (240 mg, 1.39 mmol) was added and the solution stirred at 65 °C for 16 h. The solvent was then removed under reduced pressure, with the resulting material being re-dissolved in CH₂Cl₂ (15 mL), and washed with NaHCO_{3(aa)} (0.5 M, 10 mL). The aqueous layer was re-extracted with CH_2Cl_2 (3 × 10 mL), the organic extracts combined, dried over MgSO₄, and the solvent removed under reduced pressure giving a yellow oil (320 mg, 85 %); $\delta_{\rm H}$ (CDCl₃) 8.53 (1H, dt, ³*J*_{H-P} 13.5, ⁴*J*_{H-H} 1.5, H¹¹), 8.36 (1H, m, H¹⁵), 8.09 (1H, dd, ³*J*_{H-P} 8 Hz, ⁴*J*_{H-H} 3 Hz, H⁴), 8.05 (1H, d, ³*J*_{H-H} 8 Hz, H¹³), 7.68 (1H, td, ³*J*_{H-H} 8 Hz, ⁴*J*_{H-P} 3.5 Hz, H¹⁴), 7.52 (1H, d, ⁴*J*_{H-H} 3 Hz, H²), 4.41 (2H, m, H⁶), 4.18 (2H, m, H⁷), 2.30 (3H, s, H⁹), 1.38 (3H, t, ³J_{H-H} 7 Hz, H⁶); $\delta_{\rm C}$ (CDCl₃) 150.8 (d, ${}^{5}J_{\rm C-P}$ 4.5 Hz, C¹), 142.7 (d, ${}^{1}J_{\rm C-P}$ 154 Hz, C⁵), 139.2 (d, ${}^{2}J_{\rm C-P}$ 10.5 Hz, C^{15}), 134.8 (d, ${}^{3}J_{C-P}$ 15.5 Hz, C^{12}), 133.1 (d, ${}^{2}J_{C-P}$ 11 Hz, C^{4}), 132.8 (d, ${}^{2}J_{C-P}$ 12.5 Hz, C^{11}), 132.7 (d, ${}^{4}J_{C-P}$ 2 Hz, C²), 131.8 (d, ${}^{4}J_{C-P}$ 2.5 Hz, C¹³), 131.4 (d, ${}^{1}J_{C-P}$ 129 Hz, C¹⁰), 129.5 (d, ³*J*_{C-P} 14 Hz, C¹⁴), 121.8 (q, ¹*J*_{C-F} 278 Hz, CF₃), 117.9 (d, ³*J*_{C-P} 13 Hz, C³), 65.0 (q, ²*J*_{C-F} 38 Hz, C⁶), 62.9 (d, ${}^{2}J_{C-P}$ 6 Hz, C⁷), 17.0 (C⁹), 16.4 (d, ${}^{3}J_{C-P}$ 6 Hz, C⁸); δ_{F} (CDCl₃) -74.2 (t, ${}^{3}J_{F-H}$ 7 Hz); δ_P (CDCl₃) + 17.0; m/z (HRMS⁺) 517.9650 [M + H]⁺ (C₁₆H₁₇NO₆PS⁷⁹BrF₃ requires 517.9650); $R_f = 0.49$ (silica, DCM : MeOH 96 : 4).

2,2,2-Trifluoroethyl-3-((4-bromo-6-(hydroxymethyl)pyridin-2 yl)(ethoxy)phosphoryl)benzenesulfonate, 12

Trifluoroacetic anhydride (1.70 mL) was added to a solution of 4-bromo-2-(ethoxy(3-(2,2,2trifluoroethoxysulfonyl)phenyl)phosphoryl)-6-methylpyridine 1-oxide (310 mg, 0.60 mmol) in dry CHCl₃ (15 mL). The reaction mixture was heated to 60 °C for 3 h under argon. The solvent was removed under reduced pressure and the resulting oil was dissolved in EtOH (12 mL) and H₂O (12 mL) and stirred for 1h. After this time the solution was concentrated (ca. 15 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The organic extracts were combined, dried over MgSO₄, the solvent removed under reduced pressure and the resulting residue was purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 100 : 0 to 97 : 3) to yield a clear oil $(220 \text{ mg}, 70 \%); \delta_{\text{H}} (\text{CDCl}_3) 8.55 (1\text{H}, \text{dt}, {}^{3}J_{\text{H-P}} 12, {}^{4}J_{\text{H-H}} 1.5, \text{H}^{11}), 8.29 (1\text{H}, \text{m}, \text{H}^{15}), 8.19$ (1H, dd, ³*J*_{H-P} 6.5 Hz, ⁴*J*_{H-H} 2 Hz, H⁴), 8.08 (1H, d, ³*J*_{H-H} 8 Hz, H¹³), 7.71 (1H, td, ³*J*_{H-H} 8 Hz, ⁴*J*_{H-P} 3 Hz, H¹⁴), 7.66 (1H, s, H²), 6.72 (1H, br, OH), 4.75 (2H, s, H⁹), 4.43 (2H, m, H⁶), 4.16 (2H, m, H⁷), 1.37 (3H, t, ³J_{H-H} 7 Hz, H⁶); δ_C (CDCl₃) 162.7 (d, ⁵J_{C-P} 20.5 Hz, C¹), 153.3 (d, ${}^{1}J_{C-P}$ 168.5 Hz, C⁵), 138.2 (d, ${}^{2}J_{C-P}$ 10 Hz, C¹⁵), 135.7 (d, ${}^{3}J_{C-P}$ 14 Hz, C¹²), 134.5 (d, ${}^{3}J_{C-P}$ 14.5 Hz, C³), 132.0 (d, ¹J_{C-P} 128.5 Hz, C¹⁰), 131.9 (d, ²J_{C-P} 11 Hz, C¹¹), 131.7 (d, ⁴J_{C-P} 2.5 Hz, C^{13}), 130.3 (d, ${}^{2}J_{C-P}$ 23.5 Hz, C^{4}), 129.8 (d, ${}^{3}J_{C-P}$ 12.5 Hz, C^{14}), 126.5 (d, ${}^{4}J_{C-P}$ 3 Hz, C^{2}), 121.8 (q, ¹J_{C-F} 278 Hz, CF₃), 64.8 (q, ²J_{C-F} 38 Hz, C⁶), 64.0 (C⁹), 62.8 (d, ²J_{C-P} 6 Hz, C⁷), 16.4 (d, ${}^{3}J_{C-P}$ 6 Hz, C⁸); δ_{F} (CDCl₃) -74.3 (t, ${}^{3}J_{F-H}$ 7 Hz); δ_{P} (CDCl₃) + 21.9; m/z (HRMS⁺) 517.9647 $[M + H]^+$ (C₁₆H₁₇NO₆PS⁷⁹BrF₃ requires 517.9650); $R_f = 0.56$ (silica, DCM : MeOH 96:4).

2,2,2-trifluoroethyl 3-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate

2,2,2-Trifluoroethyl

3-((4-bromo-6-(hydroxymethyl)pyridin-2-

yl)(ethoxy)phosphoryl)benzenesulfonate (160 mg, 0.31 mmol) was dissolved in dry THF (1.5 mL) and the solution was degassed (freeze-thaw cycle) three times. 1-Ethynyl-4-methoxy-2methylbenzene (68 mg, 0.47 mmol) and NEt₃ (0.90 mL) were added and the solution degassed once more. [1,1'-Bis(diphenylphosphino)ferrocene]palladium(II) chloride (36 mg, 58 µmol) and CuI (6 mg, 31 µmol) were added and the solution was degassed a further three times. The solution was stirred at 65 °C under argon for 16 h, solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 – 2 %) to give an orange oil (90 mg, 50 %); $\delta_{\rm H}$ (CDCl₃) 8.57 (1H, d, ${}^{3}J_{\rm H-P}$ 11.5, H^{11}), 8.31 (1H, m, H^{15}), 8.10 (1H, d, ${}^{3}J_{H-P}$ 6 Hz, H^{4}), 8.07 (1H, d, ${}^{3}J_{H-H}$ 8 Hz, H^{13}), 7.70 (1H, td, ³*J*_{H-H} 8 Hz, ⁴*J*_{H-P} 3 Hz, H¹⁴), 7.46 (1H, s, H²) 7.42 (1H, d, ³*J*_{H-H} 8.5 Hz, H¹⁷), 6.77 (1H, d, ⁴*J*_{H-H} 2.5 Hz, H²⁰), 6.72 (1H, dd, ³*J*_{H-H} 8.5 Hz, ⁴*J*_{H-H} 2.5 Hz, H¹⁸), 4.75 (2H, s, H⁹), 4.35 (2H, m, H⁶), 4.16 (2H, m, H⁷), 3.80 (3H, s, OMe), 3.44 (1H, br, OH), 2.47 (3H, s, H²²), 1.38 (3H, t, ${}^{3}J_{\text{H-H}}$ 7 Hz, H⁸); δ_{C} (CDCl₃) 161.0 (d, ${}^{4}J_{\text{C-P}}$ 19 Hz, C¹), 160.7 (s, C¹⁹), 151.9 (d, ${}^{1}J_{\text{C-P}}$ 169 Hz, C⁵), 142.9 (s, C²¹), 138.1 (d, ²J_{C-P} 10 Hz, C¹⁵), 135.6 (d, ³J_{C-P} 14 Hz, C¹²), 134.0 (s, C¹⁷), 132.7 (d, ${}^{1}J_{C-P}$ 140 Hz, C¹⁰), 131.9 (d, ${}^{2}J_{C-P}$ 11 Hz, C¹¹), 131.6 (s, C³), 131.5 (s, C¹³), 129.7 (d, ³*J*_{C-P} 13 Hz, C¹⁴), 128.8 (d, ²*J*_{C-P} 23 Hz, C⁴), 124.3 (s, C²), 121.7 (q, ¹*J*_{C-F} 278 Hz, CF₃), 115.3 (s, C^{20}), 113.5 (s, C^{16}), 111.6 (s, C^{18}), 95.8 (s, C^{15}), 88.8 (s, C^{14}), 64.8 (g, ${}^{2}J_{C-F}$ 38.5 Hz, C^{6}), 64.0 (s, C⁹), 62.6 (d, ${}^{2}J_{C-P}$ 6 Hz, C⁷), 55.3 (s, OMe), 21.0 (s, C²²), 16.5 (s, ${}^{3}J_{C-P}$ 6 Hz, C⁸); δ_{F} (CDCl₃) -74.2 (t, ${}^{3}J_{\text{F-H}}$ 8 Hz); δ_{P} (CDCl₃) + 22.2; m/z (HRMS⁺) 584.1111 [M + H]⁺ $(C_{26}H_{26}F_3NO_7PS \text{ requires 584.1120}); R_f = 0.52 \text{ (silica, DCM : MeOH 97 : 3)}.$

2,2,2-Trifluoroethyl 3-(ethoxy(4-((4-methoxy-2-methylphenyl)ethynyl)-6-((methylsulfonyloxy)methyl)pyridin-2-yl)phosphoryl)benzenesulfonate, 14

2,2,2-trifluoroethyl

3-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2-

methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate (45 mg, 78 µmol) was dissolved in anhydrous THF (2.5 mL) and NEt₃ (32 mL, 0.23 mmol) was added. The mixture was stirred at 5 °C and methanesulfonyl chloride (9 µL, 0.12 mmol) was added. The reaction was monitored by TLC (silica; CH₂Cl₂ : 5 % CH₃OH, R_f (product) = 0.75, R_f (reactant) = 0.61) and stopped after 30 min. The solvent was removed under reduced pressure and the residue dissolved in CH₂Cl₂ (10 mL) and washed with NaCl solution (saturated, 10 mL). The aqueous layer was re-extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers combined, dried over MgSO₄ and the solvent removed under reduced pressure to leave a colourless oil (40 mg, 76 %); $\delta_{\rm H}$ (CDCl₃) 8.59 (1H, d, ³J_{H-P} 11.5, H¹¹), 8.36 (1H, m, H¹⁵), 8.18 (1H, d, ³J_{H-P} 6.5 Hz, H⁴), 8.10 (1H, d, ³J_{H-H} 8 Hz, H¹³), 7.73 (1H, td, ³J_{H-H} 8 Hz, ⁴J_{H-P} 3 Hz, H¹⁴), 7.60 (1H, s, H²), 7.45 (1H, d, ³J_{H-H} 8.5 Hz, H¹⁷), 6.83 (1H, s, H²⁰), 6.73 (1H, d, ³J_{H-H} 8.5 Hz, H¹⁸), 5.29 (2H, m, H⁹), 4.44 (2H, q, ³J_{H-H} 8 Hz, H⁶), 4.16 (2H, m, H⁷), 3.82 (3H, s, OMe), 3.09 (2H, s, Ms), 2.49 (3H, s, H²²), 1.42 (3H, t, ³J_{H-H} 7 Hz, H⁸); $\delta_{\rm F}$ (CDCl₃) -74.1 (t, ³J_{F-H} 8 Hz); $\delta_{\rm P}$ (CDCl₃) + 21.5; m/z (HRMS⁺) 662.0900 [M + H]⁺ (C₂₇H₂₈NO₉F₃PS₂ requires 662.0895); R_f = 0.75 (silica, DCM : MeOH 95 : 5).

2,2,2-Trifluoroethyl-6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(3-(ethoxyphosphoryl benzenesulfonate)

The hydrochloride salt of 1,4,7-triazacyclononane (5.0 mg, 20 µmol) and 2,2,2-trifluoroethyl 3-(ethoxy(4-((4-methoxy-2-methylphenyl)ethynyl)-6-((methylsulfonyloxy)methyl)pyridin-2vl)phosphorvl)benzenesulfonate (40 mg, 60 µmol) were dissolved in anhydrous CH₃CN (1.5 mL) and K₂CO₃ (17 mg, 0.12 mmol) was added. KI (catalytical) was added to the reaction and the mixture was stirred under argon at 60 °C for 1 h. The reaction was cooled and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure to give a yellow oil (18 mg, 51 %); $\delta_{\rm H}$ (CDCl₃) 8.61 (3H, d, ${}^{3}J_{\rm H-P}$ 11.5, H¹¹), 8.37 (3H, m, H¹⁵), 8.12 (6H, m, H⁴⁻¹³), 7.72 (6H, m, H¹⁴⁻²), 7.41 (3H, d, ³J_{H-H} 8.5 Hz, H¹⁷), 6.83 $(3H, s, H^{20}), 6.78 (3H, d, {}^{3}J_{H-H} 8.5 Hz, H^{18}), 4.40 (6H, q, {}^{3}J_{F-H} 8 Hz, H^{6}), 4.20 - 4.06 (6H, m, m)$ H⁷), 3.83 (6H, s, H⁹), 3.80 (9H, s, OMe), 2.48 (9H, s, H²²), 2.81 (12H, br, 9N₃), 1.38 (9H, t, ${}^{3}J_{\text{H-H}}$ 7 Hz, H⁸); δ_{C} (CDCl₃) 161.0 (d, ${}^{4}J_{\text{C-P}}$ 20 Hz, C¹), 160.3 (s, C¹⁹), 151.4 (d, ${}^{1}J_{\text{C-P}}$ 169 Hz, C⁵), 142.4 (s, C²¹), 138.1 (d, ²J_{C-P} 10 Hz, C¹⁵), 135.7 (d, ³J_{C-P} 12 Hz, C¹²), 134.0 (s, C¹⁷), 132.7 (d, ¹*J*_{C-P} 140 Hz, C¹⁰), 131.9 (d, ²*J*_{C-P} 11 Hz, C¹¹), 131.6 (s, C³), 131.4 (s, C¹³), 129.7 (d, ³*J*_{C-P} 13 Hz, C¹⁴), 128.6 (d, ²*J*_{C-P} 23 Hz, C⁴), 124.2 (s, C²), 121.7 (g, ¹*J*_{C-F} 278 Hz, CF₃), 115.1 (s, C^{20}), 113.6 (s, C^{16}), 111.6 (s, C^{18}), 95.8 (s, C^{15}), 88.2 (s, C^{14}), 64.8 (g, ${}^{2}J_{C-F}$ 38.5 Hz, C^{6}), $62.9 (s, C^9)$, $62.7 (d, {}^2J_{C-P} 7 Hz, C^7)$, 55.3 (s, OMe), $55.2-54.5 (br, 9N_3)$, $21.0 (s, C^{22})$, $16.5 (s, C^$ C^{8} ; δ_{F} (CDCl₃) -74.1 (t, ${}^{3}J_{F-H}$ 8 Hz); δ_{P} (CDCl₃) + 22.3; m/z (HRMS⁺) 1825.410 [M + H]⁺ $(C_{84}H_{85}N_6O_{18}F_9P_3S_3 \text{ requires } 1825.415).$

Eu(III) complex of 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(3-(hydroxyphosphoryl benzenesulfonate), [Eu.L³]³⁻

2,2,2-Trifluoroethyl-6,6',6"-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(3-(ethoxyphosphoryl benzenesulfonate) (5.0 mg, 2.7 µmol) was dissolved in CD₃OD (1.5 mL) and a solution of 0.1 M NaOH in D₂O (0.8 mL) was added. The mixture was heated to 60 °C under argon and monitored with ¹⁹F-NMR [δ_F (reactant) = - 76.1, (δ_F (product, trifluoroethanol) = - 78.0] and ³¹P-NMR [δ_F (reactant) = + 22.3, (δ_P (product) = + 12.9]. After 3 h the solution was cooled to RT and the pH was adjusted to 7 with HCl. Eu(Cl)₃6H₂O (1.0 mg, 2.9 µmol) was added and the mixture heated to 65 °C overnight under argon. The solvent was removed under reduced pressure and the product purified by HPLC ((XBridge C₁₈ column, 19 x 100 mm, i.d. 5 µm) flow rate of 17 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 19.2 min) giving the triethylammonium salt of the complex as a white solid (2.5 mg, 58 %); (HRMS⁻) 1644.205 [EuL³H₂]⁻ (C₇₂H₆₅¹⁵³EuN₆O₁₈P₃S₃ requires 1644.202); $\tau_{HzO} = 1.12$ ms; $\lambda_{max} = 340$ nm.

HPLC data for Europium(III) complexes

HPLC of $[Eu.L^{1a}]^{3-}$ ((XBridge C₁₈ column, 4.6 x 100 mm, i.d. 5 µm) flow rate of 2 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 17.7 min).

HPLC of[Eu.L²]²⁻ ((XBridge C₁₈ column, 4.6 x 100 mm, i.d. 5 μ m) flow rate of 2 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 15.7 min).

HPLC of $[Eu.L^3]^{3-}$ ((XBridge C₁₈ column, 4.6 x 100 mm, i.d. 5 µm) flow rate of 2 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 18.3 min).

HPLC of $[Eu.L^{1b}]^{3-}$ ((XBridge C₁₈ column, 4.6 x 100 mm, i.d. 5 µm) flow rate of 2 mL / min with H₂O (25 mM triethylammonium acetate buffer, pH = 7) – 2 % CH₃CN) as eluents (3 min) [linear gradient to 40 % MeOH (15 min), linear gradient to 100 % MeOH (3 min)], t_R = 19.0 min).

¹H, ¹⁹F, ³¹P and ¹³C spectra

Each of the spectral assignments given here and in the main paper has been made with the aid of a variety of 2D NMR experiments (COSY, HMBC, HSQC). Two illustrative examples are reported for compounds **5** and **7**, e.g. pages 22-27.

2,2,2-Trifluoroethyl 4-bromobenzenesulfonate, 1

2,2,2-Trifluoroethyl 4-(ethoxy(6-methyl-4-nitropyridin-2-yl)phosphoryl)benzenesulfonate, 5

-68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80 f1 (ppm)

22

2,2,2-Trifluoroethyl 4-((4-bromo-6-methylpyridin-2-yl)(ethoxy)phosphoryl)benzenesulfonate, 7

^{-73.82}
^{-73.83}
^{-73.85}
^{-73.85}

8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 f2 (ppm)

2,2,2-Trifluoroethyl-4-((4-bromo-6-(hydroxymethyl)pyridin-2yl)(ethoxy)phosphoryl)benzenesulfonate, 11

2,2,2-Trifluoroethyl-4-(ethoxy(6-(hydroxymethyl)-4-((4-methoxyphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate

376 MHz CDCl₃

-64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 f1 (ppm) -76 -77 -79 -80 -81 -82 -83 -84 -75 -78

160

150 140

130

120 110 100

90

80 70

2,2,2-Trifluoroethyl 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxyphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(ethoxyphosphoryl benzenesulfonate)

40 30 20 f1 (ppm)

10 0 -10 -20 -30 -40

60 50

-90 -100

-80

-70

-50 -60

-68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -76.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 f1 (ppm)

2,2,2-trifluoroethyl 4-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2-

methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate

2,2,2-Trifluoroethyl 3-bromobenzenesulfonate, 2

65.24 64.99 64.98 64.74 64.73 64.73

2,2,2-Trifluoroethyl 3-(ethoxy(6-methyl-4-nitropyridin-2-

yl)phosphoryl)benzenesulfonate, 6

2,2,2-Trifluoroethyl 3-((4-bromo-6-methylpyridin-2-

yl)(ethoxy)phosphoryl)benzenesulfonate, 8

www.herlar/herlar

MMMmonnambre

mandation

s man

-21.14

2,2,2-Trifluoroethyl

3-((4-bromo-6-(hydroxymethyl)pyridin-2-

yl)(ethoxy)phosphoryl)benzenesulfonate, 12

2,2,2-trifluoroethyl 3-(ethoxy(6-(hydroxymethyl)-4-((4-methoxy-2methylphenyl)ethynyl)pyridin-2-yl)phosphoryl)benzenesulfonate

-67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -73.0 -73.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82. f1 (ppm)

-74.18 -74.20 -74.22

Eu(III)complexof6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxyphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(hydroxyphosphorylbenzenesulfonate),[Eu.L^{1a}]³⁻

1570 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 m/z (Da)

Q-TOF mass spectrometry showing the molecular ion and the Et₃NH⁺ salt adducts.

Eu(III)complexof6,6',6''-((S)-2-(4-aminobutyl)-1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxyphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(hydroxyphosphoryl benzenesulfonate), [Eu.L²]²⁻

Eu(III) complex of 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(4-(hydroxyphosphoryl benzenesulfonate), [Eu.L^{1b}]³⁻

Eu(III) complex of 6,6',6''-(1,4,7-triazacyclononane-1,4,7-triyl)tris(methylene)tris(4-((4-methoxy-2-methylphenyl)ethynyl)pyridine-6,2-diyl)tris(3-(hydroxyphosphoryl benzenesulfonate), [Eu.L³]³⁻

