Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2'-alkylated RNA monomers

Saswata Karmakar, Andreas S. Madsen, Dale C. Guenther, Bradley C. Gibbons and Patrick J.

Hrdlicka*

hrdlicka@uidaho.edu

ELECTRONIC SUPPLEMENTARY INFORMATION

General experimental section	S 2
Synthesis of 2-pyrenemethanol and 4-pyrene methanol (Schemes S1 and S2)	S 3
MALDI-MS of modified ONs (Table S1)	S4
Representative thermal denaturation curves (Fig. S1)	S 5
DNA selectivity of B1-B6 (Table S2)	S 5
Additional data and discussion of mismatch specificity (Tables S3 and S4)	S 6
Absorbance spectra of X1-Z5 in absence or presence of cDNA or cRNA (Figs. S2-S4)	S 8
Steady-state fluorescence emission spectra of of X1-Z5 in absence or presence of cDNA or cRNA (Figs. S5-S7)	S11
Thermodynamic parameters of X/Y/Z-modified duplexes (Tables S5 and S6)	S14
Absorbance spectra of representative Invaders (Fig. S8)	S16
Pseudorotational phase angles of selected nucleotides in B2:D4 duplexes (Table S7)	S17
Pseudorotational phase angles of selected nucleotides in B2:B5 duplexes (Table S8)	S17
Structural base pair and dinucleotide step parameters for duplexes D1:D4, B2:D4, B2:B5 (Type A) and B2:B5 (Type B) (Figs. S9-S14)	S18
Energy minimized structures of X2:X5 and Z2:Z5 (Type B) (Fig. 15)	S24
References	S25
¹ H, COSY, ¹³ C, DEPT, and HSQC spectra of nucleosides 2Y/2Z/3Y/3Z/4Y/4Z	S26

General experimental section. Reagents and solvents were commercially available, of analytical grade and used without further purification. Petroleum ether of the distillation range 60-80 °C was used. Solvents were dried over activated molecular sieves: THF (3Å); CH₂Cl₂, 1,2dichloroethane, N,N'-diisopropylethylamine and anhydrous DMSO (4Å). Anhydrous diethyl ether, DMF and benzene were obtained from commercial suppliers (<10 ppm water). Water content of anhydrous solvents was verified on Karl-Fisher apparatus. Reactions were conducted under argon whenever anhydrous solvents were used. Reactions were monitored by TLC using silica gel coated plates with a fluorescence indicator (SiO₂-60, F-254) which were visualized a) under UV light and/or b) by dipping in 5% conc. H₂SO₄ in absolute ethanol (v/v) followed by heating. Silica gel column chromatography was performed with Silica gel 60 (particle size 0.040-0.063 mm) using moderate pressure (pressure ball). Evaporation of solvents was carried out under reduced pressure at temperatures below 45 °C. After column chromatography, appropriate fractions were pooled, evaporated and dried at high vacuum for at least 12h to give the obtained products in high purity (>95%) as ascertained by 1D NMR techniques. Chemical shifts of ¹H NMR (500 MHz), ¹³C NMR (125.6 MHz), and/or ³¹P NMR (121.5 MHz) are reported relative to deuterated solvent or other internal standards (80% phosphoric acid for ³¹P NMR). Exchangeable (ex) protons were detected by disappearance of signals upon D_2O addition. Assignments of NMR spectra are based on 2D spectra (COSY, HSQC) and DEPT-spectra. Quaternary carbons are not assigned in ¹³C NMR but verified from HSQC and DEPT spectra (absence of signals). MALDI-HRMS spectra of compounds were recorded on a Waters Q-TOF Premiere mass spectrometer using 2,5-dihydroxybenzoic acid as a matrix and polyethylene glycol (PEG 600) as an internal calibration standard.

4,5,9,10-tetrahydropyrene 2-pyrenemethanol

Scheme S1. Synthesis of 2-pyrenemethanol. Reagents and conditions: (a) Br₂, DMF, rt, 6h; (b) DDQ, benzene, reflux, 4h; (c) (i) *n*-BuLi, THF/ether, -78 °C for 2h; (ii) DMF, -30 to -50 °C for 1h, then rt for 15h; (d) NaBH₄, THF, rt, overnight.

Scheme S2. Synthesis of 4-pyrenemethanol. Reagents and conditions: (a) Br₂, AcOH, rt, 1h; (b) DDQ, benzene, reflux, 4h; (c) (i) *n*-BuLi, THF/ether, -78 °C for 2h; (ii) DMF, -50 to -30 °C for 1h, then rt for 15h; (d) NaBH₄, THF, rt, overnight.

ONs	Sequence	Calc. m/z [M+H]	Found m/z [M+H]
Y1	5'-GYG ATA TGC	2969	2969
Y2	5'-GTG A <u>Y</u> A TGC	2969	2969
Y3	5'-GTG ATA <u>Y</u> GC	2969	2969
Y4	3'-CAC <u>Y</u> AT ACG	2898	2898
Y5	3'-CAC TA <u>Y</u> ACG	2898	2898
Y6	3'-CAC $\underline{\mathbf{Y}}A\underline{\mathbf{Y}}$ ACG	3114	3114
Z 1	5'-G <u>Z</u> G ATA TGC	2969	2969
Z 2	5'-GTG A <u>Z</u> A TGC	2969	2969
Z 3	5'-GTG ATA <u>Z</u> GC	2969	2969
Z4	3'-CAC <u>Z</u> AT ACG	2898	2898
Z5	3'-CAC TA <u>Z</u> ACG	2898	2898
Z6	3'-CAC <u>Z</u> A <u>Z</u> ACG	3114	3114

Table S1. MALDI-MS of ONs modified with monomers \mathbf{Y} and \mathbf{Z} .^a

^a For structures of monomers **Y** and **Z**, see Figure 1 in the main manuscript.

Figure S1. Representative thermal denaturation curves of **X/Y/Z**-modified duplexes and reference duplex **D1**:**D2**. For experimental conditions, see Table 1.

			$\Delta\Delta T_{\rm m}/{\rm mod}$ (DNA-RNA) [°C						
ON	Duplex	<u>B</u> =	X	Y	Z				
B1	5'-G <u>B</u> G ATA TGC		+7.0	+7.5	+6.0				
B2	5'-GTG A <u>B</u> A TGC		+9.0	+6.5	+7.0				
B3	5'-GTG ATA <u>B</u> GC		+8.0	+8.5	+9.0				
B4	3'-CAC <u>B</u> AT ACG		+8.0	+7.5	+5.0				
B5	3'-CAC TA <u>B</u> ACG		+10.5	+6.5	+7.0				
B6	3'-CAC <u>B</u> A <u>B</u> ACG		+7.3	+6.0	+5.5				

Table S2. DNA selectivity of B1-B6.^a

^a DNA selectivity defined as $\Delta\Delta T_{\rm m}/{\rm mod}$ (DNA-RNA) = $\Delta T_{\rm m}/{\rm mod}$ (vs cDNA) - $\Delta T_{\rm m}/{\rm mod}$ (vs cRNA).

Additional discussion of binding specificity. X2/Y2/Z2 display less efficient discrimination of mismatched RNA targets compared to reference strand D1, except when a mismatched G is opposite of the pyrene-functionalized monomers (Table S3).

ONs with two modifications positioned as next-nearest neighbors (**B6**-series) very efficiently discriminate DNA targets with a single mismatched nucleotide opposite of the central adenosine residue (Table S4). Similar observations have been observed with analogous ONs modified with other O2'-pyrene-functionalized RNA monomers or N2'-pyrene-functionalized 2'-*N*-methyl-2'-amino-DNA,^{S1} which suggests that this probe architecture may be a general strategy toward improving binding specificity. However, this hypothesis must be evaluated across different sequence contexts.

				RNA: 3'-CA	AC U <u>B</u> U A	lCG		
		-	$T_{\rm m}/^{\circ}{ m C}$	$\Delta T_{ m m}/^{\circ}{ m C}$				
ON	Sequence	<u>B</u> =	А	С	G	U		
D1	5'-GTG ATA TGC		26.5	<-16.5	-4.5	<-16.5		
$\mathbf{X2}^{\mathrm{b}}$	5'-GTG A <u>X</u> A TGC		31.0	-17.5	-3.5	-9.5		
Y2	5'-GTG A <u>Y</u> A TGC		34.0	-13.5	-8.5	-13.5		
Z2	5'-GTG A <u>Z</u> A TGC		27.5	-13.0	-7.0	-8.0		

Table S3. Discrimination of mismatched RNA targets by X2/Y2/Z2 and reference ONs.^a

^a For conditions of thermal denaturation experiments, see Table 1. $T_{\rm m}$'s of fully matched duplexes are shown in bold. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to fully matched DNA:RNA duplex.

^b Data previously reported in reference S1. Included to facilitate direct comparison.

					DNA : 5'-GT	G A <u>B</u> A ACG	
			$T_{\rm m} [^{\circ} \rm C]$			$\Delta T_{\rm m} [^{\circ}{\rm C}]$	
ON	Sequence	<u>B</u> =	Т		А	С	G
D2	3'-CAC TAT ACG		29.5	-	-17.0	-15.5	-9.0
X6	3'-CAC <u>X</u> A <u>X</u> ACG		43.5		-24.0	-17.0	-14.0
¥6	3'-CAC $\underline{\mathbf{Y}}A\underline{\mathbf{Y}}$ ACG		45.5		-24.0	-16.0	-14.0
Z6	3'-CAC \underline{Z} A \underline{Z} ACG		32.5		-21.0	-16.0	-12.0

Table S4. Discrimination of mismatched DNA targets by X6/Y6/Z6 and reference ONs.^a

^a For conditions of thermal denaturation experiments, see Table 1. $T_{\rm m}$'s of fully matched duplexes are shown in bold. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to fully matched DNA:DNA duplex.

^b Data previously reported in reference S1. Included to facilitate direct comparison.

Figure S2. Absorbance spectra of single-stranded X1-X5 and their corresponding duplexes with DNA/RNA targets. Spectra were recorded at T = 5 °C using each strand at 1.0 μ M concentration in $T_{\rm m}$ buffer.

Figure S3. Absorbance spectra of single-stranded **Y1-Y5** and their corresponding duplexes with DNA/RNA targets. For conditions, see Fig. S2.

Figure S4. Absorbance spectra of single-stranded **Z1-Z5** and their corresponding duplexes with DNA/RNA targets. For conditions, see Fig. S2.

Figure S5. Steady-state fluorescence emission spectra of **X**-modified ONs and their corresponding duplexes with DNA/RNA targets. Spectra were recorded at T = 5 °C using $\lambda_{ex} = 350$ nm and each strand at 1.0 μ M concentration in T_m buffer. Some, but not all, of these spectra have been previously published in reference S1. Spectra are included to facilitate direct comparison.

Figure S6. Steady-state fluorescence emission spectra of Y-modified ONs and their corresponding duplexes with DNA/RNA targets. $\lambda_{ex} = 345$ nm. For other conditions, see Fig. S5.

Figure S7. Steady-state fluorescence emission spectra of **Z**-modified ONs and their corresponding duplexes with DNA/RNA targets. $\lambda_{ex} = 340$ nm. For other conditions, see Fig. S5.

		$\Delta H^{293}[\Delta \Delta H^{293}] \text{ (kJ/mol)}$								
ON	ZP	Sequence	upper ON	lower ON	probe	$\Delta H_{\rm rec}$				
87.1			vs cDNA	VS CDNA	duplex	(KJ/MOI)				
XI X5	+4	$3'-G\underline{\mathbf{X}}G$ ATA TGC $3'-CAC TA\underline{\mathbf{X}}$ ACG	-281±4 [+25]	-299±2 [+7]	-279±1 [+27]	+5				
X1 X4	+2	5'-G <u>X</u> G ATA TGC 3'-CAC <u>X</u> AT ACG	-281±4 [+25]	-300±7 [+6]	-248±8 [+58]	-27				
X2 X5	+1	5'-GTG A <u>X</u> A TGC 3'-CAC TA <u>X</u> ACG	-305±1 [+1]	-299±2 [+7]	-244±3 [+62]	-54				
X2 X4	-1	5'-GTG A <u>X</u> A TGC 3'-CAC <u>X</u> AT ACG	-305±1 [+1]	-300±7 [+6]	-296±6 [+10]	-3				
X3 X5	-1	5'-GTG ATA <u>X</u> GC 3'-CAC TA <u>X</u> ACG	-270±7 [+36]	-299±2 [+7]	-280±5 [+26]	+17				
X3 X4	-3	5'-GTG ATA <u>X</u> GC 3'-CAC <u>X</u> AT ACG	-270±7 [+36]	-300±7 [+6]	-309±4 [-3]	+45				
Y1 Y5	+4	5'-G <u>¥</u> G ATA TGC 3'-CAC TA <u>¥</u> ACG	-292±14 [+14]	-306±15 [±0]	-277±2 [+29]	-15				
Y1 Y4	+2	5'-G <u>¥</u> G ATA TGC 3'-CAC <u>¥</u> AT ACG	-292±14 [+14]	-271±20 [+35]	-238±3 [+68]	-19				
Y2 Y5	+1	5'-GTG A <u>Y</u> A TGC 3'-CAC TA <u>Y</u> ACG	-309±10 [-3]	-306±15 [±0]	-257±5 [+49]	-52				
Y2 Y4	-1	5'-GTG A <u>Y</u> A TGC 3'-CAC <u>Y</u> AT ACG	-309±10 [-3]	-271±20 [+35]	-307±6 [+1]	+31				
Y3 Y5	-1	5'-GTG ATA <u>Y</u> GC 3'-CAC TA <u>Y</u> ACG	-317±10 [-11]	-306±15 [±0]	-288±2 [+18]	-29				
Y3 Y4	-3	5'-GTG ATA <u>Y</u> GC 3'-CAC <u>Y</u> AT ACG	-317±10 [-11]	-271±20 [+35]	-276±4 [+30]	-6				
Z1 Z5	+4	5'-G Z G ATA TGC 3'-CAC TA Z ACG	-309±8 [-3]	-253±26 [+53]	-252±4 [+54]	-4				
Z1 Z4	+2	5'-G <u>Z</u> G ATA TGC 3'-CAC <u>Z</u> AT ACG	-309±8 [-3]	-332±7 [-26]	-251±5 [+55]	-84				
Z2 Z5	+1	5'-GTG A <u>Z</u> A TGC 3'-CAC TA <u>Z</u> ACG	-260±8 [+46]	-253±26 [+53]	N/A	-				
Z2 Z4	-1	5'-GTG A <u>Z</u> A TGC 3'-CAC <u>Z</u> AT ACG	-260±8 [+46]	-332±7 [-26]	-283±9 [+23]	-3				
Z3 Z5	-1	5'-GTG ATA <u>Z</u> GC 3'-CAC TA <u>Z</u> ACG	-280±4 [+26]	-253±26 [+53]	-251±2 [+55]	+24				
Z3 Z4	-3	5'-GTG ATA <u>Z</u> GC 3'-CAC <u>Z</u> AT ACG	-280±4 [+26]	-332±7 [-26]	-247±1 [+59]	-59				

Table S5. Change in enthalpy upon duplex formation (ΔH) and change in enthalpy upon probe recognition of iso-sequential dsDNA target **D1**:**D4** (ΔH_{rec}).^a

^a $\Delta\Delta H$ is measured relative to ΔH for **D1:D4** = -306 kJ/mol. $\Delta H_{rec} = \Delta H$ (upper strand vs cDNA) + ΔH (lower strand vs cDNA) - ΔH (probe duplex) - ΔH (dsDNA target). "±" denotes standard deviation. N/A = the lack of a clear lower base line prevented determination of this value.

			- <i>T</i> ²⁹³			
Duplex	Zipper	Sequence	upper strand vs cDNA	lower strand vs cDNA	probe duplex	-T ²⁹³ ΔS _{rec} (kJ/mol)
X1 X5	+4	5'-G <u>X</u> G ATA TGC 3'-CAC TA <u>X</u> ACG	235±3 [-30]	247±6 [-18]	224±1 [-41]	-7
X1 X4	+2	5'-G <u>X</u> G ATA TGC 3'-CAC <u>X</u> AT ACG	235±3 [-30]	254±6 [-11]	203±8 [-62]	+21
X2 X5	+1	5'-GTG A <u>X</u> A TGC 3'-CAC TA <u>X</u> ACG	251±1 [-14]	247±6 [-18]	204±3 [-61]	+29
X2 X4	-1	5'-GTG A <u>X</u> A TGC 3'-CAC <u>X</u> AT ACG	251±1 [-14]	254±6 [-11]	245±5 [-20]	-5
X3 X5	-1	5'-GTG ATA <u>X</u> GC 3'-CAC TA <u>X</u> ACG	220±7 [-45]	247±6 [-18]	225±5 [-40]	-23
X3 X4	-3	5'-GTG ATA <u>X</u> GC 3'-CAC <u>X</u> AT ACG	220±7 [-45]	254±6 [-11]	256±3 [-9]	-47
Y1 Y5	+4	5'-G <u>¥</u> G ATA TGC 3'-CAC TA <u>¥</u> ACG	244±14 [-21]	251±14 [-14]	221±2 [-44]	+9
Y1 Y4	+2	5'-G <u>Y</u> G ATA TGC 3'-CAC <u>Y</u> AT ACG	244±14 [-21]	225±20 [-40]	193±3 [-72]	-3
Y2 Y5	+1	5'-GTG A <u>¥</u> A TGC 3'-CAC TA <u>¥</u> ACG	253±10 [-12]	251±14 [-14]	214±5 [-51]	+25
Y2 Y4	-1	5'-GTG A <u>¥</u> A TGC 3'-CAC <u>¥</u> AT ACG	253±10 [-12]	225±20 [-40]	252±5 [-13]	-39
Y3 Y5	-1	5'-GTG ATA <u>Y</u> GC 3'-CAC TA <u>Y</u> ACG	266±11 [+1]	251±14 [-14]	230±2 [-35]	+22
Y3 Y4	-3	5'-GTG ATA <u>Y</u> GC 3'-CAC <u>Y</u> AT ACG	266±11 [+1]	225±20 [-40]	223±4 [-42]	+3
Z1 Z5	+4	5'-G Z G ATA TGC 3'-CAC TA Z ACG	265±8 [±0]	205±24 [-60]	203±3 [-62]	+2
Z1 Z4	+2	5'-G <u>Z</u> G ATA TGC 3'-CAC <u>Z</u> AT ACG	265±8 [±0]	291±7 [+26]	210±5 [-55]	+81
Z2 Z5	+1	5'-GTG A <u>Z</u> A TGC 3'-CAC TA <u>Z</u> ACG	212±8 [-53]	205±24 [-60]	N/A	N/A
Z2 Z4	-1	5'-GTG A <u>Z</u> A TGC 3'-CAC <u>Z</u> AT ACG	212±8 [-53]	291±7 [+26]	242±11 [-23]	-4
Z3 Z5	-1	5'-GTG ATA <u>Z</u> GC 3'-CAC TA <u>Z</u> ACG	234±3 [-31]	205±24 [-60]	205±2 [-60]	-31
Z3 Z4	-3	5'-GTG ATA <u>Z</u> GC 3'-CAC <u>Z</u> AT ACG	234±3 [-31]	291±7 [+26]	205±1 [-60]	+55

Table S6. Change in entropy at 293K upon duplex formation $(-T^{293}\Delta S)$ and change in entropy upon probe recognition of iso-sequential dsDNA target **D1:D4** $(-T^{293}\Delta S_{rec})$.^a

^a $\Delta(T^{293}\Delta S)$ is measured relative to $-T^{293}\Delta S$ for **D1:D4** = 265 kJ/mol. $-T^{293}\Delta S_{rec} = T^{293}\Delta S$ (upper strand vs cDNA) + $T^{293}\Delta S$ (lower strand vs cDNA) - $T^{293}\Delta S$ (probe duplex) - $T^{293}\Delta S$ (dsDNA target). "±" denotes standard deviation. N/A = the lack of a clear lower base line prevented determination of this value.

Figure S8. Absorbance spectra of representative Invaders, duplexes between individual probe strands and cDNA, and single-stranded probes (SSP). Spectra were recorded at T = 5 °C using each strand at 1.0 μ M concentration in T_m buffer.

Р	D1:D4		X2:D4		Y2:D4			Z2:D4		
A ₄ :T ₁₅	93	112	96	116	105	110		102	106	
B ₅ :A ₁₄	129	111	142	98	148	103		149	175	
A ₆ :B ₁₃	102	109	124	97	155	113		171	141	
T ₇ :A ₁₂	121	123	90	100	106	102		111	98	

 Table S7. Pseudorotational phase angles P of selected nucleotides in B2:D4 duplexes.

 Table S8. Pseudorotational phase angles P of selected nucleotides in B2:B5 duplexes.

Р	D1	:D4	X2:X5				Y2:Y5			Z2:Z5				
			Тур	e A	Тур	be B	Type A			Тур	e A	Тур	e B	
A ₄ :T ₁₅	93	112	70	103	100	104	101	106		98	105	100	106	
B ₅ :A ₁₄	129	111	161 ^a	122	149	168	148	104		147	107	150	180	
A ₆ :B ₁₃	102	109	123	160	176	148	104	147		107	146	173	148^{a}	
T ₇ :A ₁₂	121	123	104	71	106	116	109	117		105	110	106	111	

^a Not intercalated.

Figure S9. Structural base pair parameters for duplexes D1:D4 and B2:D4.

Figure S10. Structural dinucleotide step parameters for duplexes D1:D4 and B2:D4.

Figure S11. Structural base pair parameters for duplexes D1:D4 and B2:B5 (Type A).

Figure S12. Structural dinucleotide step parameters for duplexes D1:D4 and B2:B5 (Type A).

Figure S13. Structural base pair parameters for duplexes D1:D4 and B2:B5 (Type B).

Figure S14. Structural dinucleotide step parameters for duplexes D1:D4 and B2:B5 (Type B).

Figure S15. Lowest energy structures of **X2**:**X5** (left) and **Z2**:**Z5** (right) in Type B conformation (**Y2**:**Y5** maintained a Type A conformation throughout the simulation protocol). Top: side view of duplex; bottom: top view of the central duplex region. Color code: sugar phosphate backbone (red); pyrene moieties (blue) and nucleobases (green). Hydrogen atoms, sodium ions and bond orders are omitted for clarity.

References.

(S1) S. Karmakar, B. A. Anderson, R. L. Rathje, S. Andersen, T. Jensen, P. Nielsen and P. J. Hrdlicka, J. Org. Chem., 2011, 76, 7119-7131.

S26

S42

S46

S57

