Supporting Information for

Tandem Prins/Pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds

B. V. Subba Reddy, $^{[a]^*}$ S. Gopal Reddy, $^{[a,b]}$ M. Ramana Reddy, $^{[a]}$ Manika Pal Bhadra $^{[b]}$ and A. V. S. Sarma $^{[c]}$

^aNatural Product Chemistry, ^bCentre for Chemical Biology, ^cCentre for Nuclear Magnetic Resonance, CSIR-Indian Institute of Chemical Technology, Hyderabad –500 007, India. E-mail:basireddy@iict.res.in.

$$\begin{array}{|c|c|c|c|c|}\hline \\ OH \\ OH \\ 1d \\ 2 \\ \hline \\ BF_3.OEt_2 \\ \hline DCM, -40 \, ^{\circ}C \\ \hline \\ 3 \\ \hline \end{array}$$

Table of contents

General procedure S2-S4
Characterization data of products 3a-n and 4 S5-S11
2D-NOESY Spectra of product 3m S11-S14
Copies of ¹H and ¹³C NMR spectra of products S15-S31

General procedure:

Scheme 1. Synthetic procedure for 1d

Reagents & conditions: (a) PBr₃, H₂O, TEAB, DCM, -40 °C (b) TBSCl, imidazole, DCM, 0 °C to rt (c) *n*-BuLi, THF, cyclobutanone, -78 °C (d) TBAF,THF.

Scheme 2. Synthetic procedure for 2d

Reagents & conditions: (a) Zn, aq.NH₄Cl, THF (b) PBr₃, H₂O, TEAB, DCM, -40°C (c) TBSCl, imidazole, DCM, 0°C to rt (d) *n*-BuLi, THF, cyclo butanone, -78°C (e) TBAF, THF.

General procedure for 3-bromobut-3-en-1-ol (1a):

HBr gas was produced by adding PBr₃ (1.46 mL, 11 mmol) dropwise to water (0.59 mL, 33mmol). The HBr gas thus produced was bubbled through tetraethyl ammonium bromide (6.3 g) in 40 mL of dichloromethane at 0 °C after which the dichloromethane was weighed to find 2.25g of HBr (25 mmol) was absorbed by tetraethyl ammonium bromide solution. To this solution inject 3-Butyn-1 ol (1.89 mL, 12 mmol) the reaction mixture was heated at 40 °C for 5 hrs. Cooled to 0 °C and extracted with ether, dried over Na₂SO₄, solvent was removed in *vacuo*. The crude product was used as such for further step.

General procedure for (3-bromobut-3-enyloxy)(tert-butyl)dimethylsilane (1b):

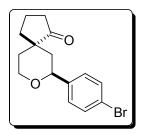
3-bromobut-3-en-1-ol **1a** (5.0 g, 33.3 mmol) was taken in to dry DCM and added imidazole (2.49 g, 36.6 mmol) at 0 °C. After ten minutes added tert-Butyldimethylsilyl chloride (5.0g, 33.3 mmol) and stirred at room temperature for 30 min. Ice pieces was added at 0 °C to quench the reaction. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under reduced pressure. The crude residue was then purified by flash chromatography on silica gel column with hexane-ethyl acetate to give compound **1b** as a liquid.

General procedure for 1-(4-(tert-butyldimethylsilyloxy)but-1-en-2-yl)cyclobutanol (1c):

n-BuLi (1.9 M solution in pentane, 2.0 equiv.) was slowly added to a solution of **1b** (260 mg, 1.0 equiv.) in anhydrous THF at -78 °C over a period of 10 min. The resultant solution was

stirred at -78 °C for 0.5 h. Cyclobutanone (75mg, 1.0 equiv.) was then added and the mixture was stirred at -78 °C for 0.5 h. The mixture was allowed to slowly reach ambient temperature. sat.NH₄Cl was added to quench the reaction, and the aqueous layer was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was then purified by flash chromatography on silica gel column with hexane-ethyl acetate to give compound **1c** (55% yield) as a liquid.

General procedure for 1-(4-hydroxybut-1-en-2-yl)cyclobutanol (1d):


To a solution of **1c** (145 mg, 1.02 mmol) in THF (15 mL) at 0 °C was added TBAF (1.0 N in THF, 1.02 mL, 1.02 mmol). After stirring for 10 min, the reaction was quenched with sat. NH₄Cl solution and extracted with Ethyl acetate for thrice. The combined organic layers were washed with brine, dried over Na₂SO₄, and then filtered and evaporated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether-EtOAc) to afford **1** (95% yield) as a liquid.

liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.20 (d, J= 0.9 Hz, 1H), 5.02 (d, J= 0.9 Hz, 1H), 3.81 (t, J= 5.8 Hz, 2H), 2.44-2.33 (m, 3H), 2.17-2.08 (m, 2H), 1.94-1.87 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 134.3, 111.3, 75.9, 63.1, 35.2, 34.8, 13.2 ppm; MS (APCI): m/z 165 (M+Na)⁺; HRMS (APCI) calculated for C₈H₁₄O₂Na: 165.0882 (M+Na)⁺, Found 165.0882.

Typical procedure for the Prins/Pinacol cyclization: To a stirred solution of homoallylic diol (1; 0.5 mmol) and aldehyde (0.6 mmol) in dry dichloromethane (5 mL) was added 10 mol% BF₃.OEt₂ at -40 °C. The resulting mixture was stirred at same temperature under nitrogen atmosphere for the specified time. After completion of the reaction, as indicated by TLC, the mixture was quenched with sat. NaHCO₃ solution (1.0 mL) and extracted with dichloromethane (2x5 mL). The organic layers were combined, washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The resulting crude product was purified by silica gel column chromatography (100–200 mesh) using ethyl acetate/hexane as eluent to afford the pure product. This reaction was repeated in 1gram scale to demonstrate its suitability for large scale synthesis. The results are consistent with small scale reaction (0.5 mmol).

Characterization data of products:

(5S,7S)-7-(4-Bromophenyl)-8-oxaspiro[4.5]decan-1-one (3a):

liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J= 8.4 Hz, 2H), 7.22 (d, J= 8.2 Hz, 1H), 4.95 (dd, J= 2.3 Hz, J= 11.5 Hz, 1H), 4.08 (dt, J= 3.0 Hz, J= 11.8 Hz, 1H), 3.98 (ddd, J= 1.5 Hz, J= 4.9 Hz, J= 11.7 Hz, 1H), 2.44-2.32 (m, 2H), 2.00-1.97 (m, 2H), 1.87-1.78 (m, 3H), 1.73-1.66 (m, 2H), 1.41-1.36 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 225.8, 141.4, 130.9, 127.1, 120.7, 74.0, 45.8, 40.4, 38.3, 32.4, 18.6 ppm; MS (APCI): m/z 309 (M+H)⁺; HRMS (APCI) calculated for C₁₅ H₁₈ O₂ Br: 309.0476 (M+H)⁺, Found 309.0476.

4-((5*S*,7*S*)-1-Oxo-8-oxaspiro[4.5]decan-7-yl)benzonitrile (3b):

liquid; ¹H NMR (300 MHz, CDCl₃): δ 7.62 (d, J= 8.2 Hz, 2H), 7.43 (d, J= 8.1 Hz, 2H), 5.05 (dd, J= 2.1 Hz, J= 11.4 Hz, 1H), 4.10-3.98 (m, 2H), 2.44-2.10 (m, 2H), 2.01-1.90 (m, 2H), 1.88-1.70 (m, 3H), 1.48-1.37 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 220.8, 147.7, 131.8, 126.0, 118.6, 110.8, 73.9, 64.0, 45.7, 40.3, 40.2, 38.3, 32.3, 18.6 ppm; MS (APCI): m/z 256 (M+H)⁺; HRMS (APCI) calculated for C₁₆H₁₈NO₂: 256.1336 (M+H)⁺, Found 256.1336.

(5S,7S)-7-(4-Chlorophenyl)-8-oxaspiro[4.5]decan-1-one (3c):

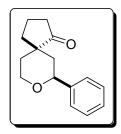
liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.25 (m, 4H), 4.95 (dd, J= 2.3 Hz, J= 11.5 Hz, 1H), 4.13-3.91 (m, 2H), 2.40-2.29 (m, 2H), 1.98-1.74 (m, 4H), 1.74-1.60 (m, 2H), 1.54-1.41 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 221.9, 140.9, 132.5, 128.0, 126.8, 74.0, 64.1, 45.9, 40.4, 40.3, 38.3, 32.4, 18.6 ppm; MS (APCI): m/z 265 (M+H)⁺; HRMS (APCI) calculated for C₁₅H₁₈O₂Cl: 265.0980 (M+H)⁺, Found 265.0980.

(5S,7S)-7-(4-Nitrophenyl)-8-oxaspiro[4.5]decan-1-one (3d):

liquid; ¹H NMR (500 MHz, CDCl₃): δ 8.21 (d, J= 8.6 Hz, 2H), 7.53 (d, J= 8.6 Hz, 2H), 5.14 (dd, J= 1.9 Hz, J= 11.5 Hz, 1H), 4.14-3.98 (m, 2H), 2.49-2.30 (m, 2H), 2.05-1.94 (m, 2H), 1.91-1.70 (m, 4H), 1.54-1.43 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 220.8, 149.8, 146.6, 126.0, 123.2, 73.8, 64.0, 45.7, 40.4, 40.2, 38.2, 32.3, 18.6 ppm; MS (APCI): m/z 276 (M+H)⁺; HRMS (APCI) calculated for C₁₅H₁₈NO₄: 276.1235 (M+H)⁺, Found 276.1235.

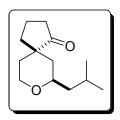
(5S,7S)-7-(2,4-Dichlorophenyl)-8-oxaspiro[4.5]decan-1-one (3e):

liquid; ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.25 (m, 3H), 5.31 (dd, J= 2.1 Hz, J= 11.3 Hz, 1H), 4.26-3.96 (m, 2H), 2.50-2.34 (m, 2H), 2.13-1.62 (m, 5H), 1.38-1.24 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 220.3, 138.8, 132.7, 131.5, 128.4, 127.4, 126.9, 71.3, 64.3, 45.8, 40.1, 38.8, 38.1, 32.5, 18.6 ppm; MS (APCI): m/z 299 (M+H)⁺; HRMS (APCI) calculated for $C_{15}H_{17}O_2Cl_2$: 299.0604 (M+H)⁺, Found 299.0603.

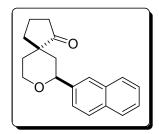

(5S,7S)-7-(2,4,5-Trifluorophenyl)-8-oxaspiro[4.5]decan-1-one (3f):

liquid; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.25 (m, 1H), 6.98-6.85 (m, 1H), 5.29-5.20 (m, 1H), 4.17-3.92 (m, 2H), 2.51-2.35 (m, 2H), 2.07-1.56 (m, 6H), 1.48-1.38 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 220.4, 147.3, 126.4, 114.8, 104.9, 68.1, 64.2, 45.6, 40.2, 39.2, 38.2, 32.4, 18.6 ppm; MS (*APCI*): m/z 285 (M+H)⁺; HRMS (*APCI*) calculated for C₁₅H₁₆O₂F₃: 285.1089 (M+H)⁺, Found 285.1088.

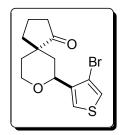
(5S,7S)-7-(p-tolyl)-8-oxaspiro[4.5]decan-1-one (3g):


liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.25-7.21 (d, 2H), δ 7.15-7.11 (d, 2H), 4.89 (dd, J= 2.2 Hz, J= 11.5 Hz, 1H), 4.15-4.05 (m, 1H), 3.98-3.93 (m, 1H), 2.39-2.38. (m, 5H), 1.99-1.74. (m, 5H), 1.71-1.63 (m, 2H), 1.57-1.49 (m, 1H), ppm; ¹³C NMR (75 MHz, CDCl₃): δ 221.0, 139.3, 136.5, 128.6, 125.4, 74.6, 64.1, 45.9, 40.4, 38.2, 32.4, 21. 4, 18.5 ppm; MS (APCI): m/z 244 (M+H)⁺; HRMS (APCI) calculated for $C_{16}H_{20}O_2$: 244.1461 (M+H)⁺, Found 244.1459.

(5S,7S)-7-Phenyl-8-oxaspiro[4.5]decan-1-one (3h):


liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.19 (m, 5H), 4.93 (dd, J= 3.0 Hz, J= 12.0 Hz, 1H), 4.16-3.91 (m, 2H), 2.36 (t, J= 6.7 Hz,2H), 2.04-1.65 (m, 7H), 1.61-1.48 (m, 1H), ppm; ¹³C NMR (75 MHz, CDCl₃): δ 221.0, 142.3, 127.9, 127.0, 125.4, 74.7, 64.1, 45.9, 40.3, 38.2, 32.4, 18.5 ppm; MS (APCI): m/z 231 (M+H)⁺; HRMS (APCI) calculated for C₁₅H₁₉O₂: 231.1385 (M+H)⁺, Found 231.1387.

(5S,7R)-7-Isobutyl-8-oxaspiro[4.5]decan-1-one (3i):


liquid; ¹H NMR (500 MHz, CDCl₃): δ 4.00-3.77 (m, 3H), 2.41-2.28 (m, 2H), 2.03-1.89 (m, 2H), 1.85-1.74 (m, 2H), 1.68-1.57 (m, 3H), 1.38-1.09 (m, 2H), 0.92 (d, J= 6.5 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 220.9, 70.7, 63.7, 46.0, 45.6, 40.5, 38.9, 38.2, 32.7, 24.7, 23.6, 22.8, 18.5 ppm; MS (APCI): m/z 211 (M+H)⁺; HRMS (APCI) calculated for C₁₃H₂₃O₂: 211.1688 (M+H)⁺, Found 211.1687.

(5S,7S)-7-(Naphthalen-2-yl)-8-oxaspiro[4.5]decan-1-one (3j):

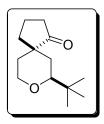
liquid; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, J= 7.9 Hz, 1H), 7.91-7.63 (m, 3H), 7.53-7.48 (m, 2H), 5.84 (dd, J= 1.7 Hz, J= 11.3 Hz, 1H), 4.32-4.05 (m, 2H), 2.54-2.38 (m, 2H), 2.18-1.63 (m, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 224.0, 153.3, 144.1, 132.3, 129.7, 128.7, 127.1, 126.6, 126.4, 124.2, 123.5, 73.1, 66.1, 60.2, 47.7, 41.7, 41.5, 39.7, 34.2, 20.0 ppm; MS (*APCI*): m/z 281 (M+H)⁺; HRMS (*APCI*) calculated for C₁₉H₂₁O₂: 281.1527 (M+H)⁺, Found 281.1527.

(5S,7S)-7-(4-Bromothiophen-3-yl)-8-oxaspiro[4.5]decan-1-one (3k):



liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.14 (d, J= 1.4 Hz, 1H), 6.88-6.86 (m, 1H), 5.20 (dd, J= 2.4 Hz, J= 11.4 Hz, 1H), 4.08 (dt, J= 3.3 Hz, J= 11.7 Hz, 1H), 3.97-3.93 (m, 2H), 2.44-2.30 (m, 2H), 2.01-1.93 (m, 1H), 1.87-1.82 (m, 2H), 1.74-1.65 (m, 2H), 1.47-1.40 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 212.0, 154.2, 132.0, 130.4, 128.4, 125.6, 121.3, 70.4, 68.2, 64.2, 39.9, 32.2, 30.0, 29.2, 24.1, 18.6 ppm; MS (Δ PCI): m/z 315 (M+H)⁺; HRMS (Δ PCI) calculated for C₁₃H₁₆BrO₂S: 315.0055 (M+H)⁺, Found 315.0053.

(5S,7S)-7-(4-Isopropylphenyl)-8-oxaspiro[4.5]decan-1-one (31):

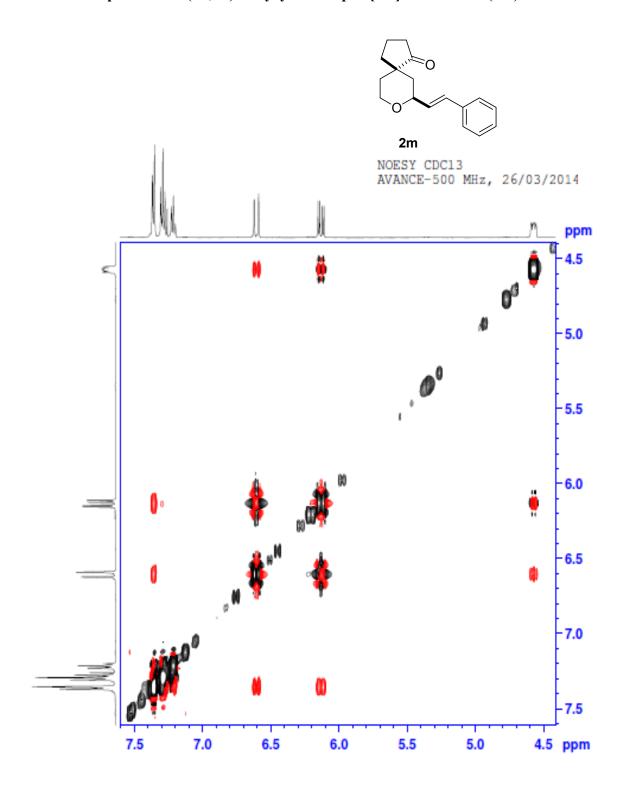

liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.29-7.25 (m, 2H), 7.23-7.19 (m, 2H), 4.91 (dd, J = 2.3 Hz, J = 11.5 Hz, 1H), 4.15-4.09 (m, 1H), 3.99-3.94 (m, 1H), 2.94-2.82 (m, 1H), 2.40-2.36 (m, 2H), 1.98-1.79 (m, 4H), 1.74-1.70 (m, 2H), 1.24 (d, J = 6.9 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 213.1, 147.2, 139.3, 126.8, 125.7, 125.3, 74.7, 64.2, 46.1, 40.6, 40.4, 38.4, 34.3, 32.7, 24.6, 18.8 ppm; MS (APCI): m/z 273 (M+H)⁺; HRMS (APCI) calculated for $C_{18}H_{25}O_2$: 273.1854 (M+H)⁺, Found 273.1857.

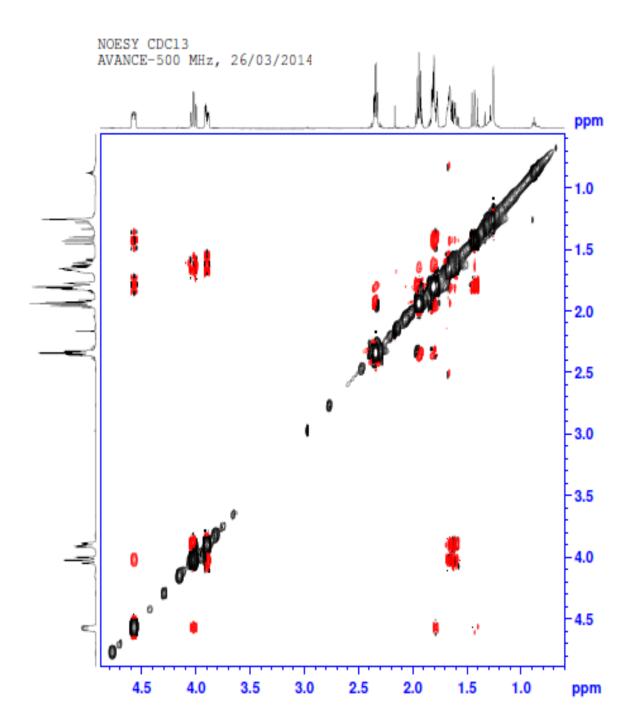
(5S,7S)-7-Styryl-8-oxaspiro[4.5]decan-1-one (3m):

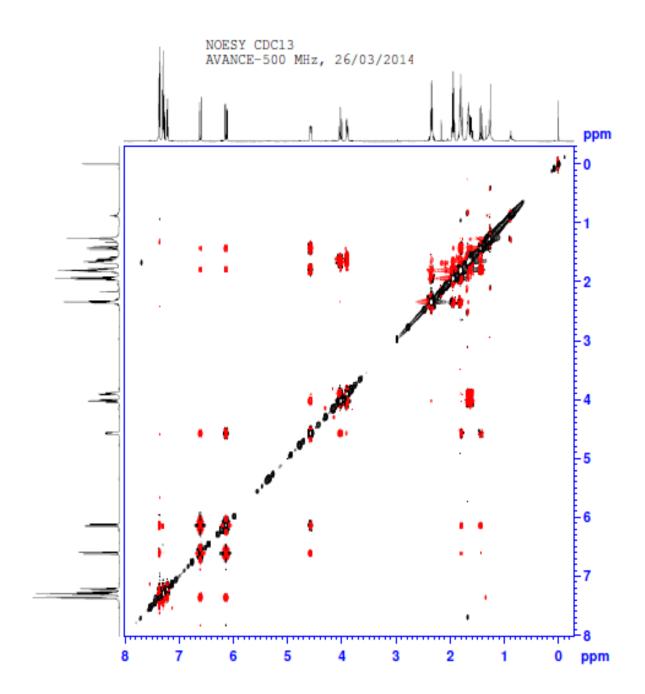
liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.45-7.15 (m, 5H), 6.66 (d, J= 15.9 Hz, 1H), 6.14 (dd, J= 6.0 Hz, J= 15.9 Hz, 1H), 4.61 (dd, J = 6.2 Hz, J= 10.7 Hz, 1H), 4.05 (dt, J= 3.1 Hz, J= 11.5 Hz, 1H), 3.96-3.91 (m, 1H), 2.38 (t, J = 7.5 Hz, 1H), 2.03-1.80 (m, 5H), 1.78-1.68 (m, 2H), 1.46 (t, J= 12.4 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 220.8, 136.4, 129.9, 129.7, 128.0, 127.1, 126.0, 73.0, 63.6, 45.5, 40.2, 38.4, 38.2, 32.4, 18.5 ppm; MS (APCI): m/z 257 (M+H)⁺; HRMS (APCI) calculated for C₁₇ H₂₁O₂: 257.1528 (M+H)⁺, Found 257.1528.

(5S,7S)-7-*Tert*-butyl-8-oxaspiro[4.5]decan-1-one (3n):

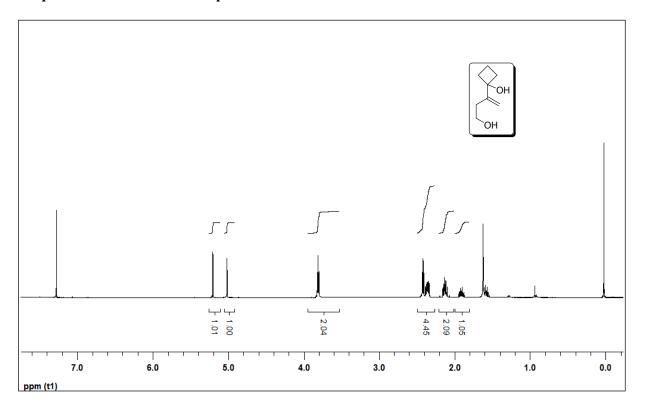
liquid; ¹H NMR (500 MHz, CDCl₃): δ 3.92-3.80 (m, 2H), 3.48 (d, J= 13.6 Hz, 1H), 2.33 (t, J= 7.7 Hz, 2H), 1.94 (m, 2H), 1.83-1.77 (m, 2H), 1.66-1.60 (m, 2H), 1.55-1.49 (m, 1H), 1.32-1.23 (m, 1H), 0.89 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 221.0, 79.8, 64.1, 45.6, 40.8, 38.2, 34.1, 32.8, 32.5, 26.2, 18.5 ppm; MS (APCI): m/z 211 (M+H)⁺; HRMS (APCI) calculated for C₁₃ H₂₃O₂: 211.1698 (M+H)⁺, Found 211.1693.

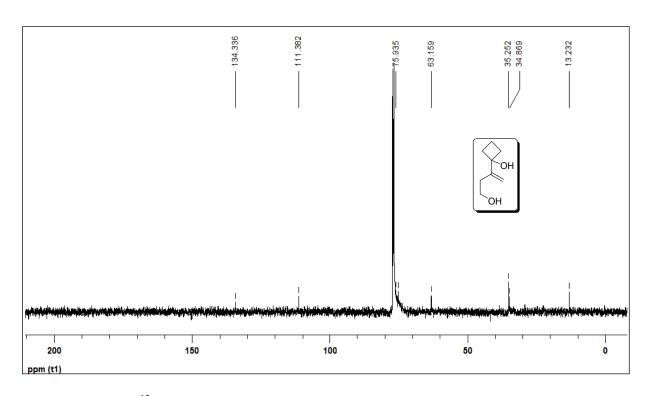

1-(4-Hydroxy-6-phenylhex-1-en-2-yl)cyclobutanol (2d):

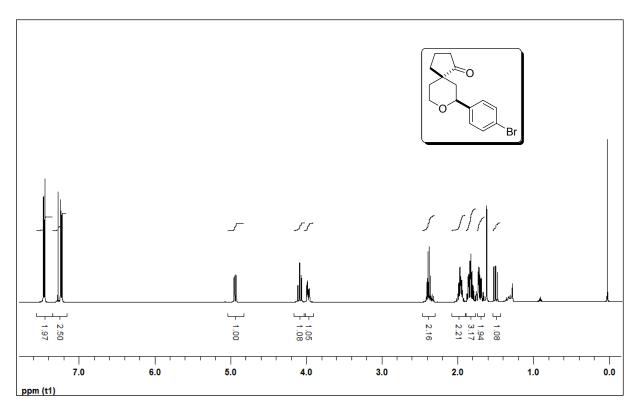

liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.14 (m, 5H), 5.21 (s, 1H), 4.99 (s, 1H), 3.83-3.75 (m, 1H), 2.86-2.62 (m, 4H), 2.47-2.35 (m, 2H), 2.29-2.20 (m, 4H), 1.92-1.80 (m, 3H), 1.58-1.51 (m, 1H), 0.96-0.92 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 148.2, 141.4, 127.9, 125.4, 112.2, 77.5, 71.6, 39.9, 39.4, 35.9, 34.8, 32.5, 13.2 ppm; MS (*ESI*): m/z 247 (M+H)⁺; HRMS (*ESI*) calculated for C₁₆ H₂₃O₂: 247.1698 (M+H)⁺, Found 247.1698.

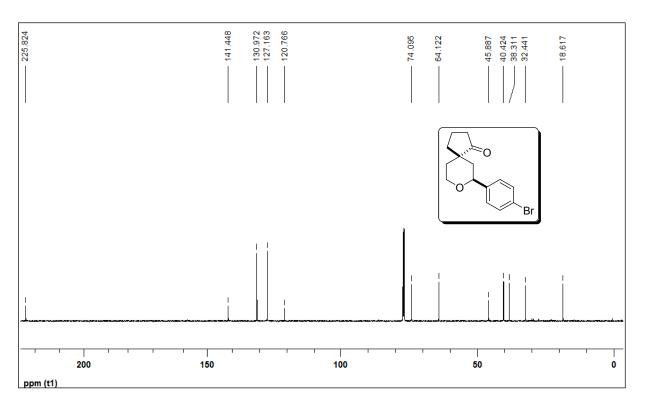

(5R,7R,9R)-7-Phenethyl-9-(2,4,5-trifluorophenyl)-8-oxaspiro[4.5]decan-1-one (4):

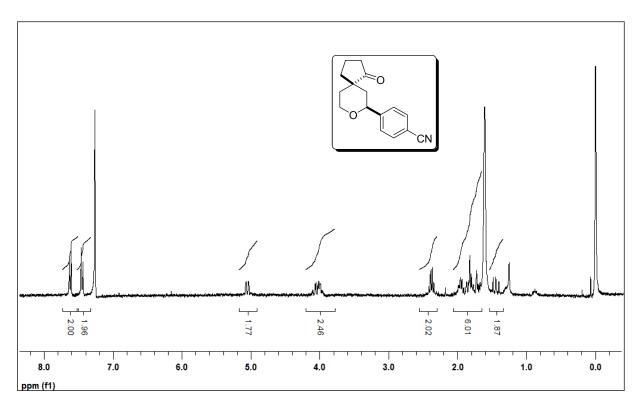
liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.27 (m, 3H), 7.20-7.16 (m, 3H), 6.90-6.85 (m, 1H), 5.23 (d, J= 10.8 Hz, 1H), 4.13-4.08 (m, 1H), 2.88-2.79 (m, 1H), 2.72-2.65 (m, 1H), 2.40-2.34 (m, 2H), 2.00-1.72 (m, 7H), 1.35-1.27 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 220.4, 141.7, 127.9, 125.3, 114.8 (dd), 104.8 (q), 72.5, 67.9, 46.4, 40.2, 38.9, 38.4, 38.2, 37.9, 32.1, 18.6 ppm; MS (APCI): m/z 389 (M+H)⁺; HRMS (APCI) calculated for C₂₃H₂₄F₃O₂: 389.1723 (M+H)⁺, Found 389.1724.

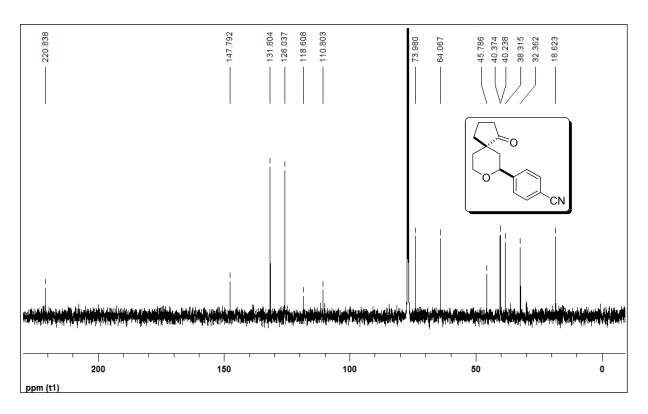

2D-NOESY spectrum of (5S,7S)-7-styryl-8-oxaspiro[4.5]decan-1-one (3m):

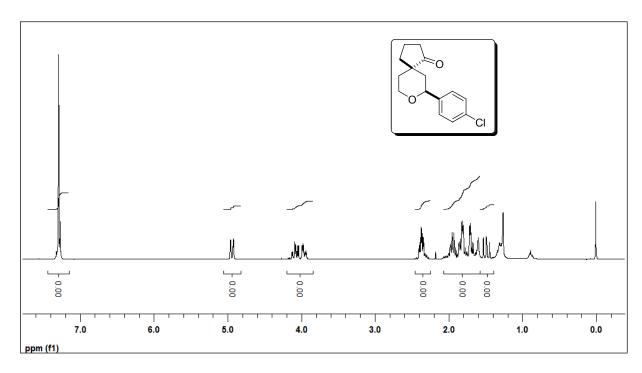


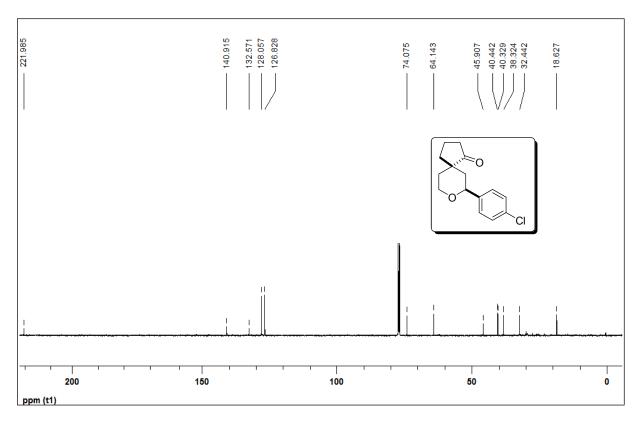

Copies of ¹H and ¹³C NMR spectra:

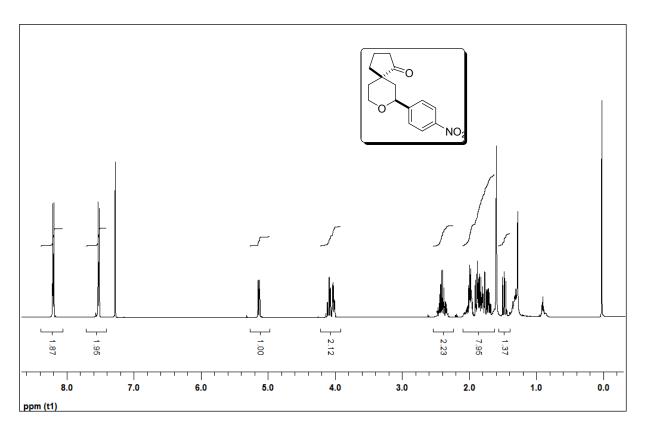

¹H NMR (500 MHz, CDCl₃) spectrum of compound 1d

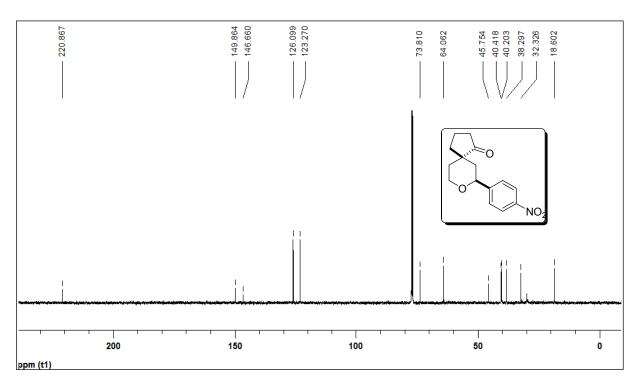

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 1d

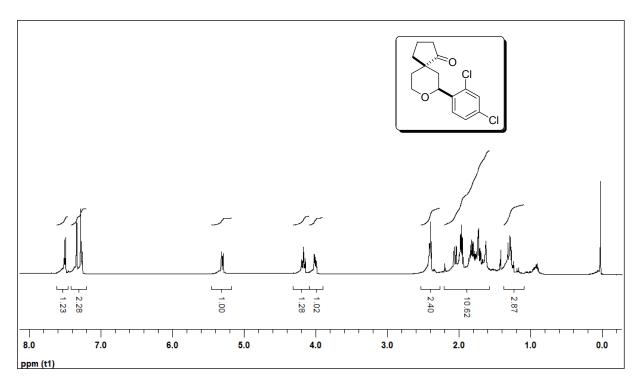

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3a

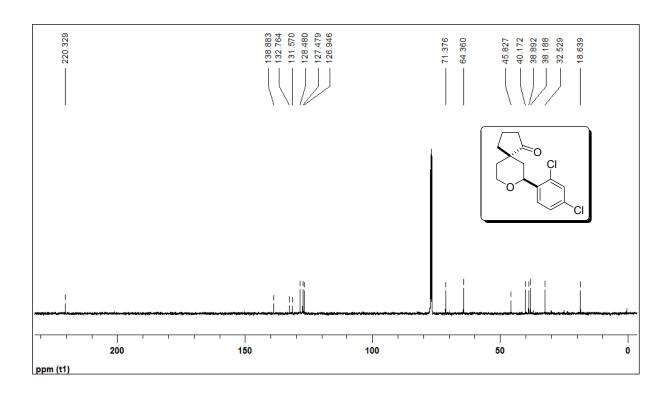

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3a

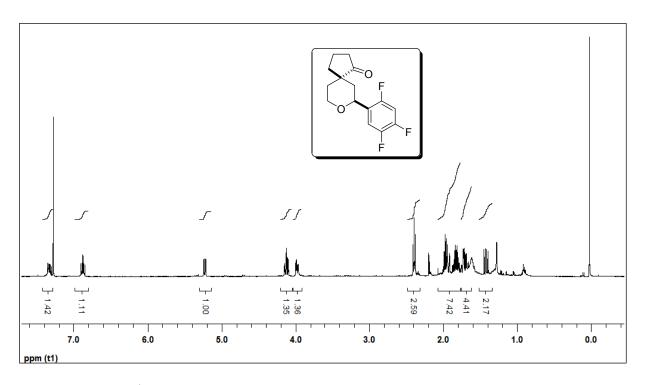

 ^{1}H NMR (300 MHz, CDCl₃) spectrum of compound 3b

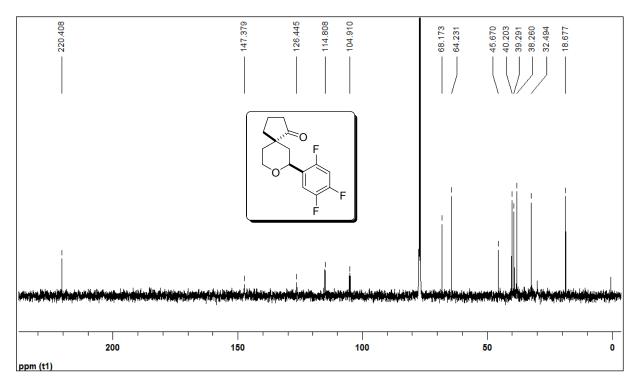

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3b

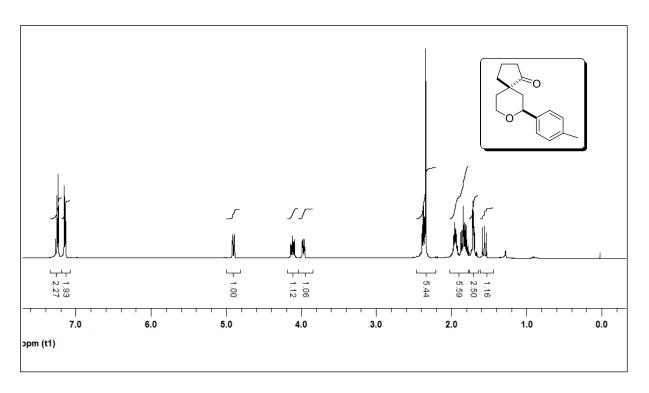

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3c

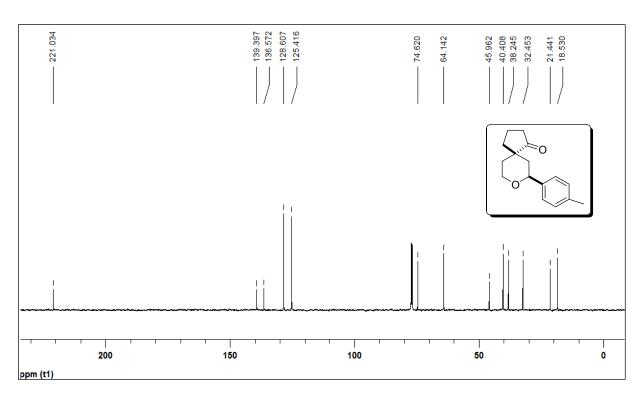

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3c

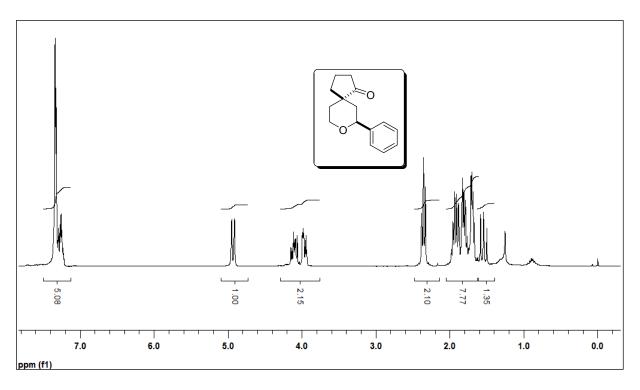

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3d

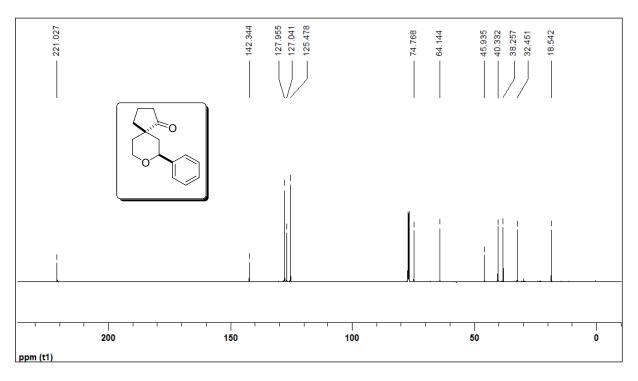

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3d

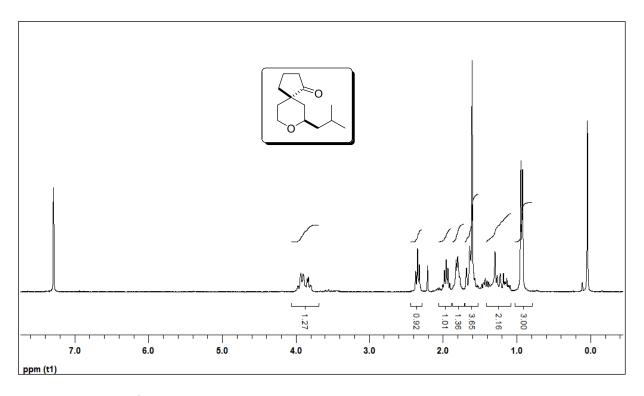

¹H NMR (300 MHz, CDCl₃) spectrum of compound 3e

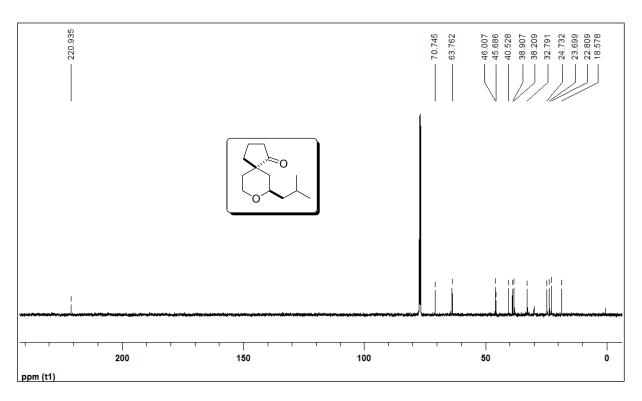

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3e

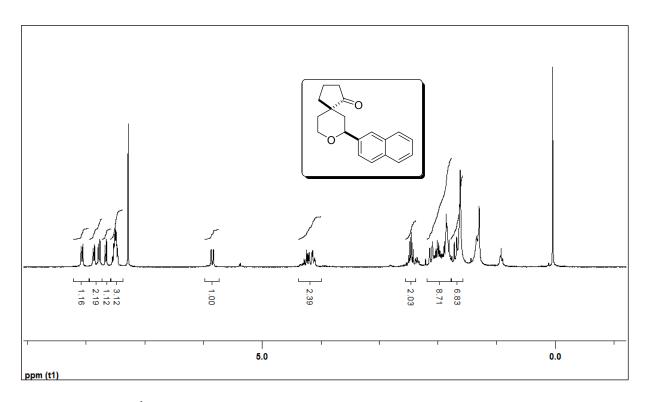

¹H NMR (300 MHz, CDCl₃) spectrum of compound 3f

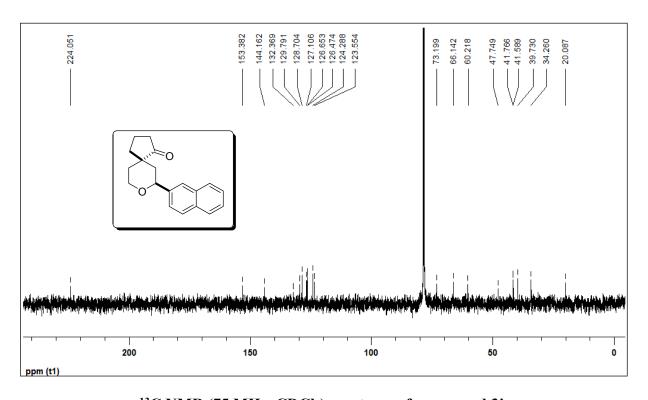

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3f

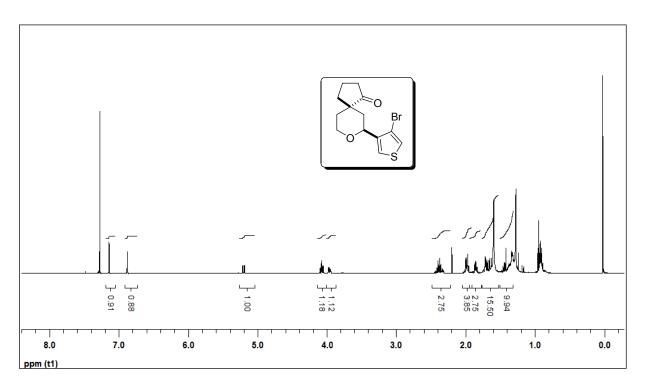

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3g

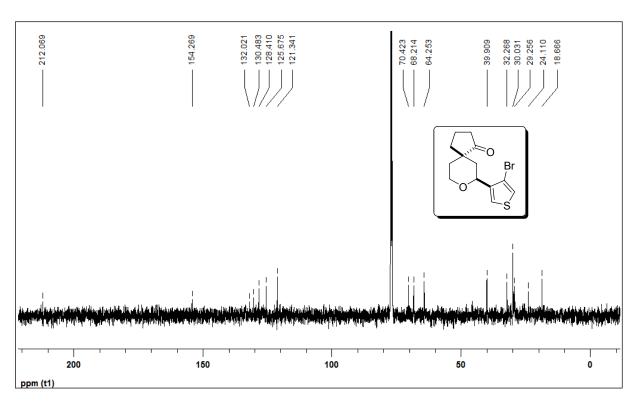

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3g

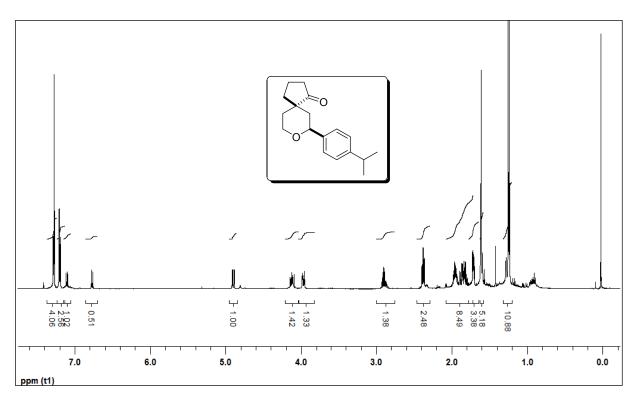

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3h

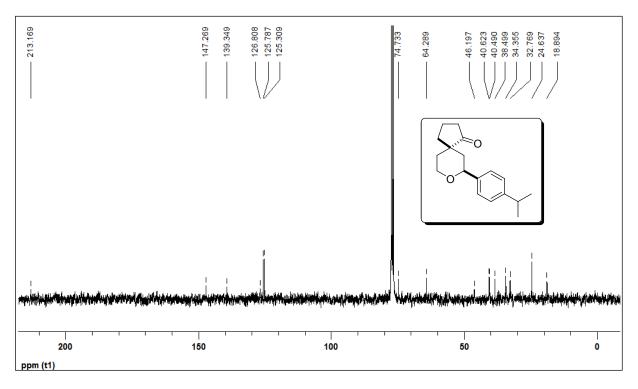

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3h

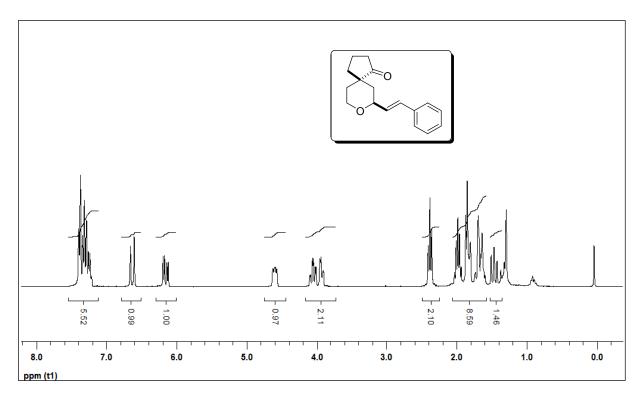

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3i

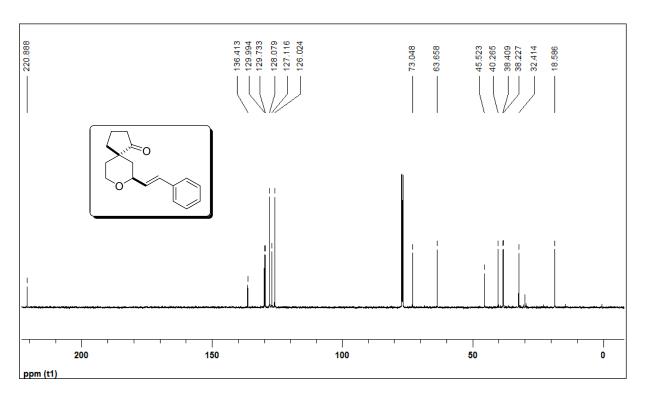

 ^{13}C NMR (125 MHz, CDCl₃) spectrum of compound 3i

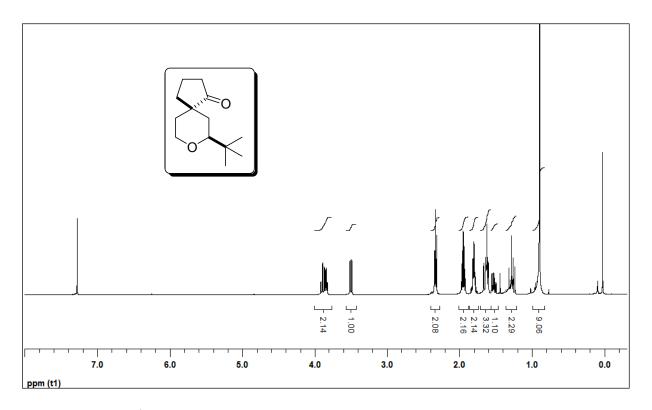

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3j

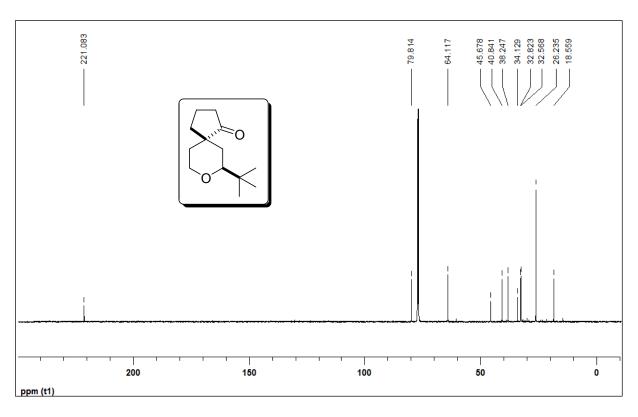

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3j

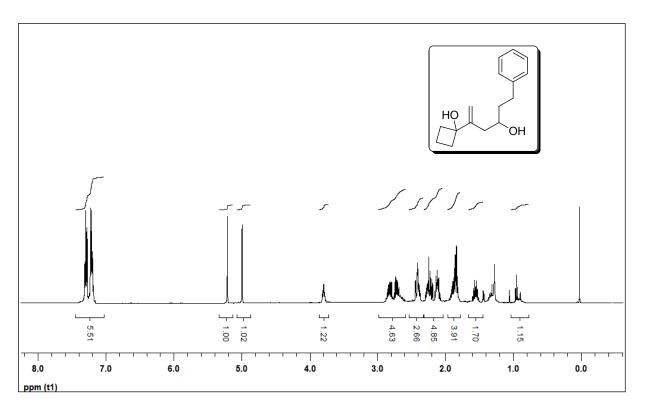

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3k

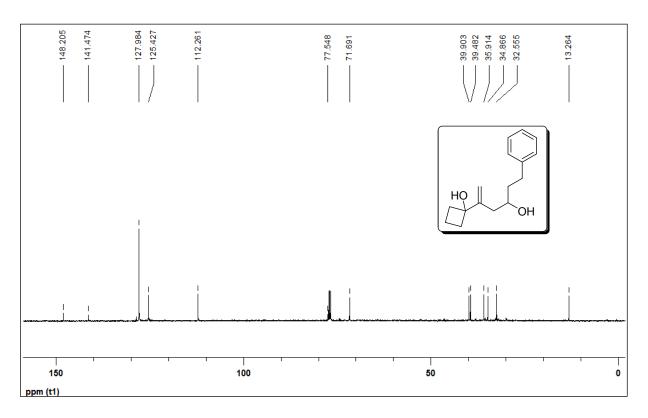

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3k

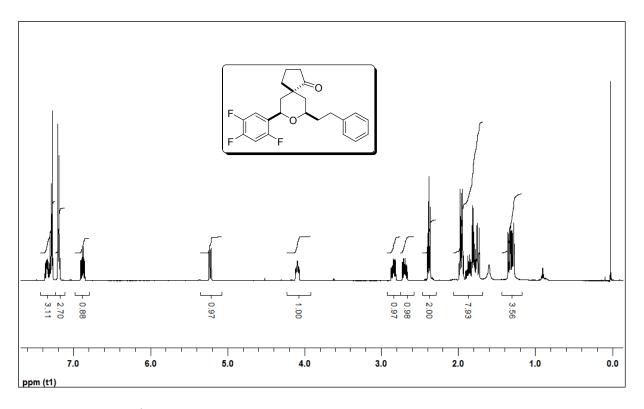

¹H NMR (500 MHz, CDCl₃) spectrum of compound 31

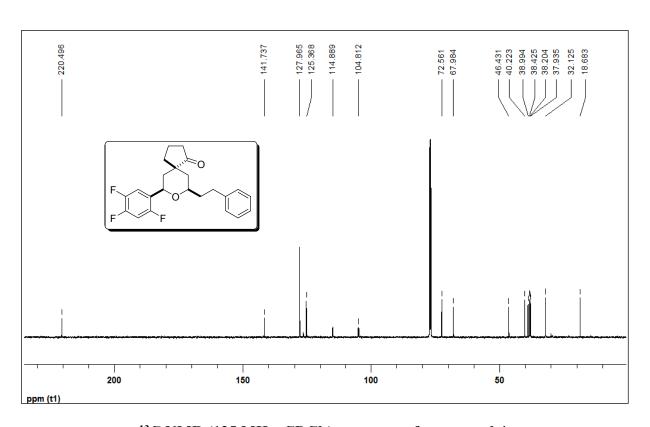

 ^{13}C NMR (125 MHz, CDCl₃) spectrum of compound 3l


 ^{1}H NMR (500 MHz, CDCl $_{3}$) spectrum of compound 3m


¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3m


¹H NMR (500 MHz, CDCl₃) spectrum of compound 3n


 ^{13}C NMR (125 MHz, CDCl₃) spectrum of compound 3n


¹H NMR (500 MHz, CDCl₃) spectrum of compound 2d

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2d

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4