Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions

L.S. Witus, K.J. Hartlieb, Y. Wang, A. Prokofjevs, M. Frasconi, J.C. Barnes, E.J. Dale, A.C. Fahrenbach, J.F. Stoddart

Supporting Information

General Methods	2
Table S1. References for Compounds Synthesized From Literature Procedures	3
Synthesis of Axle A•4PF ₆	3
Synthesis of Rotaxanes 2R•8PF6 and 3R•12PF6	5
Synthesis of Dumbbell D•4PF ₆	7
Figure S1. Cyclic Voltammetry in MeCN	8
Figure S2. Spectroelectrochemistry in Aqueous Solution	9
Figure S3. UV-Vis-NIR Spectroscopy in MeCN	10
Figure S4. UV-Vis-NIR Spectroscopy in Aqueous Solution	11
Figure S5. ¹ H NMR Spectroscopic Assignment of 3R•12PF ₆	12
Figure S6. Low Temperature NMR Spectrum of 3R•12PF ₆	13
Figure S7. Variable Temperature NMR Spectra of 3R•12PF ₆	14
Figure S8. ¹ H- ¹ H COSY NMR Spectrum of 3R•12PF ₆	15
Figure S9. ¹ H- ¹ H ROESY NMR Spectrum of 3R•12PF ₆	16
Figure S10. ¹ H NMR Spectroscopic Assignment of 2R•8PF ₆	17
Figure S11. Variable Temperature NMR Spectra of 2R•PF6	18
Figure S12. ¹³ C NMR Spectrum of 3R•12PF ₆	19
Figure S13. ¹³ C NMR Spectrum of 2R•8PF ₆	20
Figure S14. ¹ H NMR Spectrum of D•8PF ₆	21
Figure S15. ¹³ C NMR Spectrum of D•8PF ₆	22
Figure S16. ¹ H NMR Spectrum of A•8PF ₆	23
Figure S17. ¹³ C NMR Spectrum of A•8PF ₆	24
Figure S18. ¹ H NMR Spectrum of 3R•12Cl in D ₂ O	25
Supplemental References	26

General Methods

Reagents were purchased from commercial suppliers. The following compounds were prepared according to literature procedures – cyclobis(paraquat-p-phenylene) hexafluorophosphate¹ (CBPQT 4PF6) and compounds 1-6, whose structural formulas are listed in Table S1 along with references to them in the literature. Reverse-phase high-performance liquid chromatography (HPLC) was employed for preparative HPLC purification using a C18-column and a binary solvent system (MeCN and H₂O with 0.1% CF₃CO₂H). A UV-3600 Shimadzu spectrophotometer was used to collect UV-Vis-NIR spectra. Samples for UV-Vis-NIR analysis were prepared at a 0.1 mM concentration in Dulbecco's phosphate-buffered saline or H₂O. Nuclear magnetic resonance (NMR) spectra were collected on Bruker Avance 500 or 600 spectrometers, with working frequencies of 600 and 500 MHz for ¹H, and 150 and 126 MHz for ¹³C nuclei. Chemical shifts are reported in ppm relative to the signals corresponding to the residual non-deuterated solvents (CD₃CN: $\delta_{\rm H}$ = 1.94 ppm and $\delta_{\rm C}$ = 1.32 and 118.26 ppm). An Agilent 6210 Time-of-Flight (TOF) LC-MS, using an ESI source, coupled with Agilent 1100 HPLC mass spectrometer was employed to collect high resolution mass spectra using direct infusion (0.6 mL/min). A Gamry Multipurpose instrument (Reference 600) was used to carry out cyclic voltammetry experiments. These experiments were performed at room temperature in MeCN or Dulbecco's phosphate-buffered saline solutions purged with argon. A glass carbon working electrode (0.071 cm²) and a Pt coil counter electrode were used with an Ag/AgCl reference.

Compound Number	Structural Formula	Reference
1	но∽°∽°∽о-∽о-∽он	² S. Fujii and JM. Lehn, <i>Angew. Chem. Int. Ed.,</i> 2009, 48 , 7635–7638.
2	тьо	³ Y. Liu, S. Saha, S. A. Vignon, A. H. Flood, and J. F. Stoddart, <i>Synthesis</i> , 2005, 3437–3445.
3		⁴ O. Š. Miljanić, W. R. Dichtel, S. I. Khan, S. Mortezaei, J. R. Heath, and J. F. Stoddart, <i>J. Am. Chem. Soc.</i> , 2007, 129 , 8236–8246.
4	N3 - 0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	² Y. Liu, S. Saha, S. A. Vignon, A. H. Flood, and J. F. Stoddart, <i>Synthesis</i> , 2005, 3437–3445.
5 •2PF ₆		⁵ Amabilino, D. B.; Ashton, P. R.; Brown, C. L.; Cordova, E.; Godinez, L. A.; Goodnow, T. T.; Kaifer, A. E.; Newton, S. P.; Pietraszkiewicz, M. <i>J. Am. Chem. Soc.</i> 1995, 117 , 1271–1293.
6	$\times \ \ \ \ \ \ \ \ \ \ \ \ \ $	⁶ H. Li, Z. Zhu, A. C. Fahrenbach, B. M. Savoie, C. Ke, J. C. Barnes, J. Lei, YL. Zhao, L. M. Lilley, T. J. Marks, M. A. Ratner, and J. F. Stoddart, <i>J. Am. Chem. Soc.</i> , 2013, 135 , 456–467.

Table S1. References for Compounds Synthesized From Literature Procedures.

Synthesis of Axle A•4PF₆

A•4PF₆: Compounds 4 (500 mg, 0.83 mmol) and 5•2PF₆ (200 mg, 0.28 mmol) were dissolved

in MeCN (10 mL). The reaction mixture was stirred at 80 °C under nitrogen for one week. The

solvent was evaporated and the residue was redissolved in Me₂CO (4 mL) for purification by silica gel preparative thin layer chromatography (TLC). The preparative TLC plates were run using Me₂CO with 2% NH₄PF₆. The resulting red band was removed from the plate and the silica stirred in Me₂CO containing 2% NH₄PF₆ for 15 min. The mixture was filtered, the filtrate collected and the solvent removed in vacuo, resulting in a red solid. The solid was dissolved in a minimal volume of Me₂CO, H₂O (100 mL) was added and the precipitate was filtered to remove excess of NH₄PF₆, yielding the axle A•4PF₆ (148 mg, 31% yield). ¹H NMR (500 MHz, CD₃CN) δ 8.82 (dd, *J* = 7, 2 Hz, 8H), 7.88 – 7.83 (m, 8H), 7.82 (d, *J* = 7 Hz, 4H), 7.69 (d, *J* = 8 Hz, 4H), 7.38 (d, J = 8 Hz, 2H), 7.24 – 7.14 (m, 4H), 7.04 (t, J = 9 Hz, 2H), 6.80 (dd, J = 23, 8 Hz, 4H), 5.84 (s, 4H), 4.74 – 4.71 (m, 4H), 4.26 – 4.22 (m, 4H), 4.20 – 4.15 (m, 4H), 4.04 – 3.99 (m, 4H), 3.98 – 3.94 (m, 4H), 3.90 – 3.86 (m, 4H), 3.78 – 3.70 (m, 12H), 3.67 – 3.63 (m, 4H), 3.60 – 3.56 (m, 4H), 3.32 – 3.27 (m, 4H). ¹³C NMR (126 MHz, CD₃CN) δ 154.81, 154.64, 149.67, 149.30, 146.70, 145.84, 142.19, 133.35, 131.03, 129.04, 127.27, 126.90, 126.74, 126.62, 126.59, 114.64, 114.38, 106.75, 71.36, 71.03, 70.99, 70.74, 70.39, 70.31, 70.25, 68.98, 68.83, 65.21, 61.98, 51.25. ESI-HRMS calcd for $m/z = 1791.5509 [M - PF_6]^+$, found m/z =1791.5461.

Synthesis of Rotaxanes 2R•8PF₆ and 3R•12PF₆

2**R**•8**P**F₆ & 3**R**•12**P**F₆: The axle A•4**P**F₆ (49 mg, 0.03 mmol) and **CBPQT**•4**P**F₆ (49 mg, 0.03 mmol) were dissolved in MeCN (2 mL), forming a purple solution. Compound **6** (65 mg, 0.26 mmol) was added and the solution stirred at room temperature for 7 d. Addition of tetrabutylammonium chloride resulted in precipitation of a crude mixture, which was filtered off on a fine frit. The resulting solid was purified by reverse-phase HPLC using a gradient of 25 to 50% MeCN in H₂O containing 0.1% trifluoroacetic acid (TFA). The [3]rotaxane eluted first of all, followed by the [2]rotaxane. Counterion exchange with NH₄PF₆ yielded **3R**•12PF₆ (55 mg, 46%) and **2R**•8PF₆ (10 mg, 8%), respectively. **[2]Rotaxane**. ¹H NMR (600 MHz, CD₃CN) δ 9.03 – 8.98 (m, 2H), 8.94 – 8.90 (m, 2H), 8.94 – 8.85 (b, 4H), 8.84 (d, *J* = 7 Hz, 2H), 8.81 (d, *J* = 7 Hz, 2H), 8.73 – 8.60 (b, 4H), 8.39 (dd, *J* = 7, 2 Hz, 4H), 7.97 (s, 8H), 7.89 (d, *J* = 7 Hz, 2H), 7.87 – 7.77 (m, 6H), 7.66 – 7.57 (m, 4H), 7.42 (d, *J* = 8 Hz, 1H), 7.45 – 7.35 (b, 4H), 7.26 – 7.21 (m, 2H), 7.26 – 7.15 (b, 4H), 7.09 (t, *J* = 9 Hz, 1H), 6.82 (dd, *J* = 8, 3, Hz, 2H), 6.30 –

6.20 (m, 2H), 5.97 (dt, J = 10, 8 Hz, 2H), 5.88 (s, 2H), 5.82 (s, 2H), 5.68 (s, 8H), 4.80 - 4.76 (m, 2H), 4.76 - 4.73 (m, 4H), 4.71 (t, J = 6, Hz, 2H), 4.35 - 4.31 (m, 2H), 4.27 - 4.22 (m, 4H),4.23 - 4.19 (m, 4H), 4.17 - 4.14 (m, 4H), 4.12 - 4.09 (m, 4H), 4.08 - 4.01 (m, 12H), 3.99 -3.96 (m, 4H), 3.94 – 3.89 (m, 10H), 3.88 – 3.83 (m, 4H), 3.78 – 3.71 (m, 4H), 3.67 – 3.63 (m, 2H), 3.59 – 3.55 (m, 2H), 2.44 – 2.37 (m, 2H), 0.97 (s, 9H), 0.96 (s, 9H), 0.94 (s, 9H), 0.91 (s, 9H). ¹³C NMR (126 MHz, CD3CN) δ 161.37, 161.17, 159.47, 159.45, 154.89, 154.70, 151.88, 151.25, 151.00, 149.76, 147.02, 146.78, 146.56, 146.16, 145.90, 142.20, 142.09, 140.65, 140.59, 137.36, 133.28, 133.21, 132.21, 131.86, 131.52, 131.03, 130.98, 129.06, 129.01, 128.99, 128.94, 128.36, 127.87, 127.35, 126.96, 126.84, 126.78, 126.66, 125.19, 118.49, 114.71, 114.48, 109.18, 109.13, 106.82, 105.27, 105.18, 76.92, 76.75, 75.39, 75.36, 71.72, 71.40, 71.38, 71.16, 71.10, 71.07, 70.79, 70.55, 70.50, 70.37, 70.34, 69.67, 69.60, 69.55, 69.19, 69.03, 68.92, 68.85, 66.08, 65.20, 62.35, 62.05, 51.15, 50.87, 32.10, 32.06, 31.97, 31.94, 26.50, 26.46. ESI-HRMS calcd for $m/z = 1532.0686 [M - 2(C_2O_2F_3)]^{2+}$, found m/z = 1532.0759. [3]Rotaxane. ¹H NMR (600 MHz, CD_3CN) δ 9.04 – 8.98 (m, 4H), 8.94 – 8.90 (m, 4H), 8.89 – 8.83 (b, 8H), 8.74 – 8.60 (b, 8H), 8.42 – 8.35 (m, 8H), 8.02 – 7.90 (b, 16H), 7.84 – 7.76 (m, 4H), 7.65 – 7.58 (m, 4H), 7.47 - 7.37 (b, 8H), 7.27 - 7.15 (b, 8H), 6.29 (d, J = 8 Hz, 2H), 6.24 (d, J = 8 Hz, 2H), 5.98 (dt, J = 10, 8 Hz, 4H), 5.88 (s, 4H), 5.73 – 5.63 (b, 16H), 4.83 – 4.76 (m, 4H), 4.76 – 4.72 (m, 4H), 4.36 - 4.30 (m, 4H), 4.28 - 4.22 (m, 8H), 4.17 - 4.13 (m, 4H), 4.12 - 4.09 (m, 4H), 4.08 - 4.02 (m, 12H), 4.00 – 3.96 (m, 4H), 3.96 – 3.88 (m, 12H), 2.47 – 2.35 (m, 4H), 0.97 (s, 18H), 0.92 (s, 18H).¹³C NMR (126 MHz, CD₃CN) δ 161.17, 159.45, 151.88, 151.25, 151.01, 147.02, 146.55, 146.17, 145.73, 144.84, 142.11, 140.60, 137.37, 133.18, 132.21, 131.52, 130.98, 129.07, 129.01, 128.94, 128.36, 127.86, 127.33, 127.08, 126.81, 125.69, 125.19, 109.18, 109.13, 105.27, 105.19, 76.91, 75.39, 71.71, 71.41, 71.38, 70.55, 70.50, 69.66, 69.54, 69.19, 69.17, 68.91, 66.07, 65.20, 62.34, 50.87, 32.06, 31.97, 31.96, 26.46. ESI-HRMS calcd for m/z = 1308.1193 [M – $3(C_2O_2F_3)^{3+}$, found m/z = 1308.1204.

Synthesis of Dumbbell D•4PF₆

D•4PF₆: The axle A•4PF₆ (25 mg, 0.01 mmol) was dissolved in MeCN (2 mL), producing a red solution. Compound 6 (33 mg, 0.13 mmol) was added and the solution stirred at room temperature for 7 d. Addition of tetrabutylammonium chloride resulted in precipitation of a crude mixture, which was filtered off on a fine frit. The resulting solid was purified by reversephase HPLC using a gradient of 25 to 50% MeCN in H₂O containing 0.1% TFA. Counterion exchange with NH₄PF₆ yielded the dumbbell D•4PF₆ (10 mg, 31%). ¹H NMR (500 MHz, 8 Hz, 2H), 7.20 (t, J = 9 Hz, 2H), 7.12 (d, J = 9 Hz, 2H), 7.01 (t, J = 9, 2H), 6.82 - 6.73 (m, 4H), 5.80 (s, 4H), 4.73 (t, J = 5 Hz, 4H), 4.69 (t, J = 6 Hz, 4H), 4.21 – 4.14 (m, 8H), 4.06 – 4.00 (m, 8 H), 3.98 (s, 4H), 3.91 – 3.81 (m, 12H), 3.78 – 3.70 (m, 8H), 3.68 – 3.63 (m, 4H), 3.59 – 3.54 (m, 4H), 0.94 (s, 18H), 0.92 (s, 18H). ¹³C NMR (126 MHz, CD₃CN) δ 161.34, 159.45, 154.83, 154.64, 149.68, 149.29, 146.75, 145.87, 142.19, 140.65, 133.35, 131.83, 131.03, 129.07, 127.33, 126.93, 126.80, 126.74, 126.63, 114.67, 114.41, 106.77, 76.73, 75.34, 71.15, 71.09, 71.04, 70.77, 70.34, 69.58, 69.01, 68.87, 68.80, 65.23, 62.01, 51.12, 32.08, 31.93. ESI-HRMS calcd for $m/z = 1045.9672 [M - 2(C_2O_2F_3)]^{2+}$, found m/z = 1045.9685.

Figure S1. Cyclic Voltammetry in MeCN

Cyclic voltammetry (CV) was performed on $3R \cdot 12PF_6$, $D \cdot 4PF_6$, and $CBPQT \cdot 4PF_6$ in MeCN.

The CVs were recorded at room temperature in argon-purged solutions using a concentration of 0.5 mM sample and 0.1 mM electrolyte (tetrabutylammonium hexafluorophosphate). The scan

rate was set at 100 mV/s. In the case of the [3]rotaxane, three reduction peaks were observed, a situation that corresponds to a total of a 12-electron reduction from the fully oxidized to the neutral species.

Figure S2. Spectroelectrochemistry in Aqueous Solution

UV-Vis spectra of [3]rotaxane **3R**•12Cl (60 uM) conducted at 298 K in H₂O/DMF 90/10 (v/v) (KNO₃ 0.1 M) before (green curve) and after (purple curve) applying a potential of -0.75 V vs Ag/AgCl *Inset.* Close-up view of the charge transfer adsorption band of the green curve.

Figure S3. UV-Vis-NIR Spectroscopy in MeCN

UV-Vis-NIR Spectra in MeCN (0.1 mM sample). **A)** Zinc dust and O_2 were used to convert between the reduced (dashed lines) and oxidised (solid lines) forms of the [3]rotaxane **3R**•12PF₆. B) A comparison of the absorptions of the reduced forms of the dumbbell and [3]rotaxane. As a control, a solution of a 1:1 mixture of the dumbbell and the ring was also prepared. Compared to the [3]rotaxane, the NIR absorbance resulting from the radical-radical pairing interaction, was not observed when the components were not mechanically interlocked.

Figure S4. UV-Vis-NIR Spectroscopy in Aqueous Solution

UV-Vis-NIR Spectra in phosphate buffered saline (0.1 mM sample). A) $Na_2S_2O_4$ and O_2 were used to switch between the reduced (dashed lines) and oxidised (solid lines) forms of the [3]rotaxane, **3R**•12Cl. B) A comparison of the absorption spectra of the reduced forms of the dumbbell, ring and [3]rotaxane.

¹H NMR Spectrum (600 MHz) of **3R**•12PF₆ in CD₃CN at 25 °C.

Figure S6. Low Temperature NMR Spectrum of 3R•12PF₆

¹H NMR Spectrum (600 MHz) of **3R**•12PF₆ in CD₃CN at 25 °C and 0 °C. The peaks for the ring protons were resolved at the lower temperature.

Figure S7. Variable Temperature NMR Spectra of 3R•12PF₆

¹H NMR Spectrum (600 MHz) of **3R**•12PF₆ in CD₃CN at 25 °C through 50 °C. The peaks for the ring protons coalesced at the higher temperatures.

Figure S8. ¹H-¹H COSY NMR Spectrum of 3R•12PF₆

¹H–¹H Gradient-selected double-quantum filtered phase-sensitive COSY NMR spectrum (600 MHz, pulse width of 9.5) of **3R**•12PF₆ in CD₃CN at 25 °C.

Figure S9. ¹H-¹H ROESY NMR Spectrum of 3R•12PF₆

¹H–¹H ROESY NMR Spectrum (600 MHz, pulse width of 9.5, mixing time of 0.7 s determined by inversion recovery

experiment) of $3R \cdot 12PF_6$ in CD₃CN at 25 °C.

Figure S10. ¹H NMR Spectroscopic Assignment of 2R•8PF₆

¹H NMR Spectrum (600 MHz) of $2R \cdot 8PF_6$ in CD₃CN at 25 °C.

Figure S11. Variable Temperature NMR Spectra of $2R \cdot PF_6$ ¹H NMR Spectrum (600 MHz) of $2R \cdot 8PF_6$ in CD₃CN at 25 °C through 55 °C.

Figure S12. ¹³C NMR Spectrum of 3R•12PF₆

¹³C NMR Spectrum (500 MHz) of **3R**•12PF₆ in CD₃CN at 25 °C.

Figure S13. ¹³C NMR Spectrum of 2R•8PF₆

 13 C NMR Spectrum (500 MHz) of **2R**•8PF₆ in CD₃CN at 25 °C.

Figure S14. ¹H NMR Spectrum of D•8PF₆

¹H NMR Spectrum (500 MHz) of D•8PF₆ in CD₃CN at 25 °C.

Figure S15. ¹³C NMR Spectrum of D•8PF₆

 ^{13}C NMR Spectrum (500 MHz) of $\textbf{D} \bullet 8 \text{PF}_6$ in CD₃CN at 25 °C.

Figure S16. ¹H NMR Spectrum of A•8PF₆

¹H NMR Spectrum (500 MHz) of $\mathbf{A} \cdot 8PF_6$ in CD₃CN at 25 °C.

Figure S17. ¹³C NMR Spectrum of A•8PF₆

 ^{13}C NMR Spectrum (500 MHz) of $\textbf{A} \bullet 8\text{PF}_6$ in CD₃CN at 25 °C.

Figure S18. ¹H NMR Spectrum of $3R \cdot 12CI$ in D_2O ¹H NMR Spectrum (500 MHz) of $3R \cdot 12CI$ in D_2O at 25 °C.

Supplemental References

¹ M. Asakawa, W. Dehaen, G. L'abbé, S. Menzer, J. Nouwen, F. M. Raymo, J. F. Stoddart, and D. J. Williams, J. Org. Chem., 1996, **61**, 9591–9595.

² S. Fujii and J.-M. Lehn, *Angew. Chem. Int. Ed.*, 2009, **48**, 7635–7638.

³ Y. Liu, S. Saha, S. A. Vignon, A. H. Flood, and J. F. Stoddart, *Synthesis*, 2005, 3437–3445.

⁴ O. Š. Miljanić, W. R. Dichtel, S. I. Khan, S. Mortezaei, J. R. Heath, and J. F. Stoddart, *J. Am. Chem. Soc.*, 2007, **129**, 8236–8246.

⁵ Amabilino, D. B.; Ashton, P. R.; Brown, C. L.; Cordova, E.; Godinez, L. A.; Goodnow, T. T.; Kaifer, A. E.; Newton, S. P.; Pietraszkiewicz, M. J. Am. Chem. Soc. 1995, **117**, 1271–1293.

⁶ H. Li, Z. Zhu, A. C. Fahrenbach, B. M. Savoie, C. Ke, J. C. Barnes, J. Lei, Y.-L. Zhao, L. M. Lilley, T. J. Marks, M. A. Ratner, and J. F. Stoddart, *J. Am. Chem. Soc.*, 2013, **135**, 456–467.

⁷ H. Li, A. C. Fahrenbach, A. Coskun, Z. Zhu, G. Barin, Y.-L. Zhao, Y. Y. Botros, J.-P. Sauvage, and J. F. Stoddart, *Angew. Chem. Int. Ed.*, 2011, **50**, 6782–6788 and H. Li, Y.-L. Zhao, A. C. Fahrenbach, S.-Y. Kim, W. F. Paxton, and J. F. Stoddart, *Org. Biomol. Chem.*, 2011, **9**, 2240–2250.