Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Highly Efficient Synthesis of A Tristable Molecular Shuttle and Its Controlled Motion by Chemical Stimuli

Zheng Meng,^{*a*, *b*} and Chuan-Feng Chen*^{*a*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China *E-mail*: cchen@iccas.ac.cn

Contents

1.	General Information	S2
2.	Complexation of S1 and M under the Presence of K ⁺	S2
3.	¹ H NMR, ¹³ C NMR, HSQC, HMBC, and ROESY Spectra Analysis of Three Stable Stat of the [2]Rotaxane	es S3
4.	HRMS Spectra for Three States of the [2]Rotaxane	S16
5.	NMR Spectra for Other New Compounds	S18

1. General Information

Commerically available solvents and chemicals were used without further purification unless stated. Where dry solvents were used, they were degassed with Ar, dried by 4 Å molecular sieves activated under 500 °C for 6 hours. Melting points were not corrected. All yields were given as isolated yields. Standard abbreviations indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), m (multiplet).

2. Complexation of S1 and M under the Presence of K⁺

Fig. S1 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, 298 K) of mixture of **S1** and **M** in the presence of K⁺ at mole ratio of [**S1**]/[**M**] = : (a) 1.2; (b) 1.4; (c) 1.6; (d) 1.8; (e) 2.0; (f) 2.2. ([**M**]₀ = 3.0 mM, and [KPF₆] = 20.0 mM. The binding constant was calculated on the basis of the assumption that the binding of K⁺ to **M** is essentially complete in a solution of **M** containing a large excess of potassium salts.)

3. ¹H NMR, ¹³C NMR, HSQC, HMBC, and ROESY Spectra Analysis of Three Stable States of the [2]rotaxane

Fig. S2 ¹H NMR spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆].

Fig. S3 ¹³C NMR spectrum (CDCl₃/CD₃CN=1:1, 150 MHz, 278 K) of [2]rotaxane [**R**][PF₆].

Fig. S4 HSQC spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆].

Fig. S5 HMBC spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆].

Fig. S6 ROESY spectra (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆].

Fig. S7 1 H NMR spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆] after the addition of 4.0 equivalents of KPF₆.

Fig. S8 ¹³H NMR spectrum (CDCl₃/CD₃CN=1:1, 150 MHz, 278 K) of [2]rotaxane [**R**][PF₆] after

the addition of 4.0 equivalents of KPF₆.

Fig. S9 HSQC spectra (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0equivalents of KPF₆.

Fig. S10 HMBC spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0equivalents of KPF₆.

Fig. S11 ROESY spectra (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0 equivalents of KPF₆.

Fig. S12 ¹H NMR spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [**R**][PF₆] after the addition of 4.0 equivalents of LiClO₄.

Fig. S13 ¹³C NMR spectrum (CDCl₃/CD₃CN=1:1, 150 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0 equivalents of LiClO₄.

Fig. S14 HSQC spectra (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0 equivalents of LiClO₄.

Fig. S15 HMBC spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0 equivalents of LiClO₄.

Fig. S16 ROESY spectra (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of [2]rotaxane [\mathbf{R}][PF₆] after the addition of 4.0 equivalents of LiClO₄.

4. HRMS Spectra for Three States of the [2]rotaxane

Fig. S17 High-resolution electrospray ionization (HR-ESI) mass spectrometry: isotopic distribution with peaks at m/z (a) 2994.5978, (b) 1024.1705 and (c) 1002.8749 corresponding to the positively charged ion peaks $[\mathbf{R}]^+$, $[\mathbf{R}+2\mathbf{K}]^{3+}$ and $[\mathbf{R}+2\mathbf{Li}]^{3+}$, respectively. Experimental (top) and calculated (bottom).

Fig. S18 HRMS spectrum of [2]rotaxane [R][PF₆]

Fig. S19 HRMS spectrum of [2]rotaxane [R][PF₆] in the presence of 4.0 equivalents of KPF₆.

Fig. S20 HRMS spectrum of [2]rotaxane [R][PF₆] in the presence of 4.0 equivalents of LiClO₄.

5. NMR Spectra for Other New Compounds

Fig. S21 ¹H NMR spectrum (CDCl₃, 300 MHz, 298 K) of 3.

Fig. S22 13 C NMR spectrum (CDCl₃, 75 MHz, 298 K) of 3.

Fig. S23 13 H NMR spectrum (CDCl₃, 300 MHz, 298 K) of S1.

Fig. S24 ^{13}C NMR spectrum (CDCl_3, 75 MHz, 298 K) of S1.

Fig. S25 1 H NMR spectrum (CDCl₃, 300 MHz, 298 K) of S.

Fig. S26 ¹H NMR spectrum (CDCl₃/CD₃CN=1:1, 600 MHz, 278 K) of **S**.

Fig. S27 ¹³C NMR spectrum (CDCl₃, 75 MHz, 298 K) of **S**.