Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supplementary Data

Adaptable synthesis of *C*-lactosyl glycoclusters and their binding properties with galectin-3

Wang Yao,^a Meng-jie Xia^a, Xiang-bao Meng,^a Qing Li^{*a} and

Zhong-jun Li*^a

^{a.} The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing 100191, P R China.

Content

Part I¹H, ¹³C, Dept 135 and 2D NMR spectrum

¹H NMR (400MHz, CDCl3) spectrum of **2**

¹H NMR (400MHz, CDCl₃) spectrum of **5**

¹H NMR (400MHz, CDCl₃) spectrum of 6a

¹H NMR (400MHz, CDCl₃) spectrum of $\mathbf{6c}$

¹H NMR (400MHz, CDCl₃) spectrum of **7**c

¹H NMR (400MHz, D_2O) spectrum of **8c**

¹³C NMR (100MHz, CDCl₃) spectrum of **7a**

H-H COSY and HSQC (400MHz, CDCl₃) spectrum of 7a

¹H NMR (400MHz, D₂O) spectrum of **8a**

¹³C NMR (100MHz, D₂O) spectrum of **8a**

¹³C NMR (100MHz, CDCl₃) spectrum of **7b**

S29

The comparison of ¹³C NMR and DEPT135 (100MHz, CDCl₃) spectrum of **7d**

H-H COSY and HSQC (400MHz, CDCl₃) spectrum of 7d

¹H NMR (400MHz, CDCl₃) spectrum of **7f**

 13 C NMR (100MHz, D₂O) spectrum of **8f**

H-H COSY and HSQC (400MHz, D₂O) spectrum of 8f

5-5

¹³C NMR (100MHz, CDCl₃) spectrum of **7e**

¹H NMR (400MHz, D₂O) spectrum of **8e**

¹H NMR (400MHz, CDCl₃) spectrum of **7h**

¹³C NMR (100MHz, CDCl₃) spectrum of **7i**

530

¹H NMR (400MHz, CDCl₃) spectrum of **7**j

¹³C NMR and DEPT135 (100MHz, CDCl₃) spectrum of **7**j

H-H COSY (400MHz, CDCl₃) spectrum of 7j

¹H NMR (400MHz, D₂O) spectrum of **8**j

¹³C NMR (400MHz, D₂O) spectrum of **8j**

H-H COSY and HSQC (400MHz, CDCl₃) spectrum of **7k**

H-H COSY and HSQC (400MHz, D₂O) spectrum of **8k**

¹H NMR (400MHz, D_2O) spectrum of **8m**

13 C NMR (100MHz, D₂O) spectrum of **8m**

¹³C NMR (100MHz, CDCl₃) spectrum of **7**l

¹H NMR (400MHz, D_2O) spectrum of **8**

13 C NMR (100MHz, D₂O) spectrum of **8**

¹H NMR (400MHz, CDCl₃) spectrum of **7n**

....

¹H NMR (400MHz, CDCl₃) spectrum of **70**

Comparison of ¹³C NMR and DEPT135 (100MHz, CDCl₃) spectrum of **70**

H-H COSY and HSQC (400MHz, CDCl₃) spectrum of 70

¹H NMR(400MHz, CDCl₃) spectrum of **6e**

¹³C NMR (100MHz, CDCl₃) spectrum of **6e**

¹³C NMR (100MHz, D₂O) spectrum of 8i

¹H NMR (400MHz, D₂O, internal MeOH) spectrum of **80**

 13 C NMR (100MHz, D₂O, internal MeOH) spectrum of **80**

Part II Sensorgrams and corresponding kinetic/steady state analysis

Figure S1. Sensorgrams and steady state analysis of the binding between Lactose and Galectin-3 ($K_D = 342 \mu M$; Chi² = 0.0669 RU²)

Figure S2. Sensorgrams and steady state analysis of the binding between 8a and Galectin-3 ($K_D = 1970 \mu$ M; Chi² = 0.137 RU²)

Figure S3. Sensorgrams and steady state analysis of the binding between **8h** and Galectin-3 ($K_D = 239 \mu$ M; Chi² = 0.421 RU²)

Figure S4. Sensorgrams and steady state analysis of the binding between **8e** and Galectin-3 ($K_D = 176 \mu$ M; Chi² = 0.039 RU²)

Figure S5. Sensorgrams and kinetic analysis of the binding between **8g** and Galectin-3 (100µM, 200µM, 400µM, 800µM, 1.6mM and 2.8mM)

Figure S6. Sensorgrams and kinetic analysis of the binding between **8f** and Galectin-3 (25µM, 50µM, 100µM, 200µM, 400µM, 800µM and 1.6mM)

Figure S7. Sensorgrams and state steady analysis of the binding between 8q and Galectin-3 ($K_D = 15.8 \mu M$; Chi² = 0.233 RU²

Figure S8. Sensorgrams and state steady analysis of the binding between 8j and Galectin-3 ($K_D = 65.9 \mu M$; Chi² = 0.445 RU²

Figure S9. Sensorgrams and kinetic analysis of the binding between **8i** and Galectin-3 (12.5µM, 25µM, 50µM, 100µM, 200µM)

Figure S10. Sensorgrams and state steady analysis of the binding between **80** and Galectin-3 ($K_D = 38.5 \mu M$; Chi² = 0.386 RU²)

Figure S11. Sensorgrams and state steady analysis of the binding between **8p** and Galectin-3 ($K_D = 32.1 \mu M$; Chi² = 0.413 RU²)

Figure S12. Sensorgrams and state steady analysis of the binding between **81** and Galectin-3 ($K_D = 28.0 \mu M$; Chi² = 0.497 RU²)

Figure S13. Sensorgrams and state steady analysis of the binding between **8m** and Galectin-3 ($K_D = 41.3 \mu M$; Chi² = 0.689RU²)

Figure S14. Sensorgrams and state steady analysis of the binding between **8k** and Galectin-3 ($K_D = 53.1 \mu$ M; Chi² = 0.165 RU²)