1

Supporting Information for

Influence of B-Ring Modifications on Proton Affinity, Transmembrane Anion Transport and Anti-Cancer Properties of Synthetic Prodigiosenes

Estelle Marchal,^a Soumya Rastogi,^b Alison Thompson,^a* and

Jeffery T. Davis^{b*}

^aDepartment of Chemistry, Dalhousie University, PO Box 1500, Halifax, Nova Scotia, B3H 4R2, Canada; ^bDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

Corresponding Authors: <u>Alison.thompson@dal.ca</u>, phone 902-494-6421; jdavis@umd.edu, 301-405-1845

Table of Contents	
1. Synthesis	5
General Information	5
Condition optimizations for the phenolic substitution of 9 to 10b	5
Experimental	6
2. ¹ H and ¹³ C NMR spectra	20
¹ H NMR for 8a	20
¹³ C NMR for 8a	20
¹ H NMR for 10b	21
¹³ C NMR for 10b	21
¹ H NMR for 10c	22
¹³ C NMR for 10c	22
¹ H NMR for 10d	23

¹³ C NMR for 10d	23
¹ H NMR for 10e	24
¹³ C NMR for 10e	24
¹ H NMR for 10f	25
¹³ C NMR for 10f	25
¹ H NMR for 10g	26
¹³ C NMR for 10g	26
¹ H NMR for 10h	27
¹³ C NMR for 10h	27
¹ H NMR for 10i	28
¹³ C NMR for 10i	28
¹ H NMR for 10j	29
¹³ C NMR for 10j	29
¹ H NMR for 8b	30
¹³ C NMR for 8b	30
¹ H NMR for 8c	31
¹³ C NMR for 8c	31
¹ H NMR for 8d	32
¹³ C NMR for 8d	32
¹ H NMR for 8e	33
¹³ C NMR for 8e	33
¹ H NMR for 8f	34
¹³ C NMR for 8f	34
¹ H NMR for 8g	35
¹³ C NMR for 8g	35
¹ H NMR for 8h	36
¹³ C NMR for 8h	36
¹ H NMR for 8i	37
¹³ C NMR for 8i	37
¹ H NMR for 8j	38
¹³ C NMR for 8j	38
¹ H NMR for 12a	39
¹³ C NMR for 12a	39
¹ H NMR for 12b	40
¹³ C NMR for 12b	40
¹ H NMR for 12c	41

¹³ C NMR for 12c	41
¹ H NMR for 12d	42
¹³ C NMR for 12d	42
¹ H NMR for 12e	43
¹³ C NMR for 12e	43
¹ H NMR for 12f	44
¹³ C NMR for 12f	44
¹ H NMR for 12g	45
¹³ C NMR for 12g	45
¹ H NMR for 12h	46
¹³ C NMR for 12h	46
¹ H NMR for 13a	47
¹³ C NMR for 13a	47
¹ H NMR for 13b	48
¹³ C NMR for 13b	48
¹ H NMR for 13c	49
¹³ C NMR for 13c	49
¹ H NMR for 13d	50
¹³ C NMR for 13d	50
¹ H NMR for 13e	51
¹³ C NMR for 13e	51
¹ H NMR for 13f	52
¹³ C NMR for 13f	52
¹ H NMR for 13g	53
¹³ C NMR for 13g	53
¹ H NMR for 13h	54
¹³ C NMR for 13h	54
¹ H NMR for 3a	55
¹³ C NMR for 3a	55
¹ H NMR for 3b	56
¹³ C NMR for 3b	56
¹ H NMR for 3c	57
¹³ C NMR for 3c	57
¹ H NMR for 3d	58
¹³ C NMR for 3d	58
¹ H NMR for 3e	59

1	¹³ C NMR for 3e	59
1	H NMR for 3f	60
1	¹³ C NMR for 3f	60
1	H NMR for 3g	61
1	¹³ C NMR for 3g	61
1	H NMR for 3h	62
1	¹³ C NMR for 3h	62
3.	NCI data	63
4.	NMR titrations	67
5.	LogP Values	71
6.	Determination of pKa Values for Prodigiosenes 1, 3b, 3d-f and 3h	72
7.	Anion exchange transport assays	74
8.	References	76

1. Synthesis

General Information

All chemicals were purchased and used as received unless otherwise indicated. Moisture-sensitive reactions were performed in flame-dried glassware under a positive pressure of nitrogen or argon. Solutions of air- and moisture-sensitive compounds were introduced via syringe or cannula through a septum. Flash chromatography was performed using Silicycle ultra pure silica (230-400 mm) or 150 mesh Brockmann III activated neutral or basic alumina oxide as indicated. The NMR spectra were recorded using a Bruker 500 MHz or 300 MHz spectrometer using CDCl₃ or DMSO-d⁶ as solvent and are reported in parts per million (δ) using the solvent signals at 7.26 ppm for ¹H and at 71.16 ppm for ¹³C while CDCl₃ was used, and at 2.50 ppm for ¹H and at 39.50 ppm for ¹³C while DMSO-d6 was used, as an internal reference with *J* values given in Hz. Mass spectra were obtained using a Fisher-Johns melting point apparatus, and are uncorrected. Compounds **7**,¹ **8a**,² **9**³ and **11**⁴ were prepared according to literature procedures.

	O N Boc	+ OH solvent, base R.T.	O N Boc		
	9		10b		
Entry	Base	Solvent	Time	Conv. (9)	Yield
	(eq.)	(conc. of 9)			(100)
1	DABCO (3 eq.)	DCM (0.07 M)	4 h	100%	13%
2	Proton sponge (2.2 eq.)	DCM (0.07 M)	16 h	0%	0%
3	DIPEA (2.2 eq.) ^b	DCM (0.07 M)	16 h	0%	0%
4	NaH (1.1 eq.)	DMF (0.1 M)	1 h	100%	0%
5	DBU (3 eq.)	DCM (0.07 M)	1 h	100%	0%
6	Cs_2CO_3 (2.2 eq.)	MeCN (0.07 M)	16 h	100%	0%
7	NaOH/TBAB (2.2eq.)	DCM/H2O (0.07 M)	1 h	100%	0%
8	DABCO (4.4 eq) ^c	DCM (0.06 M)	2 h	100%	26%
9	DABCO (4.4 eq) ^d	63	5 h	100%	9%
10	DABCO (1.1 eq.)	DCM (0.07 M)	16 h	not complete	n.d. ^e
11	DABCO (2.2 eq.)	0	16 h	100%	30%
12	DABCO (2.2 eq.)	dioxane (0.07 M)	5 h	100%	0%

Optimization conditions for the phenolic substitution of 9 to 10b.

13	DABCO (2.2 eq.)	THF (0.07 M)	4 h	100%	0%
14	DABCO (2.2 eq.)	MeCN (0.07 M)	7 h	100%	22%
15	DABCO (2.2 eq.)	toluene (0.07 M)	4 h	100%	0%
16	DABCO (2.2 eq.) [†]	DCM (0.07 M)	5 h	100%	26%
18	DABCO (2.2 eq.)	DCM (0.3 M)	5 h	100%	32%
19	DABCO (2.2 eq.)	DCM (0.01 M)	48 h	not complete	n.d. ^e
17	DABCO (2.2 eq.)	DCM (0.02 M)	16 h	not complete	60% ^g
20	DABCO (3.2 eq.)	DCM (0.02 M)	16 h	100%	60%

^a isolated yield, ^b 50 °C, ^c 45 °C, ^d 0 °C, ^e Inextricable mixture of **9** and **10b**, [†] molecular sieves, ^g contained traces of starting material

Table S1

Experimental

General procedure 1 (GP1) for the synthesis of pyrrolinone 10: To a solution of compound **9** (5.6 mmol, 1 eq.) in CH_2Cl_2 (310 mL), was added the corresponding phenol (11.3 mmol, 2.0 eq.) and DABCO (12.3 mmol, 2.2 eq.). The reaction was stirred for 16 h at room temperature and then quenched with HCl 1 M (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with a 10% NaOH solution (100 mL) and brine (100 mL), and then dried (Na₂SO₄). After evaporation of the solvent under reduced pressure the crude product was purified using flash chromatography (SiO₂, EtOAc/hexane 4/6).

General procedure 2 (GP2) for Boc deprotection: To a cold (0 °C) solution of compound **10** (1.8 mmol) in CH_2CI_2 (3 mL) was added TFA (3 mL). After 30 min stirring at room temperature the reaction was quenched through the slow addition of a solution of sat. aqueous NaHCO₃ until pH 7, then extracted with CH_2CI_2 (3 × 30 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), and then dried (Na₂SO₄). After evaporation of the solvent under vacuum, the pure pyrrolinone **8** was obtained and used without further purification.

General procedure 3 (GP3) for the synthesis of dipyrrinones 12:⁴ To a solution of pyrrolinone **8** (3.02 mmol, 2.2 eq.) in dry CH₂Cl₂ (45 mL) was added triethylamine (1.14 mL, 8.22 mmol, 6.0 eq.) at 0 °C. TMSOTf (750 μ L, 4.11 mmol, 3.0 eq.) was then added drop-wise. After 20 min a solution of the aldehyde (1 eq.) was added in dry CH₂Cl₂ (45 mL). The reaction was stirred at this temperature for three hours, and then TMSOTf (150 μ L, 4.11 mmol, 0.6 eq.) was added. After stirring for one hour at 0 °C, the reaction was quenched through the addition of phosphate buffer (pH = 7, 100 mL). The solution was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic fractions were washed with brine, and then dried (Na₂SO₄). After evaporation of the solvent the resulting brown oil was dissolved in THF (90 mL) and concentrated aqueous HCl (300 μ L) was added. After a few minutes the reaction was quenched via the addition of saturated aqueous NaHCO₃ (200 mL), then extracted with CH₂Cl₂ (3 x 100 mL). The combined organic fractions were washed with CH₂Cl₂ (3 x 100 mL). The combined organic minutes the reaction was quenched via the addition of saturated aqueous NaHCO₃ (200 mL), then extracted with CH₂Cl₂ (3 x 100 mL). The combined organic fractions were washed with water (2 x 100 mL). After concentration of the combined organic fractions under vacuum, the resulting solid **12** was triturated in hot methanol then isolated via filtration and washed with methanol to give the desired product as a yellow solid.

General procedure 4 (GP4) for the synthesis of bromodipyrrinone 13:⁵ To a stirred solution of dipyrrinone **12** (0.23 mmol, 1 eq.) in dry CH_2CI_2 (10 mL) was added POBr₃ (270 mg, 0.93 mmol, 2.0 eq.). The resulting solution was heated at reflux temperature under nitrogen for 17 h then more POBr₃ (270 mg, 0.93 mmol, 2.0 eq.) was added. The resulting solution was heated at reflux temperature under nitrogen for 17 h then more POBr₃ (270 mg, 0.93 mmol, 2.0 eq.) was added. The resulting solution was heated at reflux temperature under nitrogen for 24 h, then POBr₃ (135 mg, 0.46 mmol, 1.0 eq.) was again added. After heating at reflux temperature for a further 17 h, the reaction mixture was cooled to room temperature. Saturated aqueous NaHCO₃ (30 mL) was added at 0 °C. The organic layer was separated, washed with brine and water, then dried (Na₂SO₄) and the solvent evaporated under vacuum. The crude product was purified using flash chromatography (Al₂O₃, type III, basic, CH₂Cl₂ 100%).

General procedure 5 (GP5) for the Suzuki-Miyaura coupling to give 3:⁶ Compound **13** (0.48 mmol, 1 eq.) was dissolved in DME (9 mL). Then LiCl (60 mg, 1.44 mmol, 3 eq) and boronic acid **14** (121 mg, 0.57 mmol, 1.2 eq) were added. The solution was degassed by bubbling with N₂ for 5 min, and then palladium tetrakis (56 mg, 10 mol/%) was added. A degassed 2 M solution of Na₂CO₃ was added (1.0 mL, 1.92 mmol, 4 eq.) and the suspension was stirred at 85 °C for 18 h. The solution was allowed to cool to room temperature then poured into water (100 mL) and extracted with CH_2CI_2 (3 x 50 mL). The combined organic layers were washed with brine (100 mL), and then dried (Na₂SO₄). Purification using chromatography (Al₂O₃ basic type III, EtOAc/hexane 1/9 then 2/8) gave a red film. Formation of the HCl salt: the compound was dissolved in a mixture of MeOH/CHCl₃ (20:1), then a 0.1 M solution of HCl in MeOH (1.5 eq.) was added. After 15 min stirring the solvents were partially removed under reduced pressure. The obtained precipitate was isolated via filtration and then washed with water and hexane, to give the desired product as a dark red solid.

4-(Benzyloxy)-1*H***-pyrrol-2(5***H***)-one 8a:⁷ To a solution of pyrrolinone 7** (3 g, 26 mmol) in benzyl alcohol (5.5 mL, 53 mmol) was added methylensulfonic acid (134 μ l, 2.08 mmol). The solution was heated at 80 °C under *vacuum* (40 mmHg) for 6 h. The *vacuum* was removed and the reaction was stirred at 80 °C overnight. The mixture was poured into a mixture of ice and water (25 mL) and CH₂Cl₂ (50 mL). A saturated solution of NaHCO₃ was added until pH 7 and the mixture was then extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were washed with brine (50 mL), and then dried (Na₂SO₄). The solvent was removed under reduced pressure and the benzyl alcohol then co-evaporated with water. The resulting solid was recrystallized from toluene (30 mL). Isolation viahot filtration gave the title compound as a white solid (1 g, 24%). ¹H NMR (DMSO, 500 MHz) 3.88 (s, 2H), 5.05 (s, 2H), 5.17 (s, 1H), 7.37-7.45 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) 47.1, 73.3, 95.4, 128.0, 128.8, 134.7, 174.7, 175.8 (1 C non accounted for). HRMS-ESI (*m*/z): [M+Na]⁺ calcd for C₁₁H₁₁N₁Na₁O₂, 212.0682; found, 212.0675.

Tert-butyl 2-oxo-4-phenoxy-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10b: Obtained following the GP1 to give a white solid (60%, 46 mg). Mp 95 °C. ¹H NMR (CDCl₃, 300 MHz) 1.55 (s, 9H), 4.39 (s, 2H), 4.94 (s, 1H), 7.12-7.13 (m, 2H), 7.28-7.30 (m, 1H), 7.40-7.44 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.4,

82.9, 98.4, 120.2, 126.7, 130.3, 149.5, 154.0, 168.8, 173.2. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{15}H_{17}N_1Na_1O_4$, 298.1050; found, 298.1038.

Tert-butyl 2-oxo-4-(*p*-tolyloxy)-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10c: Obtained following the GP1 to give a white solid (54%, 900 mg). Mp 93 °C. ¹H NMR (CDCl₃, 500 MHz) 1.55 (s, 9H), 2.36 (s, 3H), 4.38 (d, J = 1.0 Hz, 2H), 4.92 (t, J = 1.0 Hz, 1H), 7.00 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 21.0, 28.3, 49.4, 82.9, 98.2, 119.9, 130.7, 136.5, 149.5, 151.9, 168.8, 173.5. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₆H₁₉N₁Na₁O₄, 312.1206; found, 312.1195.

Tert-butyl 4-(4-methoxyphenoxy)-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10d: Obtained following the GP1 to give a white solid (66%, 56 mg). Mp 79 °C. ¹H NMR (CDCl₃, 500 MHz) 1.54 (s, 9H), 3.80 (s, 3H), 4.36 (s, 2H), 4.89 (s, 1H), 6.90 (d, J = 9.0 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.3, 55.8, 82.8, 98.1, 115.1, 121.1, 147.6, 149.5, 157.8, 168.8, 173.9. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₁₆H₁₉N₁Na₁O₅, 328.1155; found, 328.1141.

Tert-butyl 4-(4-(dimethylamino)phenoxy)-2-oxo-2, 5-dihydro-1*H*-pyrrole-1-carboxylate 10e: Obtained following the GP1 to give a creamy white solid (47%, 600 mg). Mp 105 °C. ¹H NMR (CDCl₃, 500 MHz) 1.55 (s, 9H), 2.96 (s, 6H), 4.36 (d, J = 1.0 Hz, 2H), 4.92 (t, J = 1.0 Hz, 1H), 6.69 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.3, 40.9, 49.3, 82.7, 97.8, 113.2, 120.6, 144.9, 149.1, 149.6, 169.1, 174.4. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₇H₂₂N₂Na₁O₄, 341.1472; found, 341.1460.

Tert-butyl 2-oxo-4-(4-(trifluoromethyl)phenoxy)-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10f: Obtained following the GP1 to give a creamy white solid (62%, 1.19 g). Mp 167 °C. ¹H NMR (CDCl₃, 500 MHz) 1.55 (s, 9H), 4.43 (s, 2H), 5.00 (s, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.4, 83.2, 99.1, 120.8, 123.7 (q, $J_{F-C}^1 = 270$ Hz), 127.8, 129.1 (q, $J_{F-C}^2 = 33$ Hz), 149.4, 156.3, 168.1, 172.0. HRMS-ESI (*m*/z): [M+Na]⁺ calcd for C₁₆H₁₆F₃N₁Na₁O₄, 366.0924; found, 366.0931.

Tert-butyl 4-(4-acetylphenoxy)-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10g: Obtained following the GP1 to give a creamy white solid (59%, 520 mg). Mp 160 °C. ¹H NMR (CDCl₃, 500 MHz) 1.56 (s, 9H), 2.62 (s, 3H), 4.43 (d, J = 1.0 Hz, 2H), 5.03 (s, 1H), 7.25 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 26.8, 28.2, 49.4, 83.1, 99.1, 120.3, 130.9, 135.5, 149.4, 157.4, 168.3, 171.9, 196.5. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₇H₁₉N₁Na₁O₅, 340.1155; found, 340.1141.

Tert-butyl 4-(4-chlorophenoxy)-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10h: Obtained following the GP1 to give a white solid (67%, 1.1 g). Mp 129 °C. ¹H NMR (CDCl₃, 500 MHz) 1.56 (s, 9H), 4.39 (s, 2H), 4.96 (s, 1H), 7.09 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.3, 83.1, 98.6, 121.7, 130.5, 132.2, 149.4, 152.5, 168.4, 172.7. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₅H₁₆Cl₁N₁Na₁O₄, 332.0660; found, 332.0663.

Tert-butyl 4-(4-cyanophenoxy)-2-oxo-2, 5-dihydro-1*H*-pyrrole-1-carboxylate 10i: Obtained following the GP1 to give a white solid (48%, 600 mg). Mp 164 °C. ¹H NMR (CDCl₃, 500 MHz) 1.55 (s, 9H), 4.42 (d, J = 1.0 Hz, 2H), 5.03 (t, J = 1.0 Hz, 1H), 7.29 (d, J = 9.0 Hz, 2H), 7.76 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.3, 83.3, 99.5, 110.8, 117.8, 121.3, 134.7, 149.3, 156.9, 167.9, 171.3. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₆H₁₆N₂Na₁O₄, 323.1002; found, 323.0993.

Tert-butyl 4-(4-nitrophenoxy)-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylate 10j: Obtained following the GP1 to give a white solid (47%, 40 mg). Mp 153 °C. ¹H NMR (CDCl₃, 500 MHz) 1.55 (s, 9H), 4.45 (d, J = 0.5 Hz, 2H), 5.08 (s, 1H), 7.34 (d, J = 9.0 Hz, 2H), 8.34 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 28.2, 49.3, 83.4, 99.8, 121.0, 126.3, 145.8, 149.3, 158.3, 167.8, 171.2. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₁₅H₁₆N₁Na₁O₆, 343.0901; found, 343.0890.

4-Phenoxy-1H-pyrrol-2(5*H***)-one 8b**: Obtained following the GP2 to give a white solid (91%, 287 mg). Mp 116 °C. ¹H NMR (CDCl₃, 500 MHz) 4.12 (d, J = 1.0 Hz, 2H), 4.93 (t, J = 1.0 Hz, 1H), 6.91 (br s, 1H), 7.14 - 7.16 (m, 2H), 7.24-7.28 (m, 1H), 7.39-7.43 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) 47.0, 97.9, 120.2, 126.3, 130.2, 154.6, 174.3, 175.3. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₀H₉N₁Na₁O₂, 198.0525; found, 198.0521.

o h

4-(*p***-Tolyloxy)-1***H***-pyrrol-2(5***H***)-one 8c**: Obtained following the GP2 to give a white solid (94%, 190 mg). Mp 126 °C. ¹H NMR (CDCl₃, 500 MHz) 2.36 (s, 3H), 4.10 (t, J = 1.0 Hz, 2H), 4.91-4.92 (m, 1H), 6.49 (br s, 1H), 7.06 (d, J = 9.0 Hz, 2H), 7.19 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 21.0, 46.9, 97.6, 119.9, 130.6, 136.0, 152.4, 174.6, 175.2. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₁H₁₁N₁Na₁O₂, 212.0682; found, 212.0674.

4-(4-Methoxyphenoxy)-1*H*-**pyrrol-2(5***H***)-one 8d**: Obtained following the GP2 to give a white solid (99%, 435 mg). Mp 149 °C. ¹H NMR (CDCl₃, 500 MHz) 3.81 (s, 3H), 4.09 (s, 2H), 4.89 (s, 1H), 6.48 (br s, 1H), 6.88-6.93 (m, 2H), 7.04-7.09 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) 46.9, 55.8, 97.5, 115.0, 121.2, 148.2, 157.5, 175.0, 175.2. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for $C_{11}H_{11}N_1Na_1O_3$, 228.0631; found, 228.0639.

4-(4-(Dimethylamino)phenoxy)-1*H***-pyrrol-2(5***H***)-one 8e: Obtained following the GP2 to give a creamy white solid (quant., 410 mg). Mp 163 °C. ¹H NMR (CDCl₃, 500 MHz) 2.94 (s, 6H), 4.07-4.08 (m, 2H), 4.89-4.89 (m, 1H), 6.47 (br s, 1H), 6.68 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 41.0, 46.8, 97.2, 113.3, 120.7, 145.5 148.9, 175.5 (1 C non accounted for). HRMS-ESI (***m/z***): [M+H]⁺ calcd for C₁₂H₁₅N₂O₂, 219.1128; found, 219.1120.**

4-(4-(Trifluoromethyl)phenoxy)-1*H***-pyrrol-2(5***H***)-one 8f: Obtained following the GP2 to give a white solid (95%, 800 mg). Mp 198 °C. ¹H NMR (CDCl₃, 500 MHz) 4.16 (s, 2H), 5.02 (s, 1H), 6.67 (br s, 1H), 7.29 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 47.0, 98.8, 120.7, 123.7 (q, J_{C-F}^1 = 271 Hz), 127.7 (q, J_{C-F}^3 = 4 Hz), 128.6 (q, J_{C-F}^2 = 32 Hz), 156.9, 173.0, 174.5. HRMS-ESI (***m***/z): [M+Na]⁺ calcd for C₁₁H₈F₃N₁NaO₂, 266.0399; found, 266.0398.**

4-(4-Acetylphenoxy)-1H-pyrrol-2(5H)-one 8g: Obtained following the GP2 to give a white solid (94%, 322 mg). Mp 143 °C. ¹H NMR (CDCl₃, 500 MHz) 2.61 (s, 3H), 4.15 (s, 2H), 5.03 (s, 1H), 6.78 (br s, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 8.03 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 26.7, 47.0, 98.9, 120.2,

130.8, 135.0, 158.0, 172.8, 174.6, 196.6. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₂H₁₁N₁Na₁O₃, 240.0631; found, 240.0619.

4-(4-Chlorophenoxy)-1*H***-pyrrol-2(5***H***)-one 8h**: Obtained following the GP2 to give a white solid (quant, 745 mg). Mp 187 °C. ¹H NMR (CDCl₃, 500 MHz) 4.11-4.12 (m, 2 H), 4.94-4.95 (m, 1 H), 6.67 (br s, 1H), 7.10 (d, J = 9.0 Hz, 2 H), 7.38 (d, J = 9.0 Hz, 2 H). ¹³C NMR (CDCl₃, 125 MHz) 46.9, 98.2, 121.7, 130.3, 131.7, 153.0, 173.8, 174.8. ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₀H₈Cl₁N₁Na₁O₂, 232.0136; found, 232.0139.

4-((5-Oxo-2, 5-dihydro-1*H***-pyrrol-3-yl)oxy)benzonitrile 8i**: Obtained following the GP2 to give a white solid (quant., 400 mg). Mp 170 °C. ¹H NMR (CDCl₃, 500 MHz) 4.15-4.16 (m, 2H), 5.05-5.06 (m, 1H), 6.84 (br s, 1H), 7.30 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 46.9, 99.4, 110.2, 118.0, 121.1, 134.6, 157.6, 172.2, 174.3. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₁₁H₈N₂Na₁O₂, 223.0478; found, 223.0468.

4-(4-Nitrophenoxy)-1*H***-pyrrol-2(5***H***)-one 8j: Obtained following the GP2 to give a white solid (90%, 420 mg). Dec. > 195 °C. ¹H NMR (CDCl₃, 500 MHz) 4.19 (s, 2H), 5.12 (s, 1H), 6.22 (br s, 1H), 7.35 (d, J = 9.0 Hz, 2H), 8.33 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 46.8, 99.7, 120.8, 126.2, 145.5, 159.0, 171.9, 173.7. HRMS-ESI (***m***/***z***): [M+Na]⁺ calcd for C₁₀H₈N₂Na₁O₄, 243.0376; found, 243.0370.**

(Z)-4-(Benzyloxy)-5-((3,5-dimethyl-4-pentyl-1H-pyrrol-2-yl)methylene)-1H-pyrrol-2(5H)-one12a:

Obtained following GP3. After concentration under *vacuum*, the resulting suspension was washed with water and hexane. Isolation viafiltration gavea yellow solid that was purified using flash chromatography (SiO₂, CH₂Cl₂/MeOH 99/1 then 98/2) to give 334 mg (38 %) of yellow solid. ¹H NMR (CDCl₃, 500 MHz) 0.90 (t, *J* = 7.0 Hz, 3H), 1.28-1.36 (m, 4H), 1.43 (quint., *J* = 7.5 Hz, 2H), 2.10 (s, 3H), 2.34 (s, 3H), 2.36 (t, *J* = 7.0 Hz, 2H), 5.10 (s, 2H), 5.15 (d, *J* = 1.5 Hz, 1H), 6.45 (s, 1H), 7.38-7.45 (m, 5H), 10.24 (br s, 1H), 11.00 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.6, 14.3, 22.8, 24.3, 30.7, 31.8, 72.9, 90.7, 101.1, 121.5, 121.7 (2 C), 126.1, 127.8, 128.6, 128.8, 132.5, 135.6, 166.6, 173.1. HRMS-ESI (*m*/*z*): $[M+H]^+$ calcd for C₂₃H₂₉N₂O₂, 365.2224; found, 365.2225.

(Z)-5-((3,5-Dimethyl-4-pentyl-1H-pyrrol-2-yl)methylene)-4-phenoxy-1H-pyrrol-2(5H)-one12b:Obtained following the GP3 to give a yellow solid (53%, 240 mg). Mp 213 °C. ¹H NMR (CDCl₃, 500 MHz)0.88 (t, J = 7.5 Hz, 3H), 1.26-1.33 (m, 4H), 1.42 (quint., J = 7.5 Hz, 2H), 2.14 (s, 3H), 2.27 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 4.93 (d, J = 1.5 Hz, 1H), 6.60 (s, 1H), 7.24-7.29 (m, 3H), 7.43-7.46 (m, 2H), 10.30 (s, 1H),11.13 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.7, 14.3, 22.8, 24.3, 30.6, 31.8, 93.1, 102.0, 120.4,121.1, 121.8, 122.1, 125.7, 127.0, 130.1, 133.4, 155.4, 165.9, 172.5. HRMS-ESI (m/z): $[M+H]^+$ calcd for C₂₂H₂₇N₂O₂, 351.2067; found, 351.2059.

(Z)-5-((3,5-Dimethyl-4-pentyl-1*H*-pyrrol-2·yl)methylene)-4-(p-tolyloxy)-1*H*-pyrrol-2(5*H*)-one12c:Obtained following the GP3 to give a yellow solid (70%, 140 mg). Dec. > 195 °C. ¹H NMR (CDCl₃, 500 MHz) 0.88 (t, J = 7.5 Hz, 3H), 1.26-1.34 (m, 4H), 1.42 (quint., J = 7.5 Hz, 2H), 2.14 (s, 3H), 2.26 (s, 3H), 2.35 (t, J = 7.5 Hz, 2H), 2.39 (s, 3H), 4.89 (s, 1H), 6.59 (s, 1H), 7.12 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 10.28 (br s, 1H), 11.09 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.7, 14.3, 21.0, 22.8, 24.3, 30.6, 31.8, 92.8, 101.8, 120.2, 121.2, 121.8, 122.0, 126.9, 130.5, 133.2, 135.4, 153.2, 166.3, 172.6.HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₂₈N₂Na₁O₂: 387.2043, found, 387.2045.

(Z)-5-((3,5-Dimethyl-4-pentyl-1H-pyrrol-2-yl)methylene)-4-(4-methoxyphenoxy)-1H-pyrrol-2(5H)-one

12d: Obtained following the GP3 to give a yellow solid (76%, 271 mg). Dec. > 200 °C. ¹H NMR (CDCl₃, 500 MHz) 0.88 (t, J = 7.5 Hz, 3H), 1.27-1.33 (m, 4H), 1.42 (quint., J = 7.5 Hz, 2H), 2.14 (s, 3H), 2.26 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 3.84 (s, 3H), 4.84 (d, J = 2.0 Hz, 1H), 6.58 (s, 1H), 6.93-6.96 (m, 2H), 7.15-7.18 (m, 2H), 10.27 (s, 1H), 10.07 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.7, 14.3, 22.8, 24.3, 30.7, 31.8, 55.8, 92.6, 101.8, 115.0, 121.1, 121.5, 121.7, 122.0, 126.8, 133.2, 148.9, 157.2, 166.8, 172.6. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₃H₂₈N₂Na₁O₃, 403.1992; found, 403.1972.

(*Z*)-5-((3,5-Dimethyl-4-pentyl-1*H*-pyrrol-2-yl)methylene)-4-(4-(dimethylamino)phenoxy)-1*H*-pyrrol-2(5*H*)-one 12e: Obtained following the GP3 to give a yellow solid (53%, 237 mg). ¹H NMR (CDCl₃, 500 MHz) 0.89 (t, J = 7.0 Hz, 3H), 1.26-1.34 (m, 4H), 1.42 (quint., J = 7.0 Hz, 2H), 2.14 (s, 3H), 2.26 (s, 3H), 2.35 (t, J = 7.0 Hz, 2H), 2.98 (s, 6H), 4.85 (s, 1H), 6.58 (s, 1H), 6.75 (d, J = 9.0 Hz, 2H), 7.11 (d, J = 9.0 Hz, 2H), 10.28 (s, 1H), 11.04 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.7, 14.3, 22.8, 24.3, 30.7, 31.8, 41.1, 92.4, 101.4, 113.4, 120.7, 121.1, 121.4, 121.8 (2 C), 126.4, 132.9, 146.2, 148.6, 167.3, 172.8. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₄H₃₂N₃O₂, 394.2489; found, 394.2501.

(*Z*)-5-((3,5-Dimethyl-4-pentyl-1*H*-pyrrol-2-yl)methylene)-4-(4-(trifluoromethyl)phenoxy)-1H-pyrrol-2(5*H*)-one 12f: Obtained following the GP3 to give a yellow solid (40%, 245 mg). ¹H NMR (CDCl₃, 500 MHz) 0.88 (t, *J* = 7.3 Hz, 3H), 1.27-1.34 (m, 4H), 1.42 (quint., *J* = 7.3 Hz, 2H), 2.14 (s, 3H), 2.29 (s, 3H), 2.35 (t, *J* = 7.3 Hz, 2H), 5.03 (s, 1H), 6.58 (s, 1H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 10.32 (s, 1H), 11.25 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.8, 14.2, 22.8, 24.3, 30.6, 31.8, 94.1, 102.6, 120.4, 120.6, 121.8, 122.5, 124.0 (q, J^{1}_{C-F} = 270 Hz), 127.3 (q, J^{2}_{C-F} = 17 Hz), 127.5 (q, J^{3}_{C-F} = 4 Hz), 127.9, 134.2, 158.0, 164.4, 172.0. (HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₃H₂₅F₃N₂Na₁O₂, 441.1760; found, 441.1752.

(Z)-4-(4-Acetylphenoxy)-5-((3,5-dimethyl-4-pentyl-1H-pyrrol-2-yl)methylene)-1H-pyrrol-2(5H)-one

12g: Obtained following the GP3 to give a yellow solid (61%, 153 mg). ¹H NMR (CDCl₃, 300 MHz) 0.88 (t, J = 7.0 Hz, 3H), 1.26-1.32 (m, 4H), 1.39-1.44 (m, 2H), 2.13 (s, 3H), 2.27 (s, 3H), 2.35 (t, J = 7.0 Hz, 2H), 2.63 (s, 3H), 5.05 (s, 1H), 6.57 (s, 1H), 7.33 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 8.5 Hz, 2H), 10.26 (br s, 1H), 11.16 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.8, 14.2, 22.7, 24.3, 26.8, 30.6, 31.7, 94.3, 102.6, 120.0, 120.7, 121.8, 122.4, 127.8, 130.7, 134.1, 134.4, 159.2, 164.2, 172.0, 196.8. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₂₄H₂₈N₂Na₁O₃, 415.1992; found, 415.1975.

(Z)-4-(4-Chlorophenoxy)-5-((3,5-dimethyl-4-pentyl-1*H*-pyrrol-2-yl)methylene)-1*H*-pyrrol-2(5*H*)-one 12h: Obtained following the GP3 to give a yellow solid (83%, 540 mg). Dec. > 210 °C. ¹H NMR (CDCl₃, 500 MHz) 0.88 (t, J = 6.7 Hz, 3H), 1.28-1.34 (m, 4H), 1.38-1.45 (m, 2H), 2.13 (s, 3H), 2.28 (s, 3H), 2.33-2.36 (m, 2H), 4.91 (s, 1H), 6.57 (s, 1H), 7.18 (d, J = 9.0 Hz, 2H), 7.39 (d, J = 9.0 Hz, 2H), 10.28 (br s, 1H), 11.13 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 11.7, 14.3, 22.8, 24.3, 30.6, 31.8, 93.2, 102.2, 120.7, 121.7, 121.8, 122.3, 127.4, 130.2, 131.0, 133.7, 153.9, 165.5, 172.2. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for $C_{22}H_{26}Cl_1N_2O_2$, 385.1677; found, 385.1659.

(*Z*)-3-(Benzyloxy)-5-bromo-2-((3,5-dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-1*H*-pyrrole 13a: Obtained following the GP4 to give a yellow glass (41%, 144 mg). ¹H NMR (CDCl₃, 500 MHz) 0.90 (t, J = 7.0 Hz, 3H), 1.26-1.36 (m, 4H), 1.43 (quint., J = 7.5 Hz, 2H), 2.13 (s, 3H), 2.28 (s, 3H), 2.35 (t, J = 7.5 Hz, 2H), 5.02 (s, 2H), 5.64 (s, 1H), 6.95 (s, 1H), 7.36-7.45 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.5, 14.2, 22.7, 24.1, 30.4, 31.7, 73.3, 100.0, 116.7, 124.2, 126.5, 127.9, 128.5, 128.7, 132.0, 136.0, 136.5, 138.1, 143.0, 165.4. HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₂₃H₂₈Br₁N₂O, 427.138; found, 427.1363.

(Z)-5-Bromo-2-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-3-phenoxy-1H-pyrrole13b:Obtained following the GP4 to give a yellow glass (50%, 70 mg). ¹H NMR (CDCl₃, 500 MHz) 0.89 (t, J = 7.5 Hz, 3H), 1.26-1.36 (m, 4H), 1.43 (quint., J = 7.5 Hz, 2H), 2.16 (s, 3H), 2.31 (s, 3H), 2.36 (t, J = 7.5 Hz, 2H), 5.51 (s, 3H), 7.07 (s, 1H), 7.18-7.22 (m, 3H), 7.37-7.40 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.6, 14.2, 22.7, 24.2, 30.3, 31.7, 103.3, 117.8, 119.6, 124.9 (2C), 127.0, 129.9, 133.3, 136.3, 139.7, 141.8, 156.6, 163.2. HRMS-ESI (m/z): $[M+H]^+$ calcd for $C_{22}H_{26}Br_1N_2O_1$, 413.1223; found, 413.1204.

(*Z*)-5-Bromo-2-((3,5-dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-3-(p-tolyloxy)-1*H*-pyrrole 13c: Obtained following the GP4 to give a yellow glass (58%, 90 mg). ¹H NMR (CDCl₃, 500 MHz) 0.90 (t, J = 7.0 Hz, 3H), 1.27-1.36 (m, 4H), 1.44 (quint., J = 7.5 Hz, 2H), 2.17 (s, 3H), 2.31 (s, 3H), 2.35-2.38 (m, 5H), 5.46 (s, 1H), 7.07 (s, 1H), 7.10 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.6, 14.2, 20.9, 22.7, 24.1, 30.3, 31.7, 102.9, 117.6, 119.5, 124.7, 126.9, 130.4, 133.0, 134.6, 136.4, 139.3, 142.0, 154.3, 163.8. HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₂₃H₂₈Br₁N₂O₁, 427.138; found, 427.1375.

(Z)-5-Bromo-2-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-3-(4-methoxyphenoxy)-1H-

pyrrole 13d: Obtained following the GP4 to give an orange solid (46%, 53 mg). Mp 128 °C. ¹H NMR (CDCl₃, 500 MHz) 0.89 (t, *J* = 7.0 Hz, 3 H), 1.26-1.35 (m, 4 H), 1.43 (quint., *J* = 7.0 Hz, 2 H), 2.16 (s, 3 H), 2.31 (s, 3 H), 2.36 (t, *J* = 7.0 Hz, 2 H), 3.82 (s, 3 H), 5.39 (s, 1 H), 6.88-6.92 (m, 2 H), 7.07 (s, 1 H), 7.11-7.15 (m, 2 H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.6, 14.2, 22.7, 24.2, 30.3, 31.7, 55.8, 102.5, 114.9, 117.6, 120.9, 124.7, 126.8, 133.0, 136.2, 139.2, 142.1, 150.0, 156.8, 164.5. HRMS-ESI (*m/z*): $[M+H]^+$ calcd for C₂₃H₂₈Br₁N₂O₂, 443.1329; found, 443.1345.

(Z)-4-((5-Bromo-2-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-3-yl)oxy)-N,N-

dimethylaniline 13e: Obtained following the GP4 to give a yellow glass (15%, 68 mg). ¹H NMR (CDCl₃, 300 MHz) 0.90 (t, J = 7.2 Hz, 3H), 1.26-1.37 (m, 4H), 1.44 (quint., J = 7.2 Hz, 2H), 2.16 (s, 3H), 2.30 (s, 3H), 2.36 (t, J = 7.2 Hz, 2H), 2.95 (s, 6H), 5.38 (s, 1H), 6.72 (d, J = 9.0 Hz, 2H), 7.07 (s, 1H), 7.08 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) 9.8, 12.6, 14.2, 22.7, 24.2, 30.4, 31.7, 41.1, 102.2, 113.6, 117.4, 120.6, 124.5, 126.8, 132.6, 136.5, 138.7, 142.6, 147.5, 148.4, 165.3. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₄H₃₁BrN₃O, 456.1645; found, 456.1624.

(Z)-5-Bromo-2-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-3-(4-(trifluoromethyl)phenoxy)-

1*H***-pyrrole 13f**: Obtained following the GP4 to give a yellow glass (60%, 150 mg). ¹H NMR (CDCl₃, 500 MHz) 0.90 (t, J = 7.2 Hz, 3H), 1.26-1.36 (m, 4H), 1.43 (quint., J = 7.2 Hz, 2H), 2.15 (s, 3H), 2.33 (s, 3H), 2.36 (t, J = 7.2 Hz, 2H), 5.66 (s, 1H), 7.01 (s, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.7, 14.2, 22.7, 24.1, 30.3, 31.7, 104.7, 118.3, 119.1, 124.1 (q, $J_{C-F}^1 = 270$ Hz), 125.4, 126.6 (q, $J_{C-F}^2 = 32$ Hz), 127.3 (q, $J_{C-F}^3 = 4$ Hz), 134.3, 135.9, 140.6, 141.0, 159.5, 160.9 (1 C non accounted for). HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₃H₂₅Br₁F₃N₂O₁, 481.1097; found, 481.1075.

(Z)-1-(4-((5-Bromo-2-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-1H-pyrrol-3-

yl)oxy)phenyl)ethanone 13g: Obtained following the GP4 to give a yellow glass (63%, 110 mg). ¹H NMR (CDCl₃, 500 MHz) 0.89 (t, J = 7.5 Hz, 3H), 1.25-1.35 (m, 4H), 1.42 (quint., J = 7.5 Hz, 2H), 2.14 (s, 3H), 2.32 (s, 3H), 2.35 (t, J = 7.5 Hz, 2H), 2.60 (s, 3H), 5.69 (s, 1H), 7.00 (s, 1H), 7.26 (d, J = 8.7 Hz, 2H), 7.99 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.7, 14.2, 22.7, 24.1, 26.7, 30.2, 31.7, 105.1, 118.4, 118.5, 125.4, 127.3, 130.7, 133.4, 134.4, 135.9, 140.6, 141.1, 160.5, 160.8, 196.8. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₄H₂₈Br₁N₂O₂, 455.1329; found, 455.1346.

(*Z*)-5-Bromo-3-(4-chlorophenoxy)-2-((3,5-dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-1*H*-pyrrole **13h**: Obtained following the GP4 to give an orange solid (34%, 80 mg). Mp 98 °C. ¹H NMR (CDCl₃, 500 MHz) 0.85 (t, *J* = 7.3 Hz, 3H), 1.22-1.31 (m, 4H), 1.39 (quint., *J* = 7.3 Hz, 2H), 2.11 (s, 3H), 2.27 (s, 3H), 2.32 (t, *J* = 7.3 Hz, 2H), 5.48 (s, 1H), 6.99 (s, 1H), 7.10 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 12.7, 14.2, 22.7, 24.1, 30.3, 31.7, 103.5, 118.0, 120.8, 125.1, 127.1, 129.9, 133.7, 136.0, 140.2, 141.2, 155.2, 162.5 (1 C non accounted for). HRMS-ESI (*m/z*): $[M+H]^+$ calcd for $C_{22}H_{25}Br_1Cl_1N_2O_1$, 447.0833; found, 447.0845.

(Z)-4-(Benzyloxy)-5-((3,5-dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-1H,1'H-2,2'-bipyrrole 3a: Obtained following the GP5. After evaporation of the solvent under reduced pressure, the crude material was purified using flash chromatography (Al₂O₃ neutral type III CH₂Cl₂/hexane 5/5 then EtOAc/hexane 1/9 then 2/8) to give a dark brown solid (47%, 45 mg). Rf = 0.55 (EtOAc/hexane 5/5). ¹H NMR (CDCl₃, 300 MHz) 0.85 (t, J = 7.0 Hz, 3H), 1.21-1.32 (m, 6H), 1.78 (s, 3H), 2.10 (s, 3H), 2.21 (t, J = 7.0 Hz, 2H), 5.18 (s, 2H), 6.10 (s, 1H), 6.13-6.14 (m, 1H), 6.61-6.62 (m, 1H), 6.65 (s, 1H), 6.95 (s, 1H), 7.38-7.52 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 10.7, 14.2, 22.7, 24.3, 30.5, 31.9, 73.1, 96.2, 109.8, 111.6, 113.8, 122.2, 123.2, 125.9, 127.8, 127.8, 128.4, 128.7, 129.9, 136.5, 167.1 (3 carbon non accounted for). HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₇H₃₂N₃O₁, 414.2540; found, 414.2521.

(Z)-5-((3,5-Dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-4-phenoxy-1H,1'H-2,2'-bipyrrole

hydrochloride 3b: Obtained following the GP5 to give a red solid (25%, 25 mg). Mp 125 °C. ¹H NMR (CDCl₃, 500 MHz) 0.89 (t, J = 7.2 Hz, 3H), 1.26-1.35 (m, 4H), 1.44 (quint., J = 7.2 Hz, 2H), 2.25 (s, 3H), 2.40 (t, J = 7.2 Hz, 2H), 2.58 (s, 3H), 5.89 (s, 1H), 6.28 (s, 1H), 6.71 (s, 1H), 7.17 (s, 1H), 7.22-7.26 (m, 3H), 7.30 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 12.43 (br s, 1H), 12.72 (br s, 1H), 12.77 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 10.3, 12.9, 14.2, 22.7, 24.1, 29.9, 31.7, 96.2, 111.5, 114.0, 116.1, 119.8, 120.0, 122.6, 125.2, 125.9, 126.2, 128.0, 130.3, 139.3, 145.5, 149.9, 155.5, 162.6 (1 carbon non accounted for). HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₂₆H₃₀N₃O₁, 400.2383; found, 400.22367.

(*Z*)-5-((3,5-Dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-4-(*p*-tolyloxy)-1*H*,1'*H*-2,2'-bipyrrole 3c: Obtained following the GP5 to give a red glass (30%, 26 mg). ¹H NMR (CDCl₃, 500 MHz) 0.86 (t, *J* = 7.2 Hz, 3H), 1.24-1.36 (m, 6H), 1.83 (s, 3H), 2.14 (s, 3H), 2.23 (t, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 5.97 (s, 1H), 6.09 (t, *J* = 2.7 Hz, 1H), 6.51 (d, *J* = 2.7 Hz, 1H), 6.64 (s, 1H), 7.08 (s, 1H), 7.19 (d, *J* = 9.0 Hz, 2H), 7.25 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.9, 10.5, 14.2, 21.0, 22.7, 24.3, 30.5, 31.9, 99.5, 109.8, 111.9, 114.7, 119.6, 122.4, 123.8, 126.1, 128.9, 130.4, 131.0, 134.4, 136.9, 138.3, 154.8, 157.7, 165.9. HRMS-ESI (*m*/*z*): $[M+H]^+$ calcd for C₂₇H₃₂N₃O₁, 414.2540; found, 414.2537.

(Z)-5-((3,5-Dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-4-(4-methoxyphenoxy)-1H,1'H-2,2'-

bipyrrole 3d: Obtained following the GP5 to give a red solid (28%, 23 mg). Mp 78 °C. ¹H NMR (CDCl₃, 500 MHz) 0.90 (t, J = 7.4 Hz, 3H), 1.26-1.36 (m, 4H), 1.45 (quint., J = 7.4 Hz, 2H), 2.26 (s, 3H), 2.40 (t, J = 7.4 Hz, 2H), 2.58 (s, 3H), 3.85 (s, 3H), 5.80 (s, 1H), 6.27-6.28 (m, 1H), 6.71 (s, 1H), 6.97 (d, J = 8.5 Hz, 2H), 7.15-7.17 (m, 3H), 7.23 (s, 1H), 12.42 (br s, 1H), 12.65 (br s, 1H), 12.70 (br s, 1H). ¹³C NMR (CDCl₃, 125 MHz) 10.3, 12.8, 14.2, 22.7, 24.1, 30.0, 31.7, 55.8, 95.7, 111.5, 113.8, 115.2, 116.1, 119.7, 121.3, 122.6, 125.0, 126.2, 127.8, 139.0, 145.7, 148.9, 149.5, 157.5, 163.7. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₃₂N₃O₂, 430.2489; found, 430.2472.

(*Z*)-4-((5-((3,5-Dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-1*H*,1'*H*-[2,2'-bipyrrol]-4-yl)oxy)-*N*,*N*-dimethylaniline 3e: Obtained following the GP5 to give a red glass (48%, 32 mg). ¹H NMR (CDCl₃, 500 MHz) 0.87 (t, *J* = 7.5 Hz, 3H), 1.23-1.37 (m, 6H), 1.80 (s, 3H), 2.15 (s, 3H), 2.23 (t, *J* = 7.5 Hz, 2H), 3.00 (s, 6H), 5.91 (s, 1H), 6.08 (t, *J* = 2.7 Hz, 1H), 6.50 (d, *J* = 2.7 Hz, 1H), 6.62 (s, 1H), 6.81 (d, *J* = 9.0 Hz, 2H), 7.11 (s, 1H), 7.20 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.8, 10.3, 14.2, 22.7, 24.3, 30.5, 32.0, 41.2, 98.8, 109.7, 111.9, 113.7, 114.4, 120.8, 122.4, 123.5, 125.9, 128.9, 130.6, 136.9, 137.9, 147.9, 148.2, 158.0, 167.3. HRMS-ESI (*m*/z): $[M+H]^{+}$ calcd for C₂₈H₃₅N₄O, 443.2805; found, 443.2790.

(*Z*)-5-((3,5-Dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-4-(4-(trifluoromethyl)phenoxy)-1*H*,1'H-2,2'bipyrrole 3f: Obtained following the GP5 to give a red glass (28%, 40 mg). ¹H NMR (CDCl₃, 500 MHz) 0.86 (t, *J* = 7.5 Hz, 3H), 1.23-1.37 (m, 6H), 1.96 (s, 3H), 2.14 (s, 3H), 2.26 (t, *J* = 7.5 Hz, 2H), 6.13 (s, 1H), 6.17 (t, *J* = 2.6 Hz, 1H), 6.56 (d, *J* = 2.6, 1H), 6.73 (s, 1H), 7.01 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.70 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.9, 10.8, 14.2, 22.7, 24.3, 30.4, 31.9, 101.4, 110.2, 112.1, 115.2, 119.2, 122.4, 124.2 (q, J_{C-F}^{1} = 270 Hz), 124.5, 126.4, 126.5 (q, J_{C-F}^{2} = 32 Hz), 127.4, 128.7, 132.3, 136.3, 139.5, 156.7, 159.8, 163.1. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₂₉F₃N₃O₁, 468.2257; found, 468.2276.

(Z)-1-(4-((5-((3,5-Dimethyl-4-pentyl-2H-pyrrol-2-ylidene)methyl)-1H,1'H-[2,2'-bipyrrol]-4-

yl)oxy)phenyl)ethanone 3g: Obtained following GP5 to give a red glass (16%, 16 mg). ¹H NMR (CDCl₃, 500 MHz) 0.86 (t, J = 7.5 Hz, 3H), 1.22-1.36 (m, 8H), 1.92 (s, 3H), 2.13 (s, 3H), 2.25 (t, J = 7.5 Hz, 2H), 2.64 (s, 3H), 6.15 (t, J = 3.0 Hz, 1H), 6.20 (s, 1H), 6.56 (d, J = 3.0 Hz, 1H), 6.70 (s, 1H), 7.01 (s, 1H), 7.35 (d, J = 8.7 Hz, 2H), 8.06 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) 9.9, 11.0, 14.2, 22.7, 24.3, 26.7, 30.4, 31.9, 101.7, 110.2, 112.0, 115.3, 116.6, 118.6, 122.3, 124.5, 126.6, 128.7, 130.8, 132.2, 133.3, 139.5, 156.4, 161.2, 162.6, 196.9. HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₈H₃₂N₃O₂, 442.2489; found, 442.2502.

(*Z*)-4-(4-Chlorophenoxy)-5-((3,5-dimethyl-4-pentyl-2*H*-pyrrol-2-ylidene)methyl)-1*H*,1'*H*-2,2'-bipyrrole 3h: Obtained following the GP5 to give a red solid (36%, 28 mg). Mp 55 °C. ¹H NMR (CDCl₃, 500 MHz) 0.86 (t, *J* = 7.5 Hz, 3 H), 1.22-1.36 (m, 6 H), 1.85 (s, 3 H), 2.14 (s, 3 H), 2.24 (t, *J* = 7.5 Hz, 2 H), 6.01 (s, 1 H), 6.12 (dd, *J* = 3.5, 3.0 Hz, 1 H), 6.53 (dd, *J* = 3.5, 1.5 Hz, 1 H), 6.66 (br s, 1 H), 7.04 (s, 1H), 7.24 (d, *J* = 8.7 Hz, 2 H), 7.41 (d, *J* = 8.7 Hz, 2 H). ¹³C NMR (CDCl₃, 125 MHz) 9.9, 10.7, 14.2, 22.7, 24.3, 30.5, 31.9, 100.1, 110.0, 112.0, 114.9, 121.0, 122.4, 124.2, 126.2, 128.7, 129.8, 130.0, 130.0, 131.7, 138.8, 155.6, 157.0, 164.6. HRMS-ESI (*m*/z): $[M+H]^+$ calcd for C₂₆H₂₉Cl₁N₃O₁, 434.1994; found, 434.1973.

2. ¹H and ¹³C NMR spectra

CDCI₃, 125 MHz

¹H NMR for **8c** CDCl₃, 500 MHz

监狱

чч 2.13 3.26 4.51

у 3.14 уу 2.12 3.2

ł

¹H NMR for **13f** CDCI₃, 500 MHz

0 //

3. NCI data

Table S2: Half Growth Inhibition in nM for prodigiosenes **3h**, **3b**, **3d**, **3a**. Values are a mean of two experiments (provided by the NCI, http://dtp.cancer.gov).

	GI ₅₀ (nM)				
	3h	3b	3d	3a	
CCRF-CEM	20	5< Gl₅₀<10	26	26	
HL-60(TB)	138	27	209	63	
K-562	42	 14< Gl₅₀<18	58	41	
MOLT-4	50	19	78	38	
RPMI-8226	38	12< GL.<16	60	32	
SR	10	6_11	31	24	
	51	47	34	24	
	167	17	117	31	
	107	30	90	130	
HOP-92	30	/< GI ₅₀ <12	100	13	
NCI-H226	440	47	120	137	
NCI-H23	116	23	169	86	
NCI-H322M	122	27	210	67	
NCI-H460	39	12< GI₅₀<16	62	37	
NCI-H522	38	18	13	37	
COLO205	79	16< GI ₅₀ <20	77	35	
HCC-2998	34	9< Gl ₅₀ <13	66	40	
HCT-116	27	12< GI ₅₀ <16	32	27	
HCT-15	53	10< GI₅₀<15	73	31	
HT29	34	12< GI ₅₀ <16	44	26	
KM12	26	6< Gl₅₀<11	43	30	
SW-620	31	13< Gl₅₀<17	42	33	
SE-268	55	12< Gl. <17	104	44	
SF-295	127	23	130	56	
SF-539	92	19	99	58	
SNP 10	00	10	267	161	
SND-19 SND 75	221	40	110	101	
SINB-75	75	21	F1	50	
0251	43	10< GI ₅₀ <15	54	26	
	11	8< Gl ₅₀ <12	30	16	
MALME-3M	234	36	169	87	
M14	50	16	95	27	
MDA-MB-435	47	17	91	34	
SK-MEL-2	44	16	73	25	
SK-MEL-28	122	30	140	75	
SK-MEL-5	25	14	52	27	
UACC-257	176	38	126	133	
UACC-62	36	14	70	23	
IGROV1	166	32	169	111	
OVCAR-3	71	16	98	35	
OVCAR-4	38	6< Gl₅₀<11	87	31	
OVCAR-5	90	19	94	59	
OVCAR-8	94	21	110	44	
NCI/ADR-RES	385	38	288	167	
SK-OV-3	202	44	265	211	
786-0	61	15	91	44	
A 408	01	10	113	44 25	
A490	04	14	113	30	
	117	21	115	42	
	91	12< GI ₅₀ <17	75	39	
KAF393	95	15	10	59	
SN12C	84	27	124	58	
IK-10	235	34	191	45	
UO-31	101	18	111	67	
PC-3	69	16< GI ₅₀ <20	67	30	
DU-145	52	9< Gl ₅₀ <14	102	47	
MCF7	41	17< GI ₅₀ <21	51	38	

MDA-MB-231/ATCC	14	3< GI₅₀<8	47	17
HS578T	76	16	87	62
BT-549	289	34	300	177
T-47D	52	18	110	38
MDA-MB-468	24	10	46	61

	101
two experiments (provided by the NCI, http://dtp.cancer.gov).	

		TG	I (μM)	
	3h	3b	3d	3a
CCRF-CEM	> 100	1.7	> 100	> 100
HL-60(TB)	1.2	0.2	0.9	0.4
K-562	> 100	> 10	> 100	> 100
MOLT-4	1.9	0.2	1.4	4.2
RPMI-8226	1.4	0.2	0.7	0.3
SR	> 100	> 10	> 100	>100
A549/ATCC	0.3	0.05	0.2	0.2
HOP-62	14.4	1.5	15.9	1.6
HOP-92	0.3	0.05	0.3	0.06
NCI-H226	> 100	1.7	3.8	1.8
NCI-H23	2.9	0.5	2.2	1.4
NCI-H322M	74	3.1	10.9	3.1
NCI-H460	12	11	> 10	13
NCI-H522	11	0.1	0.2	0.5
COL 0205	15	0.1	0.3	0.4
HCC-2998	5.0	0.6	42	1.5
HCT-116	12	0.0	0.6	1.6
HCT-15	12	0.06	0.4	0.2
	18	13	1.6	1.2
KM12	1 1	0.03	0.4	0.6
SW/ 620	1.1	0.00	1.0	0.0
SVV-020	1.5	1.1	1.0	1.4
SF-200	0.8	0.1	0.6	1.4
SF-295	0.0	0.1	0.0	0.3
SF-339	0.7 > 10	1.00	0.4	0.7 > 10
SNB-19	210	1.0	0.0	2 10
SIND-70	0.5	0.00	0.4	0.3
	0.5	0.07	0.7	0.1
	0.05	0.02	0.2	0.04
	1.0	0.1	0.0	0.3
W114	0.0	0.04	0.3	0.08
MDA-MB-435	0.3	0.05	0.3	0.2
SK-MEL-2	0.1	0.04	0.2	0.07
SK-MEL-28	1.2	0.1	0.6	0.6
SK-MEL-5	80.0	0.03	0.1	0.09
UACC-257	2.9	0.3	0.5	1.1
UACC-62	0.1	0.03	0.2	0.05
IGROV1	> 10	1.3	2.3	1.6
OVCAR-3	0.5	0.05	0.4	0.3
OVCAR-4	> 100	0.7	6.0	1.2
OVCAR-5	> 10	0.7	3.3	1.9
OVCAR-8	> 10	0.1	0.6	0.7
NCI/ADR-RES	14	0.2	1.6	1.1
SK-OV-3	17	0.6	1.8	1.7
786-0	0.4	0.04	0.3	0.1
A498	1.9	0.06	0.7	0.5
ACHN	1.7	0.1	5.5	0.8
CAKI-1	0.4	0.05	0.4	0.7
RXF393	0.7	0.1	0.4	0.6

SN12C	> 10	0.2	1.0	0.8
TK-10	3.2	0.3	1.0	0.7
UO-31	0.3	0.07	0.3	0.2
PC-3	> 10	0.7	> 10	1.6
DU-145	2.9	0.1	2.9	1.3
MCF7	2.8	0.7	1.2	0.9
MDA-MB-231/ATCC	0.1	0.02	0.6	0.2
HS578T	0.5	0.07	0.4	0.5
BT-549	> 10	0.8	2.5	1.5
T-47D	4.0	0.6	1.1	0.9
MDA-MB-468	2.2	0.3	1.2	0.5

Table S4: Half lethal concentration in μ M for prodigiosenes **3h**, **3b**, **3d**, **3a**. Values are a mean
of two experiments (provided by the NCI, http://dtp.cancer.gov).

		LC	ο (μM)	
	3h	3b	3d	3a
CCRF-CEM	> 100	> 100	> 100	> 100
HL-60(TB)	> 100	> 100	> 10	4.7
K-562	> 100	> 100	> 100	> 100
MOLT-4	> 100	> 100	> 100	> 100
RPMI-8226	> 100	> 100	> 100	> 100
SR	> 100	> 100	> 100	> 100
A549/ATCC	29	2.1	4.3	5.3
HOP-62	> 100	> 10	12	7.2
HOP-92	> 100	7.9	> 100	> 10
NCI-H226	> 100	> 100	> 100	> 100
NCI-H23	42	5.1	20	8.0
NCI-H322M	> 100	24	> 100	29
NCI-H460	> 100	5.6	> 10	6.6
NCI-H522	50	3.0	11	4.0
COLO205	9.5	1.9	2.7	3.8
HCC-2998	> 100	3.7	31	5.7
HCT-116	6.7	0.6	2.9	1.6
HCT-15	63	0.6	9.5	> 100
HT29	> 100	11	> 100	> 100
KM12	24	0.2	32.	3.1
SW-620	12	3.0	> 10	5.2
SF-268	39	4.1	7.3	5.0
SF-295	17	0.8	51	2.4
SF-539	7.1	0.3	1.7	2.9
SNB-19	36	4.4	> 10	10.2
SNB-75	> 100	5.4	37	>10
U251	3.2	0.5	3.0	1.1
LOXIMVI	> 100	0.03	5.2	1.1
MALME-3M	6.4	0.7	3.2	1.7
M14	> 10	0.2	1.6	1.5
MDA-MB-435	4.0	0.3	0.9	2.4
SK-MEL-2	0.8	0.08	0.6	0.4
SK-MEL-28	> 10	0.9	3.1	3.1
SK-MEL-5	0.3	0.06	0.3	0.3
UACC-257	> 100	5.2	> 100	> 10
UACC-62	0.6	0.06	0.5	0.7
IGROV1	> 100	7.3	> 100	7.3
OVCAR-3	3.5	0.3	2.1	1.6
OVCAR-4	> 100	3.8	23	4.4
OVCAR-5	60	7.7	26	8.6
OVCAR-8	48	0.4	2.4	2.8

NCI/ADR-RES	> 100	1.2	> 10	4.8
SK-OV-3	> 100	5.7	14	> 10
786-0	> 100	0.3	1.7	2.7
A498	25	0.3	3.3	2.6
ACHN	> 100	72	60	> 10
CAKI-1	> 100	> 100	> 100	> 10
RXF393	14	1.9	3.3	3.1
SN12C	10	0.8	3.9	3.3
TK-10	76	6.9	16	3.5
UO-31	0.6	0.3	0.6	0.7
PC-3	> 100	> 10	> 100	> 10
DU-145	> 100	> 10	63	> 10
MCF7	> 100	4.9	5.8	6.3
MDA-MB-231/ATCC	> 10	0.9	> 10	5.5
HS578T	31	5.3	> 10	> 100
BT-549	> 100	6.9	26	4.2
T-47D	> 100	31	> 100	> 10
MDA-MB-468	27	2.4	0.5	3.0

4. NMR titrations

As shown in **Fig. 3** of the paper, ¹H NMR experiments were performed at 25 °C on **3b**. Methanesulfonic acid (MsOH) was used as the acid. In a typical NMR experiment, a 1 mM solution of **3b** was prepared. Then, MsOH in $CDCI_3$ solution was added and a ¹H NMR spectrum was recorded using a Bruker AVIII-600 MHz instrument. After adding 6 eq of MsOH, a solution of TBACI in $CDCI_3$ was consecutively added to the NMR tube. After each addition of TBACI, a ¹H-NMR spectrum was recorded using Bruker AVIII-600 MHz instrument.

Figure S1. 1H NMR spectra of the NH pyrrole region of $3b \cdot H+$ during a titration with equivalents of MsOH in CDCl3 at 25 °C. As increasing equivalents of acid are added, 6 signals can be observed separating from each other. Three minor signals correspond to the 3 NH protons of the α isomer (•) and the 3 major signals correspond to the NH protons of the β isomer (*) (see Scheme 4 in the paper).

Figure S2. NMR spectra showing a titration of compound 3b containing 6 eq of MsOH with TBACI. After the addition of 6 eq of MsOH, 6 signals can be observed corresponding to the 3 NH protons of the α

conformer (•) and 3 NH protons of the β conformer (*). As equivalents of TBACI are added to the sample, the signals for the α conformer merge with the signals of the β conformer.

5. 3b•HOMs NOESY

Figure S3. a) Full NOESY spectrum of $3b \cdot HOMs$ in $CDCI_3$. b) Expanded region.

6. LogP Values.

Log P is most commonly used for estimating the lipophilicity of a compound and is defined as the logarithm of the partition coefficient in an octanol/water mixture. Log P values were calculated for two tautomers of the protonated and non-protonated form (I, II, III and IV) of compounds **1**, **3b**, **3d-f** and **3h** using the VCCLab software.^{8,9} Each tautomer consist of the mixture of the α and β isomer

v	Log <i>P</i> (Pre	otonated)	Log <i>P</i> (Free Base)		
^	Ring B (I)	Ring C (II)	Ring B (III)	Ring C (IV)	
3d (OCH ₃)	4.90 ± 1.41	4.82 ± 1.41	6.18 ± 1.68	6.15 ±1.66	
3e (NMe ₂)	5.06 ± 1.44	4.98 ± 1.45	6.37 ± 1.65	6.31 ± 1.63	
3b (H)	5.01 ± 1.35	4.93 ± 1.37	6.28 ± 1.49	6.26 ± 1.47	
3h (Cl)	5.52 ± 1.52	5.43 ± 1.55	6.83 ± 1.61	6.79 ± 1.60	
3f (CF ₃)	5.81 ± 1.48	5.69 ± 1.55	7.08 ± 1.63	7.01 ± 1.62	
Prodigiosin 1	3.28 ± 1.15	3.42 ± 1.0	4.44 ± 1.11	4.62 ± 1.36	

Table S4. Calculated LogP values for compounds 1, 3b, 3d-f and 3h.

7. Determination of pKa Values for Prodigiosenes 1, 3b, 3d-f and 3h

We used a spectrophotometric procedure described by Manderville and colleagues to determine the apparent pK_a values for prodigiosenes **1**, **3b**, **3d-f** and **3h**.¹⁰ The UV-vis spectra were recorded on a Shimadzu UV-1800 UV-Visible spectrophotometer. Standard 10 mm quartz glass cells from Starna Cells Inc. were used. All UV-Vis spectra were recorded at 25 °C with baseline correction. The pH measurements were made using an Accumet AR25A dual channel pH/ion meter equipped with an Accumet pH microelectrode. Calibration was achieved using commercial buffers (Thermo Scientific, pH 4.00, 7.00 and 10.00, all ±0.01). Stock solutions (2 mM) of prodigiosenes **1**, **3b**, **3d-f** and **3h** were prepared in CH₃CN. Then, 15 µL of the stock solution was added to a quartz cuvette containing 2 mL total volume of 1:1 CH₃CN/H₂O (v/v). The ionic strength was kept constant by using 0.1 M NaCI. Acidity constants were determined spectrophotometrically by monitoring absorbance changes in the UV-Vis spectra after additions of dilute HCI or NaOH solutions under constant temperature conditions (25 °C). The pKa values were determined from a plot of log (ionization ratio) vs. pH.

Figure S4. UV-vis absorbance spectra for **3e** as a function of pH in 1:1 CH₃CN–H₂O (v/v) at 25 °C (0.1 M NaCl). Each titration was performed in triplicate.

Figure S5. UV-vis absorbance spectra for **3f** as a function of pH in 1:1 CH₃CN–H₂O (v/v) at 25 $^{\circ}$ C (0.1 M NaCl). Each titration was performed in triplicate.

Figure S6. UV-vis absorbance spectra for **3b** as a function of pH in 1:1 CH₃CN–H₂O (v/v) at 25 °C (0.1 M NaCl). Each titration was performed in triplicate.

8. Anion exchange transport assays

Materials. Egg-yolk phosphatidylcholine (EYPC) lipid was purchased from Avanti Polar Lipids. Polycarbonate membranes and the extrusion apparatus used for making the liposomes was also from Avanti Polar Lipids. Salts (> 99% purity) were purchased from Sigma-Aldrich and used as received. The fluorescent dye lucigenin was purchased from Sigma-Aldrich. Prodigiosin **1** was provided by the Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI. Buffer solutions were made using ultra-pure water (distilled and then passed through a Millipore filtering system). The pH adjustments were made using concentrated NaOH solution. Fluorescence experiments were completed using a Hitachi model F-4500 fluorescence spectrophotometer.

Preparation of EYPC liposomes. EYPC lipid solution (~60 mg of lipid) was evaporated under reduced pressure to produce a thin film that was then dried *in vacuo* overnight. The resulting lipid film was hydrated with 1 mL of a solution containing 20 mM HEPES (pH = 7.4), 100 mM NaCl and 1 mM of the lucigenin dye.¹¹ After 9 freeze/thaw cycles (thawing and then warming to 45°C) the liposomes were extruded through a 200 nm polycarbonate membrane 31 times at room temperature to convert any large multi-lamellar vesicles (LMVs) into small unilamellar vesicles (SUV). The liposome solution was then passed through a Sephadex (G-25) column to remove any excess lucigenin dye. The isolated liposomes were diluted in 20 mM HEPES (pH 7.4, 75 mM Na₂SO₄) to give a final concentration of 13 mM in EYPC lipid, assuming complete retention of lipid during the gel filtration process. The size of the liposomes was confirmed using dynamic light scattering experiments.

Chloride-Nitrate Anion Exchange Transport Assay in EYPC Liposomes. In a typical experiment, 0.04 mL of the stock EYPC liposome solution was diluted into 2 mL of a solution of 20 mM HEPES (pH 7.4, 100 mM NaNO₃) to give a solution that was 0.2 mM in lipid. The lucigenin's fluorescence was monitored for 720 s with an excitation wavelength of 372 nm and an emission at 504 nm. At t = 30 s we added 1 μ L of a 4 μ M DMSO solution of the prodigiosene transporter to the cuvette containing the EYPC solution, giving a 1:125,000 ligand to lipid ratio (or 0.0008 mol % wrt lipid concentration). The efflux of Cl- from within the liposomes due to the transporter's catalysis of chloride-nitrate exchange was observed by an increase in the lucigenin's fluorescence. At t = 660 s, we added 0.05 mL of a solution of 10 % Triton-X detergent in order to destroy the liposomes and allow for determination of the maximal fluorescence quenching of lucigenin by Cl-. Experiments were repeated in triplicate and all traces reported in figures 7 in the main text and Fig S7 are the average of three trials.

Initial rates and Half-life

For comparative purposes, the relative transport activity for various ionophores was expressed as the initial rate of lucigenin fluorescence as chloride and nitrate were exchanged across the membrane. Addition of a transporter leads to movement of internal chloride across the membrane, which results in increase in fluorescence of lucigenin. Rates are obtained by linear fitting of initial slopes of fluorescence traces. Half-life were manually calculated for each prodigiosene from fluorescence plots in figure 6.

Figure S7. Anion exchange assay for prodigiosin 1 and analog 3d. Change in fluorescence of lucigenin observed in EYPC liposomes at 25°C. The data was collected using 0.004 mol% of prodigiosene transporter relative to EYPC lipid. Liposomes containing 1 mM lucigenin, 20 mM HEPES buffer and 100 mM NaCl (pH 7.43) were suspend in 20 mM HEPES and 100 mM NaNO₃ solution (pH 7.43); at t = 30 s, prodigiosene transporter was added and the fluorescence monitored ($\lambda_{ex} = 372$ nm, $\lambda_{em} = 504$ nm); at t = 660 s, addition of triton-X; traces shown are an average of three trials.

9. References

- 1. Duc, L.; McGarrity, J. F.; Meul, T.; Warm, A., Synthesis **1992**, (4), 391-4.
- 2. D'Alessio, R.; Rossi, A.; Tibolla, M.; Ceriani, L. Process for the preparation of 2,2'bipyrrolylpyrromethene (prodigiosins) derivatives. WO9730029A1, 1997.
- 3. Li, W.-R.; Lin, S. T.; Hsu, N.-M.; Chern, M.-S., J. Org. Chem. 2002, 67 (14), 4702-4706.
- 4. Rastogi, S.; Marchal, E.; Uddin, I.; Groves, B.; Colpitts, J.; McFarland, S. A.; Davis, J. T.; Thompson, A., *Org. Biomol. Chem.* **2013**, *11* (23), 3834-3845.
- 5. Uddin, M. I.; Thirumalairajan, S.; Crawford, S. M.; Cameron, T. S.; Thompson, A., Synlett **2010**, *17*, 2561-2564.
- 6. Regourd, J.; Ali, A. A.-S.; Thompson, A., J. Med. Chem. 2007, 50, 1528-1536.
- 7. Meul, T. 4-Benzyloxy-3-pyrrolin-2-one, its preparation and use in the synthesis of 2,4pyrrolidinedione, an antibiotic intermediate. EP252363A1, 1988.
- 8. Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S., *J. Comput.-Aid. Mol. Des.* **2005**, *19* (6), 453-463.
- 9. VCCLAB Virtual Computational Chemistry Laboratory. <u>http://www.vcclab.org</u>.
- 10. Melvin, M. S.; Tomlinson, J. T.; Park, G.; Day, C. S.; Saluta, G. R.; Kucera, G. L.; Manderville, R. A., *Chem. Res. Toxicol.* **2002**, *15* (5), 734-741.
- 11. McNally, B. A.; Koulov, A. V.; Smith, B. D.; Joos, J.-B.; Davis, A. P., *Chem. Commun.* **2005**, (8), 1087-1089.