The Impact of LR-HSQMBC Very Long-Range Heteronuclear Correlation Data on Computer-Assisted Structure Elucidation

SUPPLEMENTAL INFORMATION

K. A. Blinov^a, A. V. Buevich^b. R. T. Williamson^c, and G. E. Martin^c

- ^a Molecule Apps, LLC, Wilmington, DE 19808.
- ^b Merck Research Laboratories, Process & Analytical Chemistry, NMR Structure Elucidation, Kenilworth, NJ 07033.
- ^c Merck Research Laboratories, Process & Analytical Chemistry, NMR Structure Elucidation, Rahway, NJ 07065.

- S1. Molecular connectivity diagram from Figure 1. Pg . 2.
- S2. Structure Elucidator CASE program output when the cervinomycin A₂ calculation was done using HMBC and 4 Hz LR-HSQMBC data. Only 4 structure were generated in a calculation lasting 37 h. Pg 3.
- S3. Long-range heteronuclear correlations observed in the 2 Hz optimized LR-HSQMBC spectrum of staurosporine (2). Correlations are color-coded as a function of the correlation path length. Pg. 4.
- S4. Structure Elucidator CASE program output when the staurosporine calculation was done using ¹H-¹³C and ¹H-¹⁵N HMBC data, IDR-HSQC-TOCSY, 2 Hz optimized LR-HSQMBC, 1,1-ADEQUATE, and dual optimized inverted ¹ J_{CC} 1,n-ADEQUATE data. The calculation lasted 0.2 s and generated 24 structures. Pg. 5.

S1. Molecular connectivity diagram from Figure 1.

The complete ensemble of long-range heteronuclear correlations in the 4 Hz HMBC and 4 and 2 Hz optimized LR-HSQMBC of cervinomycin A_2 are shown in: R. T. Williamson, A. V. Buevich, G. E. Martin, T. Parella, *J. Org. Chem.*, **2014**, *79*, 3387.

S2. Structure Elucidator CASE program output when the cervinomycin A₂ calculation was done using 8 and 4 Hz optimized ¹H-¹³C HMBC and 4 Hz optimized LR-HSQMBC data. A total of 4 structures were generated in a 37 h calculation (shown below). Structures are rank ordered based on congruence between calculated and experimental ¹³C chemical shifts. When the 2 Hz optimized LR-HSQMBC data were substituted for the 4 Hz optimized LR-HSQMBC data in the program input, 7 structures were generated by the program in 150 s. When both 4 and 2 Hz optimized LR-HSQMBC data were included in the program input file, only a single structure was generated in a 104 s calculation.

S3. Long-range heteronuclear correlations observed in the 2 Hz optimized LR-HSQMBC spectrum of staurosporine (2). Correlations are color-coded as a function of the correlation path length. When more than one coupling path was possible, the shorter pathlength is indicated.

¹H-¹³C and ¹H-¹⁵N HMBC, 1,1-ADEQUATE, and dual optimized inverted ¹ J_{CC} correlations for staurosporine (2) were previously reported (see: M. M. Senior, R. T. Williamson, and G. E. Martin, *J. Nat. Prod.*, **2013**, *76*, 2088).

S4. Structure Elucidator CASE program output when the staurosporine calculation was done using ¹H-¹³C and ¹H-¹⁵N HMBC data, IDR-HSQC-TOCSY, 2 Hz optimized LR-HSQMBC, 1,1-ADEQUATE, and dual optimized inverted ¹J_{CC} 1,n-ADEQUATE data. The calculation lasted 0.2 s and generated 24 structures. Structures are rank ordered based on congruence between calculated and experimental ¹³C chemical shifts.

