The Impact of LR-HSQMBC Very Long-Range Heteronuclear Correlation Data on Computer-Assisted Structure Elucidation

SUPPLEMENTAL INFORMATION

K. A. Blinov ${ }^{\text {a }}$, A. V. Buevich ${ }^{\text {b }}$. R. T. Williamson ${ }^{\text {c }}$, and G. E. Martin ${ }^{\text {c }}$
${ }^{\text {a }}$ Molecule Apps, LLC, Wilmington, DE 19808.
${ }^{\text {b }}$ Merck Research Laboratories, Process \& Analytical Chemistry, NMR Structure Elucidation, Kenilworth, NJ 07033.
${ }^{c}$ Merck Research Laboratories, Process \& Analytical Chemistry, NMR Structure Elucidation, Rahway, NJ 07065.

S1. Molecular connectivity diagram from Figure 1. Pg . 2.
S2. Structure Elucidator CASE program output when the cervinomycin A_{2} calculation was done using HMBC and 4 Hz LR-HSQMBC data. Only 4 structure were generated in a calculation lasting 37 h. $\operatorname{Pg} 3$.

S3. Long-range heteronuclear correlations observed in the 2 Hz optimized LR-HSQMBC spectrum of staurosporine (2). Correlations are color-coded as a function of the correlation path length. Pg. 4.

S4. Structure Elucidator CASE program output when the staurosporine calculation was done using ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC data, IDR-HSQC-TOCSY, 2 Hz optimized LR-HSQMBC, 1,1ADEQUATE, and dual optimized inverted ${ }^{1} J_{\mathrm{CC}} 1, \mathrm{n}$-ADEQUATE data. The calculation lasted 0.2 s and generated 24 structures. Pg. 5.

S1. Molecular connectivity diagram from Figure 1.

The complete ensemble of long-range heteronuclear correlations in the 4 Hz HMBC and 4 and 2 Hz optimized LR-HSQMBC of cervinomycin A_{2} are shown in: R. T. Williamson, A. V. Buevich, G. E. Martin, T. Parella, J. Org. Chem., 2014, 79, 3387.

S2. Structure Elucidator CASE program output when the cervinomycin A_{2} calculation was done using 8 and 4 Hz optimized ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC and 4 Hz optimized LR-HSQMBC data. A total of 4 structures were generated in a 37 h calculation (shown below). Structures are rank ordered based on congruence between calculated and experimental ${ }^{13} \mathrm{C}$ chemical shifts. When the 2 Hz optimized LR-HSQMBC data were substituted for the 4 Hz optimized LR-HSQMBC data in the program input, 7 structures were generated by the program in 150 s . When both 4 and 2 Hz optimized LR-HSQMBC data were included in the program input file, only a single structure was generated in a 104 s calculation.

S3. Long-range heteronuclear correlations observed in the 2 Hz optimized LR-HSQMBC spectrum of staurosporine (2). Correlations are color-coded as a function of the correlation path length. When more than one coupling path was possible, the shorter pathlength is indicated.

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC, 1,1-ADEQUATE, and dual optimized inverted ${ }^{1} J_{\mathrm{CC}}$ correlations for staurosporine (2) were previously reported (see: M. M. Senior, R. T. Williamson, and G. E. Martin, J. Nat. Prod., 2013, 76, 2088).

S4. Structure Elucidator CASE program output when the staurosporine calculation was done using ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC data, IDR-HSQC-TOCSY, 2 Hz optimized LR-HSQMBC, 1,1ADEQUATE, and dual optimized inverted ${ }^{1} J_{\mathrm{CC}} 1, \mathrm{n}$-ADEQUATE data. The calculation lasted 0.2 s and generated 24 structures. Structures are rank ordered based on congruence between calculated and experimental ${ }^{13} \mathrm{C}$ chemical shifts.

(

