Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Asymmetric synthesis of (3*S*,1'*S*)-3-(1-amino-2,2,2trifluoroethyl)-1-(alkyl)-indolin-2-one derivatives by additions of (*S*)-*N*-*t*-butylsulfinyl-3,3,3-trifluoroacetaldimine to 1-(alkyl)indolin-2-ones

Ping Qian, Chen Xie, Lingmin Wu, Haibo Mei, Vadim A. Soloshonok, Jianlin Han,* and Yi Pan*

	Page
1. General information	S2
2. Typical procedure for asymmetric addition of sulfinylimine	S2
3. Characterization data of compounds 5 and 7	S3
4. Reaction of large scale application study	S11
5. X-ray crystallography for 5a	S11
6. ¹⁹ F-NMR spectra of crude reaction mixture for optimization	of the
reaction conditions (Table 1, 2)	S12
7. ¹ H and ¹³ C NMR spectra for compounds 5 and 7	

1. General information

Oxoindoles were synthesized according to literature^{1,2}. Sulfinylimine **1** was synthesized due to literature³. Other reagents were obtained from commercial suppliers and used without further purification. The reactions were conducted in a closed system in an atmosphere of N_2 and were monitored by TLC. Solvents were dried and distilled prior to use. Flash chromatography was performed using silica gel 60 (300–400 mesh). Thin layer chromatography was carried out on silica gel 60 F-254 TLC plates of 20 cm × 20 cm. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AVANCE400M spectrometer. Melting points were uncorrected. Values of optical rotation were measured on a Rudolph Automatic Polarimeter A21101. Infrared spectra were obtained on a Bruker Vector 22 in KBr pellets. HRMS were conducted on an Agilent 6540Q-TOF LC/MS equipped with an electrospray ionization (ESI) probe operating in positive or negative ion mode.

Reference

1 B. M. Trost, J. Xie and J. D. Sieber, J. Am. Chem. Soc., 2011, 133, 20611-20622.

2 X. H. Xu, X. Wang, G. Liu, E. Tokunaga and N. Shibata, Org. Lett., 2012, 14, 2544-2547.

3 V. L. Truong and J. Y. Pfeiffer, Tetrahedron Lett., 2009, 50, 1633-1635.

2. Typical procedure for asymmetric addition of sulfinylimine

Into an oven-dried reaction vial flushed with N₂ was taken oxoindole **4** (0.6 mmol) and anhydrous DCM (3.0 mL). The reaction vial was cooled to -78 °C and LDA (2 M in Hexene, 0.36 mL) was added dropwise with stirring. After 1 hour at -78 °C, sulfinyl-imine **1** (0.5 mmol) dissolved in anhydrous DCM (2 mL) was pre-cooled to -78 °C, and then added dropwise to the reaction mixture. Stirring was continued at -78 °C for 5 h, and then the reaction was quenched with saturated NH₄Cl (3.0 mL), followed by H₂O (3.0 mL) and the mixture was brought to room temperature. The

organic layer was taken and the aqueous layer was extracted with EtOAc (2×20 mL). The combined organic layers were washed with water (1×30 mL) and brine solution (1×30 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated, and the crude mixture was charged onto silica gel and purified by flash chromatography to furnish the corresponding product.

3. Characterization data of compounds 5a-5e, 7a-7l

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-1-methyl-2-oxoindolin-3-yl)ethyl)propa ne-2-sulfinamide (5a)

White solid (153.3 mg, 88%), mp 159-163 °C, $[\alpha]_{12}^{25} = -50.9$ (c = 1.05, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.0 Hz, 2H), 7.12 (t, J = 6.9 Hz, 1H), 6.89 (d, J = 7.2 Hz, 1H), 4.69-4.49 (m, 1H), 3.86 (s, 1H), 3.43 (d, J = 10.4 Hz, 1H), 3.19 (s, 3H), 0.97 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.71. ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 145.2, 129.7, 125.7, 1 24.8 (q, $J_{FC} = 283.4$ Hz), 123.1, 121.8, 108.6, 59.0 (q, ² $J_{FC} = 31.3$ Hz), 57.1, 46.4, 26.4, 22.1. IR (cm⁻¹): v 3242, 3066, 2969, 2928, 1704, 1614, 1498, 1472, 1430, 1382, 1340, 1244, 1170, 1115, 1082, 769, 658, 541. HRMS (ESI):[M+N a⁺] calcd for C₁₅H₁₉F₃N₂O₂SNa: 371.1017, found: 371.1019.

(S)-N-((S)-1-((S)-1-ethyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-methylpropane -2-sulfinamide (5b)

Yellow oil (168.5 mg, 93%), $[\alpha]_{25}^{25} = -22.7$ (c = 3.16, CHCl₃). (major isomer) ¹HNMR (400 MHz, CDCl₃) δ 7.37 (t, J = 8.0 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.57 (dqd, J = 10.5, 8.1, 2.3 Hz, 1H), 3.85 (s,1 H), 3.80 (m, 1H), 3.69 (m, 1H), 3.58 (d, J = 10.9 Hz, 1H), 1.27 (t, J = 7.2H z, 3H), 0.99 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.64. ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 144.3, 129.6, 124.9 (q, $J_{FC} = 283.6$ Hz), 125.7, 122.9, 122.0, 108.7, 58.7 (q, ² $J_{FC} = 31.2$ Hz), 57.2, 46.3, 35.1, 22.1, 12.5. IR (cm⁻¹): v 3234, 3052, 2975, 2932, 2872, 1696, 1611, 1491, 1466, 1373, 1341, 1269, 1 251, 1171, 1137, 1114, 1076, 998, 896, 817, 770, 760, 658, 601, 488, 447. HRMS (ESI): $[M+Na^+]$ calcd for $C_{16}H_{21}F_3N_2O_2SNa$: 385.1174, found: 385.1173.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-1-isopropyl-2-oxoindolin-3-yl)ethyl)pro pane-2-sulfinamide (5c)

Yellow oil (148.7 mg, 79%), $[\alpha]_{25}^{25} = -14.7$ (c = 1.65, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 2H), 7.10-6.99 (m, 2H), 4.64-4.5 ² (m, 2H), 3.84-3.76 (m, 2H), 1.47 (t, J = 6.5 Hz, 6H), 1.02 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.44. ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 143.7 ,129.2, 125.5, 125.0 (q, $J_{FC} = 283.8$ Hz), 122.5, 122.4, 110.3, 58.3 (q, ² $J_{FC} = 3$ 0.9 Hz), 57.2, 46.3, 44.3, 22.2, 19.3, 19.1. IR (cm⁻¹): v 3230, 3058, 2976, 292 5, 2872, 2853, 1712, 1705, 1650, 1610, 1486, 1468, 1401, 1361, 1322, 1259,1 233, 1204, 1170, 1120, 1089, 894, 751, 657, 442. HRMS (ESI): [M+Na⁺] calcd for C₁₇H₂₃F₃N₂O₂SNa: 399.1330, found: 399.1331.

(S)-N-((S)-1-((S)-1-benzyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-methylpropa ne-2-sulfinamide (5d)

Yellow oil (199.5 mg, 94%), $[\alpha]_{15}^{25} = -40.4$ (c = 4.00, CHCl₃). (major isomer) ¹HNMR (400 MHz, CDCl₃) δ 7.38-7.21 (m, 7H), 7.07 (t, J = 7.5 Hz, 1H), 6. 83(d, J = 7.0 Hz, 1H), 5.08 (d, J = 15.5 Hz, 1H), 4.65 (d, J = 15.5 Hz,1H), 4.68-4.59 (m, 1H), 3.96 (s, 1H), 3.75 (d, J = 10.8 Hz,1H), 0.97 (s,9H). ¹⁹F N MR (376 MHz, CDCl₃) δ -71.49. ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 144.3, 135.1, 129.5, 128.9, 127.9, 127.6, 125.5, 124.9 (q, $J_{FC} = 283.6$ Hz), 124.7, 12 4.1, 123.1, 121.9, 109.6, 58.5 (q, ² $J_{FC} = 31.1$ Hz), 57.2, 46.4, 44.2, 22.1. IR (cm⁻¹): v 3471, 3230, 3062, 2959, 2925, 2854, 1713, 1613, 1489, 1468, 1456, 1 438, 1366, 1270, 1252, 1199, 1170, 1122, 1082, 1017, 923, 910, 893, 820, 75 2, 735, 698, 663, 638, 550, 443. HRMS (ESI): [M+Na⁺] calcd for C₂₁H₂₃F₃N₂ O₂SNa: 447.1330, found: 447.1330.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-2-oxo-1-phenylindolin-3-yl)ethyl)propa ne-2-sulfinamide (5e)

Yellow oil (201.0 mg, 95%), $[\alpha]_{12}^{25} = -82.1$ (c = 1.02, CHCl₃). (major isomer) ¹HNMR (400 MHz, CDCl₃) δ 7.55-7.35 (m, 6H), 7.32-7.25 (m, 1H), 7.16-7.13 (m, 1H), 6.84 (d, J = 7.9 Hz, 1H), 4.71-4.62 (m, 1H), 4.05 (s, 1H), 3.80 (d, J = 10.9 Hz, 1H), 1.04 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.37. ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 145.0, 133.8, 129.8, 129.5, 128.4, 126.4, 12 6.2, 125.7, 124.9 (q, $J_{FC} = 283.6$ Hz), 124.6, 124.3, 123.6, 121.8, 110.1, 58.7 (q, ² $J_{FC} = 31.1$ Hz), 57.2, 46.7, 22.3. IR (cm⁻¹): v 3230, 3062, 2959, 2926, 28 68, 1724, 1670, 1612, 1594, 1503, 1483, 1466, 1420, 1373, 1330, 1254, 1226, 1201, 1173, 1121, 1095,1029, 1002, 752, 696, 663, 608, 489, 445. HRMS (ES I): [M+Na⁺] calcd for C₂₀H₂₁F₃N₂O₂SNa: 433.1174, found: 433.1173.

(S)-N-((S)-1-((S)-4-chloro-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met hylpropane-2-sulfinamide (7a)

Yellow oil (185.7 mg, 97%), $[\alpha]_{12}^{25} = +28.0$ (c = 2.91, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, J = 8.1 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 5.98 (d, J = 10.5 Hz, 1H), 5.09-4.95 (m, 1H), 3.86 (s, 1H), 3.13 (s, 3H), 1.22 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.8 5. ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 145.0, 131.1, 130.4, 124.6 (q, $J_{FC} =$ 283.4 Hz) 123.6, 121.4, 107.2, 57.4, 54.4 (q, ² $J_{FC} =$ 29.8 Hz), 45.8, 26.5, 22.3.I R (cm⁻¹): v 3264, 3062, 2958, 2924, 2870, 2854, 1712, 1705, 1611, 1592, 146 3, 1422, 1365, 1343, 1295, 1273, 1249, 1194, 1168, 1124, 1112, 1092, 1018, 933, 906, 772, 669, 568, 506, 461. HRMS (ESI): [M+Na⁺] calcd for C₁₅H₁₈³⁵C IF₃N₂O₂SNa: 405.0627, found: 405.0625.

(S)-N-((S)-1-((S)-4-bromo-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met

hylpropane-2-sulfinamide (7b)

Yellow oil (194.4 mg, 91%), $[\alpha]_{D}^{25} = +27.0$ (c = 1.45, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.21 (m, 2H), 6.84-6.82 (m, 1H), 6.11 (d, J = 10.48 Hz, 1H), 5.23 (m, 1H), 3.91 (d, J = 4.7 Hz, 1H), 3.21 (s, 3H), 1.3 2 (s, 9H). ¹⁹FNMR (376 MHz, CDCl₃) δ -70.83. ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 145.1, 130.6, 126.6, 124.6 (q, $J_{FC} = 284.5$ Hz) 123.6, 119.5, 107.7, 5 7.5, 54.0 (q, ² $J_{FC} = 29.9$ Hz), 47.0, 26.5, 22.4. IR (cm⁻¹): v 3261, 3060, 2959, 2928, 2870, 1708, 1608, 1583, 1459, 1423, 1364, 1344, 1275, 1247, 1193, 116 8, 1124, 1103, 928, 769, 667, 562, 500. HRMS (ESI): [M+Na⁺] calcd for C₁₅ H₁₈⁷⁹BrF₃N₂O₂SNa:449.0122, found: 449.0121.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-5-fluoro-1-methyl-2-oxoindolin-3-yl)eth yl)propane-2-sulfinamide (7c)

White solid (170.3 mg, 93%), mp 158-162 °C, $[\alpha]_{15}^{25} = -43.5$ (c = 1.09, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) $\delta = 7.15$ -7.08 (m, 2H), 6.82 (d d,J = 8.5, 4.2 Hz, 1H), 4.59 (dqd, J = 10.5, 8.1, 2.3 Hz, 1H), 3.85 (s, 1H), 3.5 5 (d, J = 10.8 Hz, 1H), 3.18 (s, 3H), 1.00 (s, 9H). ¹⁹F NMR (376 MHz, CD Cl₃) δ -71.59, -119.21. ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 159.2 (q, J = 242.0 Hz), 141.2 (d, J = 20 Hz), 124.7 (q, $J_{FC} = 283.2$ Hz), 123.5 (d, J = 8.5Hz), 116.0 (d, J = 23.4 Hz), 114.0 (dq, J = 25.6 Hz, 2 Hz), 109.0 (d, J =8.2 Hz), 58.8 (q, ² $J_{FC} = 31.3$ Hz), 57.2, 46.8, 26.6, 22.1. IR (cm⁻¹): v 3264, 2 967, 2924, 2873, 1711, 1625, 1479, 1472, 1458, 1428, 1372, 1339, 1282, 1244,1 201, 1176, 1150, 1120, 1083, 998, 939, 924, 864, 829, 790, 758, 706, 682, 66 6, 559. HRMS (ESI): [M+Na⁺] calcd for C₁₅H₁₈F₄N₂O₂SNa: 389.0923, found: 3 89.0923.

(S)-N-((S)-1-((S)-5-chloro-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met hylpropane-2-sulfinamide (7d)

White solid (176.1 mg, 92%), mp 179-184 °C, $[\alpha]_{D}^{25} = +18.6$ (c = 0.44, CHCl 3). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 2H), 6.83 (d, J = 8.2 Hz, 1H), 4.58 (dqd, J = 10.5, 8.1, 2.3 Hz, 1H), 3.85 (d, J = 1.0 Hz, 1H), 3.60 (d, J = 10.8 Hz, 1H), 3.18 (s, 3H), 1.00 (s, 9H). ¹⁹F NMR (376 M Hz, CDCl₃) δ -71.53. ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 143.7, 129.6, 128.5 , 126.2 (q, J = 3.3 Hz), 124.7 (q, $J_{FC} = 283.2$ Hz), 123.5, 109.4, 58.8 (q, ² J_{FC}

=31.3 Hz), 57.2, 46.5, 26.6, 22.1. IR (cm⁻¹): v 3262, 2984, 2960, 2924, 2870, 1709, 1491, 1468, 1428, 1370, 1335, 1275, 1245, 1172, 1120, 1085, 938, 865, 832, 785, 662, 644, 550. HRMS (ESI): [M+Na⁺] calcd for C₁₅H₁₈³⁵ClF₃N₂O₂SN a:405.0627, found: 405.0626.

(S)-N-((S)-1-((S)-5-bromo-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met hylpropane-2-sulfinamide (7e)

White solid (194.3 mg, 91%), mp 187-192 °C, $[\alpha]_{15}^{25} = +39.0$ (c = 1.01, CHCl ₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 6.78 (d, J = 8.3 Hz, 1H), 4.62-4.53 (m, 1H), 3.86 (s, 1H), 3.61 (d, J = 10.8 Hz, 1H), 3.18 (s, 3H), 1.00 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.54. ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 144.2, 132.6, 128.9 (q, J = 3.4 Hz), 124.7 (q, $J_{FC} = 283.4$ Hz), 123.9, 115.8, 109.9, 58.8 (q, ${}^{2}J_{FC} = 31.3$ Hz), 57.2, 46.4, 26.6, 2 2.1. IR (cm⁻¹): v 3277, 3249, 2961, 2923, 2870, 1708, 1669, 1610, 1488, 1468,1 424, 1369, 1334, 1275, 1242, 1203, 1173, 1120, 1085, 938, 901, 883, 826, 78 2, 752, 661, 635, 538, 443. HRMS (ESI): [M+Na⁺] calcd for C₁₅H₁₈⁷⁹BrF₃N₂O₂ SNa: 449.0122, found: 449.0120.

(S)-methyl 3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2,2,2-trifluoroethyl)-1-me thyl-2-oxoindoline-5-carboxylate (7f)

White solid (182.7 mg, 90%), mp 183-188 °C, $[\alpha]_{15}^{25} = +32.5$ (c = 0.86, CHCl ₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.1 Hz, 1H), 8. 04 (s, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.73-4.49 (m, 1H), 3.92 (s, 3H), 3.90 (s, 1H), 3.66 (d, J = 10.8 Hz, 1H), 3.23 (s, 3H), 0.99 (s, 9H). ¹⁹F NMR (376 M Hz, CDCl₃) δ -71.59. ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 166.4, 149.0, 132.3 , 126.8, 125.2, 124.7 (q, $J_{FC} = 283.4$ Hz), 122.0, 108.2, 58.8 (q, ² $J_{FC} = 31.3$ H z), 57.2, 52.3, 46.3, 26.7, 22.1. IR (cm⁻¹): v 3259, 2953, 2925, 1713, 1616, 14 99, 1454, 1428, 1369, 1357, 1288, 1245, 1175, 1136, 1121, 1079, 975, 722,66 3, 549. HRMS (ESI): [M+Na⁺] calcd for C₁₇H₂₁F₃N₂O₄SNa: 429.1072, found:42 9.1071.

(S)-N-((S)-1-((S)-1,5-dimethyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-methylpr opane-2-sulfinamide (7g)

Light yellow solid (177.4 mg, 98%), mp 148-150 °C, $[\alpha]_{D}^{25} = -11.4$ (c = 1.02, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 6.2 Hz, 2H), 6.77 (d, J = 8.4 Hz, 1H), 4.55 (dqd, J = 10.4, 8.1, 2.2 Hz, 1H), 3.81 (s,1 H), 3.43 (d, J = 11.1 Hz, 1H), 3.17 (s, 3H), 2.35 (s, 3H), 0.98 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.79. ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.8 , 132.8, 129.9, 126.5, 124.8 (q, $J_{FC} = 283.5$ Hz), 121.7, 108.3, 59.0 (q, $^{2}J_{FC} = 31.3$ Hz), 57.2, 46.4, 26.5, 22.1, 21.2. IR (cm⁻¹): v 3257, 2987, 2922, 2852,170 6, 1621, 1604, 1500, 1467, 1371, 1337, 1287, 1246, 1199, 1170, 1118, 1085,9 38, 835, 825, 664, 553. HRMS (ESI): [M+Na⁺] calcd for C₁₆H₂₁F₃N₂O₂SNa: 3 85.1174, found: 385.1173.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-5-methoxy-1-methyl-2-oxoindolin-3-yl) ethyl)propane-2-sulfinamide (7h)

White solid (176.4 mg, 93%), mp 174-179 °C, $[\alpha]_{25}^{25} = -1.35$ (c = 1.04, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 1H), 6.91 (dd, J = 8.5, 2.3 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 4.65-4.49 (m, 1H), 3.81 (s, 1H), 3.8 0 (s, 3H), 3.51 (d, J = 11.0 Hz, 1H), 3.16 (s, 3H), 0.99 (s, 9H). ¹⁹F NMR (3 76 MHz, CDCl₃) δ -71.64. ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 156.2, 138.6, 124.9 (q, $J_{FC} = 283.5$ Hz), 123.0, 113.8, 113.2, 108.9, 59.0 (q, ² $J_{FC} = 31.3$ Hz), 57.2, 55.8, 46.8, 26.5,22.1. IR (cm⁻¹): v 3474, 3253, 2971, 2933, 2873, 2847, 1703, 1601, 1498, 1459, 1440, 1428, 1371, 1292, 1247, 1206, 1171, 1158, 111 9, 1078, 1029, 939, 865, 819, 789, 757, 675, 667, 592, 566, 545. HRMS(ESI): [M+Na⁺] calcd for C₁₆H₂₁F₃N₂O₃SNa: 401.1123, found: 401.1122.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-6-fluoro-1-methyl-2-oxoindolin-3-yl)eth yl)propane-2-sulfinamide (7i)

White solid (164.7 mg, 90%), mp 153-158 °C, $[\alpha]_{25}^{25} = -50.5$ (c = 1.12, CHCl₃).

(major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 1H), 6.80 (td, J = 9. 2, 2.3 Hz, 1H), 6.64 (dd, J = 8.6, 2.3 Hz, 1H), 4.56 (dqd, J = 10.4, 8.1, 2.2 Hz, 1H), 3.83 (s, 1H), 3.47 (d, J = 11.0, 1H), 3.18 (s, 3H), 0.99 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.75, -109.80. ¹³C NMR (101 MHz, CDCl₃) δ 1 74.4, 163.8 (d, J = 247.9 Hz), 146.9 (d, J = 11.4 Hz), 127.0, 124.8 (q, $J_{FC} =$ 283.4 Hz), 117.1 (d, J = 3.2 Hz), 109.3 (d, J = 22.3 Hz), 97.5 (d, J = 3.2 H z), 59.0 (q, ² $J_{FC} = 31.2$ Hz), 57.2, 46.0, 26.6, 22.1. IR (cm⁻¹): v 3250, 2983, 2927, 2870, 1715, 1621, 1505, 1468, 1384, 1337, 1283, 1249, 1209, 1173, 113 8, 1114, 1081, 1062, 966, 836, 761, 658, 580, 548. HRMS (ESI): [M+Na⁺] cal -cd for C₁₅H₁₈F₄N₂O₂SNa: 389.0923, found: 389.0923.

(S)-N-((S)-1-((S)-6-chloro-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met hylpropane-2-sulfinamide (7j)

White solid (186.2 mg, 97%), mp 176-179 °C, $[\alpha]_{D}^{25} = -45.6$ (c = 1.02, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.0 Hz, 1H), 7.1 0(dd, J = 8.0, 1.8 Hz, 1H), 6.89 (d, J = 1.8 Hz, 1H), 4.57 (dqd, J = 10.5, 8. 1,2.3 Hz, 1H), 3.83 (s, 1H), 3.52 (d, J = 10.9 Hz, 1H), 3.18 (s, 3H), 1.00 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.59. ¹³C NMR (101 MHz, CDCl₃) δ 1 74.0, 146.4, 135.6, 126.6, 124.7 (q, $J_{FC} = 283.4$ Hz), 122.9, 120.5, 109.4, 58.9 (q, ² $J_{FC} = 31.3$ Hz), 57.2, 46.1, 26.6, 22.1. IR (cm⁻¹): v 3407, 3248, 2969, 29 35, 2871, 1712, 1613, 1498, 1471, 1435, 1377, 1341, 1270, 1242, 1205, 1190, 1162, 1137, 1112, 1079, 947, 804, 653, 523. HRMS (ESI): [M+Na⁺] calcd for C₁₅H₁₈³⁵ClF₃N₂O₂SNa: 405.0627, found: 405.0625.

(S)-N-((S)-1-((S)-1,6-dimethyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-methylpr opane-2-sulfinamide (7k)

Light yellow solid (164.8 mg, 91%), mp 153-157 °C, $[\alpha]_{12}^{25} = -50.5$ (c = 1.07, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6, 1H), 6.70 (s, 1H), 4.54 (dqd, J = 10.4, 8.1, 2.1 Hz, 1 H),3.80 (s, 1H), 3.44 (d, J = 11.1 Hz, 1H), 3.17 (s, 3H), 2.40 (d, J = 6.8 Hz, 3H), 0.99 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.89. ¹³C NMR (101 MH z,CDCl₃) δ 174.4, 145.3, 140.1, 125.4 (q, J = 3.4 Hz), 124.9 (q, $J_{FC} = 283.4$ Hz), 123.7, 118.6, 109.5, 59.1 (q, ${}^{2}J_{FC} = 31.3$ Hz), 57.1, 46.2, 26.4, 22.1, 21.8. IR (cm⁻¹): v 3246, 3062, 2925, 2870, 1709, 1621, 1459, 1384, 1340, 1247, 11

72, 1116, 1083, 993, 812, 658, 571. HRMS (ESI): $[M+Na^+]$ calcd for $C_{16}H_{21}F_3$ N₂O₂SNa: 385.1174, found: 385.1172

(S)-N-((S)-1-((S)-7-chloro-1-methyl-2-oxoindolin-3-yl)-2,2,2-trifluoroethyl)-2-met hylpropane-2-sulfinamide (7l)

White solid (170.3 mg, 89%), mp 140-144 °C, $[\alpha]_{12}^{25} = -82.1$ (c = 1.02, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 19.2, 7.6 Hz, 2 H), 7.03 (t, J = 7.7 Hz, 1H), 4.62-4.54 (m, 1H), 3.86 (s, 1H), 3.60 (s, 1H), 3.5 7 (s, 3H), 1.03 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.30. ¹³C NMR (10 1 MHz, CDCl₃) δ 174.4, 141.0, 132.0, 124.7 (q, $J_{FC} = 283.4$ Hz), 124.7 (s), 1 24.0 (q, J = 3.4 Hz), 123.8, 116.1, 59.0 (q, ² $J_{FC} = 31.3$ Hz), 57.3, 46.3, 30.1, 22.1. IR (cm⁻¹): v 3264, 2983, 2904, 1705, 1608, 1583, 1465, 1370, 1342, 124 8, 1193, 1135, 1080, 1053, 1004, 940, 798, 732, 666, 528. HRMS (ESI): [M+ Na⁺] calcd for C₁₅H₁₈³⁵ClF₃N₂O₂SNa: 405.0627, found: 405.0627.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-1-methyl-2-oxo-7-(trifluoromethyl)indo lin-3-yl)ethyl)propane-2-sulfinamide (7m)

Light yellow solid (174.8 mg, 84%), mp 169-173 °C, $[\alpha]_{15}^{25} = -43.7$ (c = 0.64, CHCl₃). (major isomer) ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 1 H), 7.56 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 4.61 (dqd, J = 10.5, 8.1, 2.3 Hz, 1H), 3.88 (s, 1H), 3.55 (s, 1H), 3.41 (dd, J = 4.5, 2.2 Hz, 3H), 1.00 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -53.20, -71.17. ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 143.0, 128.9 (d, J = 2.9 Hz), 127.5 (q, J = 8.1 Hz), 1 24.6 (q, $J_{FC} = 283.4$ Hz), 124.5, 122.4, 123.28 (q, J = 271.5 Hz), 113.1 (q, J = 33.2 Hz), 59.2 (q, J = 31.5 Hz), 57.3, 45.1, 29.2 (q, J = 6.6 Hz), 22.0. IR(cm⁻¹): v 3267, 2967, 2924, 2854, 1713, 1600, 1600, 1488, 1459, 1419, 1391, 1 357, 1341, 1318, 1263, 1180, 1111, 1084, 1054, 1004, 946, 811, 787, 749, 66 3, 600, 502. HRMS (ESI): [M+Na⁺] calcd for C₁₆H₁₈F₆N₂O₂SNa: 439.0891, fou nd: 439.0891.

4. Reaction of large scale application study

Into an oven-dried round-bottom flask flushed with N₂ were taken compound 6l (745 mg, 4.10 mmol) and anhydrous DCM (20.0 mL). The reaction flask was cooled to -78 °C and LDA (2 M in Hexene, 4.11 mL) was added dropwise with stirring. After 3 h at -78 °C, sulfinylimine 1 (690 mg, 3.43 mmol) dissolved in anhydrous DCM (10.0 mL) was added dropwise. Stirring was continued at -78 °C for 12 h, then the reaction was quenched with saturated NH₄Cl (10.0 mL), followed by H₂O (10.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product, which was purified by column chromatography (hexane/EtOAc, 2:1).

5. X-ray crystallography for 5a

Figure 2 ORTEP diagram showing compound 5a (ccdc number 1007432).

6. ¹⁹F-NMR spectra of crude reaction mixture for optimization of the

reaction conditions (Table 1, 2)

¹⁹F-NMR spectra of crude reaction mixture for Entry 3 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 4 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 5 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 6 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 7 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 8 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 9 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 10 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 1 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 2 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 3 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 4 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 5 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 6 of Table 2

¹⁹F-NMR spectra of crude reaction mixture for Entry 7 of Table 2

7.1H and ¹³C NMR spectra for compounds 5 and 7

¹H NMR and ¹³C NMR spectrum of **5a**

¹H NMR and ¹³C NMR spectrum of **5b**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 5c

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{5d}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 5e

¹H NMR and ¹³C NMR spectrum of 7a

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7b

¹H NMR and ¹³C NMR spectrum of **7**c

¹H NMR and ¹³C NMR spectrum of **7d**

¹H NMR and ¹³C NMR spectrum of **7e**

¹H NMR and ¹³C NMR spectrum of **7f**

¹H NMR and ¹³C NMR spectrum of **7g**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7l

¹H NMR and ¹³C NMR spectrum of **7m**

