Supplementary Information

1. Experimental Section

4-Methoxybenzonitrile 7

Compound 7 was synthesized according to a process previously described ${ }^{1}$ but in a multimolar scale. In a 10 L round bottom flask fitted with an efficient condenser were placed p-anisaldehyde 6 ($544 \mathrm{~g}, 4 \mathrm{~mol}$), hydroxylamine. $\mathrm{HCl}(345 \mathrm{~g}, 5 \mathrm{~mol})$ and pyridine ($400 \mathrm{~mL}, 5 \mathrm{~mol}$) (exothermic). The flask was left to cool to rt and formic acid (800 mL) was added with cooling. Boiling stones were added and the flask was carefully heated until an exothermic reaction began (ca. $80^{\circ} \mathrm{C}$) and heating was immediately stopped. CAUTION: the reaction is very exothermic at this point and the solvents can be projected out of the flask if the condenser is not efficient enough or the flask is too small. After 1 h the reaction was over as indicated by a drop in temperature to $40^{\circ} \mathrm{C}$. The reaction mixture was poured on crushed ice (2 kg). The precipitated solid was filtered, washed with water and recrystallized in boiling MeOH . The product 7 was filtered on Büchner and dried in vacuo to constant weight. The title compound ($450 \mathrm{~g}, 85 \%$) was obtained as colourless needles. Mp $57-59^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{2} 59^{\circ} \mathrm{C}, \mathrm{MeOH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.70-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 162.83$ (Ar-C), 133.91 (Ar-C), 119.21 (Ar-C), 114.75 (Ar-C), $103.84(\mathrm{CN}), 55.53\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 134[\mathrm{MH}]^{+}$.

Ethyl 4-methoxybenzimidate hydrochloride 8

A solution of compound $7(266 \mathrm{~g}, 2 \mathrm{~mol})$ in dry $\mathrm{EtOH}(600 \mathrm{~mL})$, under nitrogen and protected from moisture, was cooled to $0^{\circ} \mathrm{C}$. Through a pressure equalized addition funnel, $\mathrm{AcCl}(300 \mathrm{~mL}, 4.2 \mathrm{~mol})$ was added dropwise followed by dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~L})$. The solution was kept in a closed flask at $2{ }^{\circ} \mathrm{C}$ for one month. The product was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to constant weight to give the title compound ($230 \mathrm{~g}, 53 \%$) as colourless crystals. Mp $115-116^{\circ} \mathrm{C}\left(\mathrm{dec}\right.$.) (lit. $\left.{ }^{3} 132-134{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 12.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 11.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 8.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.88\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.58\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ $169.94(\mathrm{CN}), 165.25(\mathrm{Ar}-\mathrm{C}), 131.84(\mathrm{Ar}-\mathrm{C}), 116.69(\mathrm{Ar}-\mathrm{C}), 114.32(\mathrm{Ar}-\mathrm{C}), 70.42\left(\mathrm{CH}_{2}\right), 55.53\left(\mathrm{OCH}_{3}\right), 13.62\left(\mathrm{CH}_{3}\right) ; m / z$ (ESI) $180[\mathrm{MH}]^{+}$.

Methyl 2-(4-methoxyphenyl)-oxazoline-4-carboxylate 9

Compound $\mathbf{9}$ was synthesized according to a process previously described for an analogous oxazoline. ${ }^{9}$ The free base of $\mathbf{8}$ ($179 \mathrm{~g}, 1 \mathrm{~mol}$), generated from the salt by basification with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extraction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was dissolved in $\mathrm{MeOH}(1 \mathrm{~L})$. To this solution was added serine methyl ester. $\mathrm{HCl}(155 \mathrm{~g}, 1 \mathrm{~mol})$. After heating under reflux for 2 h, the suspension was cooled and diluted with acetone (1 L). The precipitated $\mathrm{NH}_{4} \mathrm{Cl}$ was filtered and washed with acetone. The solvents were evaporated, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and filtered. The solvent was removed in vacuo and the product recrystallized in aqueous MeOH to give the title compound $(160 \mathrm{~g}, 68 \%)$ as a colourless powder. Mp $119-$ $121^{\circ} \mathrm{C}$ (lit. ${ }^{4} 115-119^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.98-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98-6.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.90(\mathrm{dd}$, $J=10.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha$), $4.63\left(\mathrm{dd}, J=8.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.53\left(\mathrm{dd}, J=10.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.88(\mathrm{CO}), 166.14(\mathrm{CN}), 162.56(\mathrm{Ar}-\mathrm{C}), 130.45$ (Ar-C), 119.44 (ArC), $113.77(\mathrm{Ar}-\mathrm{C}), 69.50(\mathrm{C}-\beta), 68.62(\mathrm{C}-\alpha), 55.42\left(\mathrm{ArOCH}_{3}\right), 52.72\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 236[\mathrm{MH}]^{+}$.

Sodium 2-(4-methoxyphenyl)-oxazoline-4-carboxylate 10

The synthesis was realized by slightly modifying the protocol described by Fry for an analogous derivative. ${ }^{5}$ To a suspension of the methyl ester $9(141 \mathrm{~g}, 600 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, was added a cold solution of $\mathrm{NaOH}(26.4 \mathrm{~g}, 660$ $\mathrm{mmol})$ in water $(220 \mathrm{~mL})$. The mixture was stirred vigorously for 1 h . The suspension was diluted with acetone (500 mL) and left at $2{ }^{\circ} \mathrm{C}$ for 2 h . The product was filtered on Büchner and washed with acetone (1 L) then dried in vacuo to constant weight. The title compound (167 g , 99%) was obtained as rose crystals. Mp $220^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{H}} 7.97-$ $7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.72(\mathrm{dd}, J=10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha), 4.62\left(\mathrm{dd}, J=10.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.49\left(\mathrm{dd}, J=8.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 179.08(\mathrm{CO}), 166.66(\mathrm{CN}), 163.92$ (Ar-C), 131.26 (Ar-C), 121.00 (Ar-C), 114.71 (Ar-C), $72.50\left(\mathrm{C}-\beta\right.$), $71.86(\mathrm{C}-\alpha), 55.89\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 220[\mathrm{M}]$.

The synthesis was realized by slightly modifying the protocol described by Fry for an analogous derivative. ${ }^{5}$ The sodium salt $\mathbf{1 0}(167 \mathrm{~g}, 598 \mathrm{mmol})$ was suspended in water $(500 \mathrm{~mL})$ and this was cooled to $0^{\circ} \mathrm{C}$. A 30% aqueous formic acid solution ($100 \mathrm{~mL}, 660 \mathrm{mmol}$) cooled to $0^{\circ} \mathrm{C}$ was added dropwise to precipitate acid 11. The product was filtered on Büchner and washed with cold water (500 mL), then dried by repeated suspension in $\mathrm{CH}_{3} \mathrm{CN}$ and evaporation in vacuo to constant weight. The title compound ($113 \mathrm{~g}, 85 \%$) was obtained as rose crystals that were pure enough for the next step. $\mathrm{Mp} 142{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ; m / z$ (ESI) $220[\mathrm{M}]$.

(R)-tert-Butyl 4-(4-bromobenzyl)-2-(4-methoxyphenyl)-oxazoline-4-carboxylate 20

Phenyloxazoline $12(2.77 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in toluene (100 mL). p-Bromo benzyl bromide ($3.75 \mathrm{~g}, 15 \mathrm{mmol}$) and $(R)-\mathbf{1 3}(83 \mathrm{mg}, 1 \mathrm{~mol} \%)$ were then added. The flask was flushed with nitrogen and cooled to $-20^{\circ} \mathrm{C}$. CsOH. $\mathrm{H}_{2} \mathrm{O}(8.4 \mathrm{~g}, 50$ mmol) was added, the flask was capped and the mixture was vigorously stirred for 72 h at $-20^{\circ} \mathrm{C}$. The suspension was diluted with hexanes (100 mL) and filtered on a Büchner funnel. The organic layer was flash chromatographed on 100 g of silica that was eluted first with hexanes to remove excess electrophile. The product was eluted with 2:3 (EtOAc/hexanes). The solvent was removed in vacuo to give the title compound ($4.4 \mathrm{~g}, 99 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.91-7.81$ (m, 2H, Ar-H), $7.36-7.27$ (m, 2H, Ar-H), $7.15-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.90-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), $4.20\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.18\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.11(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.25(\mathrm{CO}), 164.47(\mathrm{CN}), 162.23$ (Ar-C), 134.81 (Ar-C), 132.06 ($\mathrm{Ar}-\mathrm{C}$), $131.06(\mathrm{Ar}-\mathrm{C}), 130.19(\mathrm{Ar}-\mathrm{C}), 120.79(\mathrm{Ar}-\mathrm{C}), 119.50(\mathrm{Ar}-\mathrm{C}), 113.53(\mathrm{Ar}-\mathrm{C}), 82.04\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 78.40(\mathrm{C}-\alpha), ~}^{\text {, }}\right.$ $72.79\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.18\left(\mathrm{OCH}_{3}\right), 42.51\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 27.83\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; m / z(\mathrm{ESI}) 446 / 448[\mathrm{MH}]^{+}$.

(R)-tert-Butyl 4-(4-azidobenzyl)-2-(4-methoxyphenyl)-oxazoline-4-carboxylate 21

The synthesis was done following the general protocol described by Andersen. ${ }^{6}$ To compound $\mathbf{2 0}$ ($4.2 \mathrm{~g}, 9.4 \mathrm{mmol}$) in EtOH $(100 \mathrm{~mL})$ were added $\mathrm{NaN}_{3}(1.3 \mathrm{~g}, 20 \mathrm{mmol})$, sodium ascorbate ($300 \mathrm{mg}, 15 \mathrm{~mol} \%$), CuI (380 mg , $20 \mathrm{~mol} \%$), DMEDA (264 $\mathrm{mg}, 30 \mathrm{~mol} \%$) and water (43 mL). The flask was purged with nitrogen and heated under reflux for 5 h . After EtOH evaporation, the aqueous layer was extracted three times with EtOAc. The pooled fractions were washed twice with 12.5% ammonia and brine. The organic layer was dried over MgSO_{4}, filtered and the solvent removed to give the title compound $(3.88 \mathrm{~g}, 99 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.01-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.39-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02-$ $6.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.68\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.31\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31(\mathrm{~d}, J=13.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.23\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.49(\mathrm{CO})$, 164.48 (CN), 162.31 (Ar-C), 138.56 (Ar-C), 132.62 (Ar-C), 131.80 (Ar-C), 130.26 (Ar-C), 119.68 (Ar-C), 118.69 (Ar-C), $113.60(\mathrm{Ar}-\mathrm{C}), 82.11\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 78.70(\mathrm{C}-\alpha), 72.82\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.30\left(\mathrm{OCH}_{3}\right), 42.58\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 27.93\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; m / z(\mathrm{ESI}) 409$ [MH] ${ }^{+}$.

(R)-tert-Butyl 2-(4-azidobenzyl)-3-hydroxy-2-(4-methoxybenzylamino)propanoate 22

A freshly prepared solution of $\mathrm{NaBH}_{3} \mathrm{CN}(4 \mathrm{~g}, 159 \mathrm{mmol})$ in $\mathrm{AcOH}(80 \mathrm{~mL})$, was cooled to $0{ }^{\circ} \mathrm{C}$ and added to the oxazoline $21(3.7 \mathrm{~g}, 10 \mathrm{mmol})$. After stirring at rt for 16 h , the solvent was removed in vacuo. The residue was partitioned between a saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and EtOAc. The basic aqueous layer was extracted twice with EtOAc and the pooled organic layers were washed twice with water and brine. The solution was dried over MgSO_{4}. After filtration, the solvent was removed to give the title compound ($3.3 \mathrm{~g}, 89 \%$) as an amber oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.34-7.10(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.02-6.76(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.66\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.60(\mathrm{~d}, J$ $\left.=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.57\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.99\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.69(\mathrm{CO}), 158.85(\mathrm{Ar}-\mathrm{C}), 138.56$ ($\mathrm{Ar}-\mathrm{C}$), 132.49 ($\mathrm{Ar}-\mathrm{C}$), 131.79 ($\mathrm{Ar}-\mathrm{C}$), 131.71 ($\mathrm{Ar}-\mathrm{C}$), $129.27(\mathrm{Ar}-\mathrm{C}), 118.68(\mathrm{Ar}-\mathrm{C}), 113.95(\mathrm{Ar}-\mathrm{C}), 82.05\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 66.96(\mathrm{C}-\alpha), 60.62\left(\mathrm{CH}_{2} \mathrm{O}\right)\right.$, $55.19\left(\mathrm{OCH}_{3}\right), 46.80\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.42\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 28.09\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; m / z(\mathrm{ESI}) 413[\mathrm{MH}]^{+}$.

(4R)-tert-Butyl 4-(4-azidobenzyl)-3-(4-methoxybenzyl)-2-oxo-1,2,3-oxathiazolidine-4-carboxylate 23

In a dry round bottom flask under nitrogen and stirring were added compound $22(3 \mathrm{~g}, 7.3 \mathrm{mmol})$, imidazole ($2.0 \mathrm{~g}, 29$ $\mathrm{mmol}), \mathrm{NEt}_{3}(3 \mathrm{~mL}, 22 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. To this mixture previously cooled to $-10^{\circ} \mathrm{C}$, $\mathrm{SOCl}_{2}(0.79 \mathrm{~mL}, 11.0$ mmol) was added dropwise via syringe. The solution was kept for 30 min at $-10^{\circ} \mathrm{C}$ and allowed to return to rt during 2 h .

The mixture was diluted with water (20 mL), thereafter with 10% aqueous $\mathrm{NaHSO}_{4}(40 \mathrm{~mL})$. The organic layer was recovered and the aqueous layer was extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pooled organic fractions were washed twice with water and brine. After drying over MgSO_{4}, and filtration, the solvent was evaporated to give the title compound $(3.3 \mathrm{~g}, 98 \%)$ as a yellow oil, mixture of diastereoisomers. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.41-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-$ H), $7.00-6.78(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.04\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.81\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.76(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.60\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.45\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.39\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.28(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $4.26\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.39(\mathrm{~d}$, $\left.J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.09\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.82\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 168.57$ ($0.5 \mathrm{C}, \mathrm{CO}$), 168.48 ($0.5 \mathrm{C}, \mathrm{CO}$), 159.28 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 159.25 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 139.24 (0.5C, Ar-C), 139.11 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 131.57 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 131.10 (Ar-C), 130.99 (Ar-C), 130.88 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 130.15 (Ar-C), 130.12 (Ar-C), 128.37 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 128.25 ($0.5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 119.04 ($\mathrm{Ar}-\mathrm{C}$), 119.01 ($\mathrm{Ar}-\mathrm{C}$), 113.89 ($\mathrm{Ar}-\mathrm{C}$), 83.29 (0.5 C , $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 83.11\left(0.5 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 77.67\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{O}\right), 75.89\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{O}\right), 70.42(0.5 \mathrm{C}, \mathrm{C}-\alpha), 69.15(0.5 \mathrm{C}, \mathrm{C}-\alpha), 55.06$ $\left(0.5 \mathrm{C}, \mathrm{OCH}_{3}\right), 55.05\left(0.5 \mathrm{C}, \mathrm{OCH}_{3}\right), 45.74\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 45.66\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~N}\right), 39.87\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right), 39.80\left(0.5 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $27.74\left(0.5 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.62\left(0.5 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(4R)-tert-Butyl 4-(4-azidobenzyl)-3-(4-methoxybenzyl)-2,2-dioxo-1,2,3-oxathiazolidine-4-carboxylate 24
The crude sulfamidite $23(3.3 \mathrm{~g}, 7.2 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(15 \mathrm{mg}, 1 \mathrm{~mol} \%)$ was added, followed by $\mathrm{NaIO}_{4}(1.73 \mathrm{~g}, 8.1 \mathrm{mmol})$ and water $(100 \mathrm{~mL})$. The green-brown solution with a white precipitate was stirred for 15 min at $0^{\circ} \mathrm{C}$. After 4 h of stirring at rt , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the pooled organic fractions were washed twice with saturated NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}. After filtration, the solvents were evaporated to yield the crude product 24 that was purified by flash chromatography on silica with 1:4 (EtOAc/hexanes). Evaporation of the solvents gave the title compound ($2.6 \mathrm{~g}, 75 \%$) as a golden oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.43-7.34$ (m, 2H, Ar-H), $7.12-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98-6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.61\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.60(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.50\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.39\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.80\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 167.05(\mathrm{CO}), 159.50$ (ArC), 139.87 ($\mathrm{Ar}-\mathrm{C}$), 131.38 ($\mathrm{Ar}-\mathrm{C}$), 129.93 ($\mathrm{Ar}-\mathrm{C}$), 129.21 ($\mathrm{Ar}-\mathrm{C}$), 127.61 ($\mathrm{Ar}-\mathrm{C}$), 119.39 ($\mathrm{Ar}-\mathrm{C}$), 114.05 ($\mathrm{Ar}-\mathrm{C}$), 84.76 $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 71.99\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.09(\mathrm{C}-\alpha), 55.27\left(\mathrm{OCH}_{3}\right), 46.67\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.28\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 27.85\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(4R)-tert-Butyl 4-(4-azidobenzyl)-2,2-dioxo-1,2,3-oxathiazolidine-4-carboxylate 25
To a solution of compound $24(2.6 \mathrm{~g}, 5.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ was added CAN $(9.0 \mathrm{~g}, 16.4 \mathrm{mmol})$. The mixture was stirred at rt for 30 min and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. After decantation, the organic layer was washed with water $(100 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. Evaporation in vacuo yielded a wet oil which was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and flash chromatographied on silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent. The yellow oil obtained after solvent removal was crystallized in 1:2 ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give the title compound $(1.6 \mathrm{~g}, 80 \%)$ as beige needles. Mp $100-10{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.40\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.25\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.11\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 168.53(\mathrm{CO}), 139.66(\mathrm{Ar}-\mathrm{C}), 131.71(\mathrm{Ar}-\mathrm{C}), 130.55(\mathrm{Ar}-\mathrm{C}), 119.00(\mathrm{Ar}-\mathrm{C}), 85.91$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 74.65\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.49(\mathrm{C}-\alpha), 41.80\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 27.87\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; HRMS $m / z(\mathrm{ES}+)$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{LiN} \mathrm{N}_{4} \mathrm{O}_{5} \mathrm{~S}$ 361.1153, found $361.1151[\mathrm{MLi}]^{+} ;(R)-\mathbf{2 5}[\alpha]_{D}^{20}=+66^{\circ}\left(\mathrm{c} 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left({ }^{[\alpha]_{D}^{20}}=-67^{\circ}\left(\mathrm{c} 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$ for (S)-25).
(4R)-tert-Butyl 4-(4-azidobenzy)-3-(tert-butyloxycarbonyl)-2,2-dioxo-1,2,3-oxathiazolidine-4-carboxylate 26
To compound 25 ($234 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ were added DMAP ($8 \mathrm{mg}, 10 \mathrm{~mol} \%$), $\mathrm{Boc}_{2} \mathrm{O}(174 \mathrm{mg}, 0.66 \mathrm{mmol})$ and one drop of NEt_{3}. The solution was stirred at rt for 16 h . The solvent was evaporated in vacuo and the obtained oil was chromatographed on silica with 1:9 (EtOAc/hexanes). After solvent evaporation, the title compound ($269 \mathrm{mg}, 90 \%$) was recovered as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.22-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.45(\mathrm{~d}, J=$ $\left.9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.37\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.65\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.21\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right)$,
$1.59\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 167.55(\mathrm{CO}), 148.42$ (Boc-CO), $139.60(\mathrm{Ar}-\mathrm{C})$, 131.91 (Ar-C), $\left.130.14(\mathrm{Ar}-\mathrm{C}), 119.32(\mathrm{Ar}-\mathrm{C}), 85.79\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 84.38\left(\mathrm{CH}_{3}\right)_{3}\right), 70.03\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.47(\mathrm{C}-\alpha), 36.80\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $27.96\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.71\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(S)-tert-Butyl 3-((R)-2-((R)-5-tert-Butoxy-4-((S)-2-(tert-butoxycarbonylamino)propanamido)-5-oxopentanamido)-3methoxy -3-oxopropylthio)-2-(4-azidobenzyl)-2-(tert-butoxycarbonyl amino)propanoate 39
Under nitrogen, dipeptide 33 ($249 \mathrm{mg}, 0.66 \mathrm{mmol}$), HBTU ($250 \mathrm{mg}, 0.66 \mathrm{mmol}$) and DiPEA ($127 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) were suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and stirred for 1 h at rt (ie activated ester).
Meanwhile in another flask, containing a degassed suspension of sulfamidate $26(269 \mathrm{mg}, 0.59 \mathrm{mmol})$ and cysteine methyl ester. $\mathrm{HCl}(103 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$, was added, via syringe, a degassed solution of DBU ($203 \mathrm{mg}, 1.33 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$. The resulting solution was stirred for 1 h at rt under nitrogen and then concentrated to about one fourth of its volume.

To this last solution of $\mathbf{3 7}$, was added, via syringe, the previously synthesized activated ester solution. Stirring was continued for 16 h at rt to afford 38. After solvents evaporation, the solution was diluted with EtOAc (20 mL). Aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ $(10 \%, 20 \mathrm{~mL})$ was added and the biphasic mixture was heated with stirring at $50^{\circ} \mathrm{C}$ for 2 h . The organic layer was recovered and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The pooled organic fractions were washed with brine, dried over MgSO_{4} and filtered. After solvent evaporation, the crude product 39 was chromatographied on silica with 7:3 (EtOAc/hexanes). Solvents evaporation afforded the title compound ($429 \mathrm{mg}, 84 \%$) as a colourless foam. ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{H}} 7.20-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.59$ (dd, $\left.J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Lan}\right), 4.29$ (dd, J $=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Glu}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Ala}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.40-3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, 3.16 - $2.97\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}, \mathrm{SCH}_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.89\left(\mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.39-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.23$ $-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.00-1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.59-1.37\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 175.66(\mathrm{CO}), 174.51(\mathrm{CO}), 172.20(\mathrm{CO}), 171.94$ (CO), 171.70 (CO), 157.41 (Boc-CO), 155.71 (Boc-CO), 155.67 (Boc-CO, rotamer), 140.05 (Ar-C), 133.82 (Ar-C), 132.61 (Ar-C), 119.63 (Ar-C), $84.02\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $82.84\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 80.54\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 80.48\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 66.01(\mathrm{C}-\alpha), 65.94(\mathrm{C}-\alpha$, rotamer), $53.90(\mathrm{CH}-\alpha-\mathrm{Lan}), 53.66(\mathrm{CH}-\alpha-$ Glu), $52.91\left(\mathrm{OCH}_{3}\right), 51.65(\mathrm{CH}-\alpha-\mathrm{Ala}), 40.30\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.31\left(\mathrm{SCH}_{2} \mathrm{C}\right), 35.62\left(\mathrm{CHCH}_{2} \mathrm{~S}\right), 32.70\left(\mathrm{CH}_{2} \mathrm{CO}\right), 28.82\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$,
 Calcd for $\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S} 866.4328$, found $866.4319[\mathrm{MH}]^{+}$.
(S)-tert-Butyl 3-((R)-2-((R)-5-tert-Butoxy-4-((S)-2-(tert-butoxycarbonylamino)propanamido)-5-oxopentanamido)-3hydroxy -3-oxopropylthio)-2-(4-azidobenzyl)-2-(tert-butoxycarbonyl amino)propanoate 40
To tripeptide 39 ($225 \mathrm{mg}, 0.26 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added LiOH. $\mathrm{H}_{2} \mathrm{O}(17 \mathrm{mg}, 0.4 \mathrm{mmol})$ in water $(4 \mathrm{~mL})$. After stirring for 16 h at rt under nitrogen and acidification with 10% aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{~mL}), \mathbf{4 0}$ was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The pooled organic layers were washed with brine and dried over MgSO_{4}. Filtration and solvent evaporation yielded the title compound ($205 \mathrm{mg}, 93 \%$) as a colourless foam. ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}, \mathrm{MeOD}) \delta_{\mathrm{H}} 7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.95$ (m, 2H, Ar-H), 4.56 (dd, $J=8.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Lan}), 4.38-4.20$ (m, $1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Glu}), 4.09$ (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Ala}$), $3.44-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.18-3.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}, \mathrm{SCH}_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.91(\mathrm{dd}, J=13.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~S}$), $2.41-2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.27-2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.01-1.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.46(\mathrm{~m}, 36 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{MeOD}$) $\delta_{\mathrm{C}} 175.73(\mathrm{CO}), 174.57(\mathrm{CO}), 173.28(\mathrm{CO}), 171.95$ (CO), 171.74 (CO), 157.43 (Boc-CO), 155.76 (Boc-CO), 140.09 (Ar-C), 133.87 (Ar-C), 132.65 (Ar-C), 119.65 (Ar-C), 84.11 $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 82.91\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 80.57\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 65.93(\mathrm{C}-\alpha), 53.97(\mathrm{CH}-\alpha-\mathrm{Lan}), 53.86(\mathrm{CH}-\alpha-\mathrm{Glu}), 51.62(\mathrm{CH}-\alpha-\mathrm{Ala}), 40.30$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.77\left(\mathrm{SCH}_{2} \mathrm{C}\right), 35.86\left(\mathrm{CHCH}_{2} \mathrm{~S}\right), 32.78\left(\mathrm{CH}_{2} \mathrm{CO}\right), 28.82\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.76\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.30\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 28.23}\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 18.39\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ESI}) 852[\mathrm{MH}]^{+}$.
(R)-5-((R)-2-((S)-2-amino-2-carboxy-3-(4-azidophenyl)-propylthio)-1-carboxyethylamino)-2-((S)-2-
aminopropanamido)-5-oxopentanoic acid dihydrochloride 4RS
Compound $\mathbf{4 0}(111 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in a mixture of aqueous $\mathrm{HCl}(10 \mathrm{M}, 10 \mathrm{~mL})$ and dioxane $(30 \mathrm{~mL})$. The mixture was purged with N_{2} and stirred under nitrogen at $50^{\circ} \mathrm{C}$ for 8 h . The solution was repeatedly evaporated in vacuo
with the help of water to dryness. After lyophilisation and trituration with $\mathrm{Et}_{2} \mathrm{O}$ (to remove the traces of diethylene glycol), the title compound 4RS was obtained as a beige solid that was dried in vacuo to constant weight ($70 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}} 7.19-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.52$ (dd, $\left.J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Lan}\right), 4.30$ (dd, $J=8.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Glu}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha-\mathrm{Ala}), 3.33-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.14-2.96(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.92\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}\right), 2.82\left(\mathrm{dd}, J=14.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $2.21-2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.01-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.43\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (63 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{C}} 174.67(\mathrm{CO}), 174.49(\mathrm{CO}), 173.22(\mathrm{CO}), 171.61(\mathrm{CO}), 170.80(\mathrm{CO}), 139.77$ (Ar-C), 131.55 (Ar-C), 128.81 (Ar-C), 119.45 (Ar-C), 64.48 (C- α), $52.10(\mathrm{CH}-\alpha-\mathrm{Lan}), 52.03$ ($\mathrm{CH}-\alpha-\mathrm{Glu}), 49.03(\mathrm{CH}-\alpha-\mathrm{Ala}), 40.44\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 36.84$ $\left(\mathrm{SCH}_{2} \mathrm{C}\right), 33.96\left(\mathrm{CHCH}_{2} \mathrm{~S}\right), 31.30\left(\mathrm{CH}_{2} \mathrm{CO}\right), 26.28\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 16.61\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ESI}) 540[\mathrm{MH}]^{+}$; HRMS $m / z(\mathrm{ES}+)$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S} 540.1871$, found $540.1869[\mathrm{MH}]^{+}$.
2. Chiral HPLC of 4-alkylated oxazolines 14 and 20

Enantiomeric excesses were determined by HPLC on a Chiracel OD-H column (Daicel, $150 \mathrm{~mm} \times 4 \mathrm{~mm}$, $5 \mu \mathrm{~m}$) with 98:2 (n -Hex/i-PrOH) as an eluent at $1 \mathrm{~mL} / \mathrm{min}, 37^{\circ} \mathrm{C}$; retention times for isomers S and R were 9.0 min and 15.5 min, respectively.
(R)-tert-Butyl 4-benzyl-2-(4-methoxyphenyl)-oxazoline-4-carboxylate (R)-14

(S)-tert-Butyl 4-benzyl-2-(4-methoxyphenyl)-oxazoline-4-carboxylate (S)-14

(R)-tert-Butyl 4-(4-bromobenzyl)-2-(4-methoxyphenyl)-oxazoline-4-carboxylate (R)-20

(S)-tert-Butyl 4-(4-bromobenzyl)-2-(4-methoxyphenyl)-oxazoline-4-carboxylate (S)-20

3. Preparation of Maruoka's catalyst 13

The catalyst 13 described by the Maruoka group was prepared as follow (Scheme 1). ${ }^{7,8}$ Trimethoxybenzoic acid 41 was brominated in $\mathrm{CH}_{3} \mathrm{CN}$ with NBS (step i) followed by conversion of the carboxylic acid $\mathbf{4 2}$ to the methyl ester $\mathbf{4 3}$ with TMSCl in MeOH (step ii). ${ }^{8,9}$ The Ullmann biaryl coupling of $\mathbf{4 3}$ to form bicyclic $\mathbf{4 4}$ was performed in NMP with activated copper bronze by adapting a general procedure (step iii). ${ }^{10,11}$ Saponification and precipitation by acidification yielded diacid $\mathbf{4 5}$, in multigram quantity, which was purified by recrystallization (step iv). The diacid $\mathbf{4 5}$ was treated with two equivalents of quinidine forming the double salt 46 (step v). Resolution of 46 by three fractional crystallizations was done by following the litterature procedure (step vi). ${ }^{12}$ In this case, after resolution, the acid $(R)-45$ was obtained with high enantiopurity ($\geq 99 \%$, step vii). Treatment of $(R)-\mathbf{4 5}$ with TMS-Cl in MeOH for 72 h , at rt , gave the diester $(R)-\mathbf{4 4}$ (step viii). ${ }^{9}$ From this product the catalyst was made by following the Maruoka's patented method (steps ix-xiii). ${ }^{8}$ After purification by preparative HPLC, the overall yield of $(R) \mathbf{- 1 3}$ from $(R) \mathbf{- 4 5}$ was 30% (steps viii-xiii). In the same way $(S) \mathbf{- 1 3}$ was also obtained from $(S) \mathbf{4 5}$.

Scheme 1. Synthesis of Maruoka's catalyst. i) NBS, $\mathrm{CH}_{3} \mathrm{CN}, 2{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 93 \%$; ii) TMS-Cl, $\mathrm{MeOH}, \mathrm{rt}, 48 \mathrm{~h}, 94 \%$; iii) $\mathrm{Cu}, \mathrm{NMP}, 170{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iv) NaOH , aq. MeOH , reflux, 16 h , then aq. $\mathrm{HCl}, 0^{\circ} \mathrm{C}, 77 \%$; v) quinidine (2 eq), aq. EtOH ; vi) fractional crystallizations (3 x); vii) NaOH , HCl ; viii) TMS-Cl, MeOH , rt, $48 \mathrm{~h}, 96 \%$; ix) $\mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, rt, $16 \mathrm{~h}, 80 \%$; x) $3,4,5-\mathrm{F}_{3}-\mathrm{PhB}(\mathrm{OH})_{2}(3 \mathrm{eq}),. \mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%)$, tri-o-tolyl-P ($80 \mathrm{~mol} \%$), NaOMe (3 eq .), DME, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}, 75 \%$; xi) LiAlH_{4}, rt, $4 \mathrm{~h}, 85 \%$; xii) PBr_{3} (3 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$; $\mathrm{Bu}_{2} \mathrm{NH}$ (1.3 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 85^{\circ} \mathrm{C}, 16 \mathrm{~h}, 67 \%$.

2-Bromo-3,4,5-trimethoxybenzoic acid 42

The procedure described in Maruoka's patent was modified as follows by using $\mathrm{CH}_{3} \mathrm{CN}$ in place of $\mathrm{CHCl}_{3} .{ }^{8}$ Small portions of NBS ($89 \mathrm{~g}, 500 \mathrm{mmol}$) was added during 10 min to an ice-cold solution of $3,4,5$-trimethoxybenzoic acid $41(106 \mathrm{~g}, 500$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~L})$. The resulting mixture was stirred for 16 h at $2{ }^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo and the resulting solids were dissolved in boiling water (1 L) containing $\mathrm{NaOH}(22 \mathrm{~g}, 550 \mathrm{mmol})$. The solution was cooled to $10^{\circ} \mathrm{C}$ and acidified with an excess of $\mathrm{HCl}(\mathrm{pH}: 3)$. The precipitate was filtered, washed with water and dried in vacuo to constant weight. The title compound ($135.5 \mathrm{~g}, 93 \%$) was obtained as a beige solid. $\mathrm{Mp} 145-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ $12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.20(\mathrm{CO}), 152.19(\mathrm{Ar}-\mathrm{C}), 151.68$ (Ar-C), 147.05 (Ar-C), 125.37 (Ar-C), 111.31 (Ar-C), 110.97 (Ar-C), 61.24 $\left(\mathrm{OCH}_{3}\right), 61.07\left(\mathrm{OCH}_{3}\right), 56.29\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 289 / 291[\mathrm{M}]$.

Methyl 2-bromo-3,4,5-trimethoxybenzoate 43

To compound $42(135.5 \mathrm{~g}, 466 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$ was added TMS-Cl $(250 \mathrm{~mL}, 1.97 \mathrm{~mol}) .^{9}$ The solution was stirred for 48 h at rt . The solvents were evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, aqueous saturated NaHCO_{3} and water. The organics were dried on MgSO_{4}, filtered and the solvent evaporated in vacuo to give the title compound ($134 \mathrm{~g}, 94 \%$) as a golden oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta_{\mathrm{H}} 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 166.37(\mathrm{CO}), 152.30(\mathrm{Ar}-\mathrm{C}), 151.47$ (Ar-C), 145.98 (Ar-C), 127.41 (Ar-C), 110.06 (Ar-C), 109.43 (Ar-C), $61.11\left(\mathrm{OCH}_{3}\right), 60.97\left(\mathrm{OCH}_{3}\right), 56.21\left(\mathrm{OCH}_{3}\right), 52.45\left(\mathrm{OCH}_{3}\right)$; m / z (ESI) 305/307 [MH] ${ }^{+}$.

4,4',5,5',6,6'-Hexamethoxybiphenyl-2,2'-dicarboxylic acid 45

In order to conduct the reaction at lower temperature and to increase yield, the synthesis was done by modifying the known literature method and a solvent, NMP, was added. ${ }^{10,11}$ Compound $43(133 \mathrm{~g}, 436 \mathrm{mmol})$ was dissolved in NMP (150 mL) and the solution was heated to $170^{\circ} \mathrm{C}$ under nitrogen. Activated copper bronze (115 g , [iodine (2%) in acetone, aqueous HCl $(10 \mathrm{M}) /$ acetone $: 1 / 1]^{13}$) was added in one portion and the suspension was stirred for 2 h . The dark brown mixture was cooled to $100{ }^{\circ} \mathrm{C}$ and the copper was filtered on celite and washed with boiling toluene. After solvents evaporation in vacuo $(0.1 \mathrm{~mm}$ Hg) at $95^{\circ} \mathrm{C}$, a dark brown oil contaminated by solids was obtained. The crude product 44 was dissolved in EtOAc and washed twice with ammonium hydroxide (6 M) and water. After evaporation, a brown oil was obtained (100 g). The crude diester 44 was saponified by heating under reflux for 16 h with a solution of $\mathrm{NaOH}(50 \mathrm{~g})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1 / 1 ; 400 \mathrm{~mL})$. The MeOH was evaporated in vacuo. The volume of the solution was adjusted to 500 mL with $\mathrm{H}_{2} \mathrm{O}$ and hydrochloric acid was added under stirring until pH 3 . The suspension was cooled to $0{ }^{\circ} \mathrm{C}$, the precipitate $\mathbf{4 5}$ was filtered and washed with water. The wet solid was recrystallized twice from boiling aqueous MeOH . After filtration and drying to constant weight the title compound ($71 \mathrm{~g}, 77 \%$) was obtained as an off-white solid. Mp 248-249 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO) $\delta_{\mathrm{H}} 12.24$ (s, 2H, COOH), $7.32(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{DMSO}$) δ_{C} 167.29 (CO), 151.44 (Ar-C), 150.81 (Ar-C), 144.49 (Ar-C), 126.61 (Ar-C), 125.80 (Ar-C), 108.94 (Ar-C), $60.37\left(\mathrm{OCH}_{3}\right)$, $60.11\left(\mathrm{OCH}_{3}\right), 55.74\left(\mathrm{OCH}_{3}\right) ; ~ m / z(\mathrm{ESI}) 421$ [M]

(R)-4,4',5,5',6,6'-Hexamethoxybiphenyl-2,2'-dicarboxylic acid (R)-45

Resolution of compound $\mathbf{4 5}$ was realized through the diquinidinium salt 46 by following the known method. ${ }^{12}$ Ee was determined on a Chiracel OD-H column (Daicel, $150 \mathrm{~mm} \times 4 \mathrm{~mm}, 5 \mu \mathrm{~m}$); mobile phase: n - $\mathrm{Hex} / i-\mathrm{PrOH} / \mathrm{TFA}: 90 / 10 / 0.1 ; 0.8$ $\mathrm{mL} / \mathrm{min} ; 37^{\circ} \mathrm{C}$. Retention times for isomers R and S were 8.3 min and 11.0 min , respectively. Enantiomeric purity of $(R)-\mathbf{4 5}$ was $\geq 99 \%$. Enantiomer (S)-45 was also obtained with an ee $\geq 99 \%$.

Dimethyl (R)-4,4',5,5',6,6'-hexamethoxybiphenyl-2,2'-dicarboxylate (R)-44

A mixture of $(R)-45(7.4 \mathrm{~g}, 17.5 \mathrm{mmol})$ and $\mathrm{TMS}-\mathrm{Cl}(19 \mathrm{~mL}, 150 \mathrm{mmol})$ in $\mathrm{MeOH}(200 \mathrm{~mL})$ was stirred for 72 h at rt . The solvents were evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, aqueous saturated NaHCO_{3} and water. The organics were dried on MgSO_{4}, filtered and the solvent evaporated in vacuo to give the title compound ($7.8 \mathrm{~g}, 95 \%$) as a golden oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.34(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{OCH}_{3}$), $3.57\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 166.89$ (CO), 152.04 (Ar-C), 151.23 (Ar-C), 145.40 (Ar-C),
126.58 ($\mathrm{Ar}-\mathrm{C}$), 124.96 ($\mathrm{Ar}-\mathrm{C}), 108.86(\mathrm{Ar}-\mathrm{C}), 60.77\left(\mathrm{OCH}_{3}\right), 60.51\left(\mathrm{OCH}_{3}\right), 55.93\left(\mathrm{OCH}_{3}\right), 51.80\left(\mathrm{OCH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 451$ [MH] ${ }^{+}$.

Dimethyl (\boldsymbol{R})-3,3'-dibromo-4,4',5,5',6,6'-hexamethoxy biphenyl-2,2'-dicarboxylate (\boldsymbol{R})-47

The title compound was obtained as colourless needles as previously described. ${ }^{8} \mathrm{Mp} 114-115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ 166.23 (CO), 151.83 (Ar-C), 151.49 (Ar-C), 148.00 (Ar-C), 130.90 (Ar-C), 125.06 (Ar-C), 109.53 (Ar-C), $61.16\left(\mathrm{OCH}_{3}\right)$, $61.03\left(\mathrm{OCH}_{3}\right), 60.94\left(\mathrm{OCH}_{3}\right), 52.08\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 607(1) / 609(2) / 611(1)[\mathrm{MH}]^{+}$.

Dimethyl (R)-3,3'-bis(3,4,5-trifluorophenyl)-4,4',5,5',6,6'-hexa methoxybiphenyl-2,2'-dicarboxylate (R)-48

The title compound was obtained as an amber oil as previously described. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.03-6.83(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ $167.11(\mathrm{CO}), 152.31(\mathrm{Ar}-\mathrm{C}), 151.01(\mathrm{Ar}-\mathrm{C}), 150.54(\mathrm{Ar}-\mathrm{C})\left(\mathrm{ddd}, J_{C-F}=249.4,9.8,4.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 147.62(\mathrm{Ar}-\mathrm{C}), 139.00(\mathrm{dt}$, $J_{C-F}=251.8,15.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 132.37 (td, $J_{C-F}=8.1,4.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 128.91 (Ar-C), 127.08 (Ar-C), 125.24 (Ar-C), 114.30 113.91 (m, Ar-C), $113.82(\mathrm{Ar}-\mathrm{C}), 61.11\left(\mathrm{OCH}_{3}\right), 60.81\left(\mathrm{OCH}_{3}\right), 51.55\left(\mathrm{OCH}_{3}\right) ; m / z(\mathrm{ESI}) 711[\mathrm{MH}]^{+}$.

(R)-3,3'-bis(3,4,5-trifluorophenyl)-4,4',5,5',6,6'-hexamethoxy biphenyl-2,2'-dimethanol (R)-49

The title compound was obtained as a beige powder as previously described. ${ }^{8} \mathrm{Mp} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.18-$ $7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.02\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.01(\mathrm{~b}, 2 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 151.40(\mathrm{Ar}-\mathrm{C}), 151.06$ (Ar-C), 150.56 (ddd, $J_{C-F}=$ $249.5,9.8,4.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}), 146.05$ (Ar-C), 139.18 (dt, $\left.J_{C-F}=251.5,15.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 133.49$ (Ar-C), $132.20\left(\mathrm{td}, J_{C-F}=8.3,5.2\right.$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{C}), 130.48(\mathrm{Ar}-\mathrm{C}), 126.51(\mathrm{Ar}-\mathrm{C}), 114.95(\mathrm{~b}, \mathrm{Ar}-\mathrm{C}), 61.13\left(\mathrm{OCH}_{3}\right), 60.88\left(\mathrm{OCH}_{3}\right), 60.80\left(\mathrm{OCH}_{3}\right), 59.65\left(\mathrm{CH}_{2}\right) ; m / z$ (ESI) $655[\mathrm{MH}]^{+}$.
(\boldsymbol{R})-3,3'-bis(3,4,5-trifluorophenyl)-4,4',5,5',6,6'-hexamethoxybiphenyl-2,2'-dimethyl bromide (\boldsymbol{R})-50
The title compound was obtained as a white solid as previously described ${ }^{8}$ and was used without purification for the next step; m / z (ESI) 779 (1)/781 (2)/783 (1) [MH] ${ }^{+}$.

Chiral quaternary ammonium salt (\boldsymbol{R})-13

The title compound was obtained as a white solid as previously described. ${ }^{8} \mathrm{Mp} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.39-7.09$ (m, 4H, Ar-H), 4.45 (d, $\left.J=13.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.06\left(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.80\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.26-0.96\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.80(\mathrm{t}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3}), $0.24\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 152.40(\mathrm{Ar}-\mathrm{C}), 152.00(\mathrm{Ar}-\mathrm{C}), 151.00\left(\mathrm{dtd}, J_{C-F}=252.1,9.2,3.7\right.$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{C}$), 148.11 (Ar-C), 139.54 (dt, $J_{C-F}=253.9,15.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 130.47 (td, $J=8.0,5.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}$), 130.05 (Ar-C), 126.80 (Ar-C), 120.29 (Ar-C), $115.75\left(\mathrm{dd}, J_{C-F}=17.9,2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 61.63\left(\mathrm{OCH}_{3}\right), 61.18\left(\mathrm{OCH}_{3}\right), 61.01\left(\mathrm{OCH}_{3}\right), 57.76\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $57.17\left(\mathrm{NCH}_{2}\right), 24.32\left(\mathrm{CH}_{2}\right), 19.34\left(\mathrm{CH}_{2}\right), 13.24\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ESI}) 748[\mathrm{M}]^{+}$.

References:

```
G. A. Olah and T. Keumi, Synthesis, 1979, 112.
    J. Liebscher, Synthesis, 1982, 1084-1086.
    G. Tarzia, P. Schiatti, D. Selva, D. Favara and S. Ceriani, Eur. J. Med. Chem. - Chim. Ther., 1976, 11, 263-270.
    T. Fukuhara, C. Hasegawa and S. Hara, Synthesis, 2007, 1528-1534.
    E. M. Fry, J. Org. Chem., 1950, 15, 438-447.
    J. Andersen, U. Madsen, F. Björkling and X. Liang, Synlett, 2005, 2005, 2209-2213.
    Y.-G. Wang, M. Ueda, X. Wang, Z. Han and K. Maruoka, Tetrahedron, 2007, 63, 6042-6050.
    K. Maruoka, Y. Nishimoto and K. Yamamoto, US2009270614, }2009
    R. Nakao, K. Oka and T. Fukumoto, Bulletin of the Chemical Society of Japan, 1981, 54, 1267-1268.
    P. E. Fanta, Synthesis, 1974, 9-21.
    J. Hassan, M. Sévignon, C. Gozzi, E. Schulz and M. Lemaire, Chemical Reviews, 2002, 102, 1359-1470
    O. T. Schmidt and K. Demmler, Justus Liebigs Ann. Chem., 1952, 576, 85-93.
    A. I. Vogel Practical Organic Chemistry, Third edn., Longman, }1956
```


4. MALDI-TOF mass spectrometry (negative mode) of UDP-MurNAc-tripeptide.

Theoretical mass $\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{7} \mathrm{O}_{26} \mathrm{P}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}=1158.26$.

UDP-MurNAc- (S)-Ala- $\gamma-(R)$-Glu- (R, R) - α-benzyl-lanthionine obtained from 3RR

UDP-MurNAc- (S)-Ala- $\gamma-(R)$-Glu- (R, S) - α-benzyl-lanthionine obtained from 3RS

