Electronic Supporting Information

For

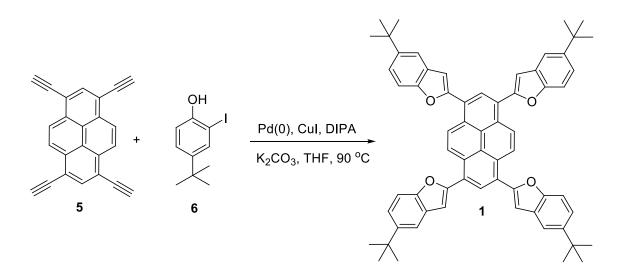
Synthesis and Photophysical Properties of Pyrene-Based Green Fluorescent Dyes: Butterfly-Shaped Architectures

Devendar Goud Vanga, Mithun Santra, Ashok Keerthi and Suresh Valiyaveettil*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

General Methods:

¹H NMR spectra were recorded on Bruker ACF300 (300 MHz) spectrometer. The chemical shifts were reported in ppm and referenced to the residual solvent peak. s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. FAB-mass spectra were obtained on a Finnigan MAT95XL-T, MALDI-TOF on Bruker Autoflex III and Micromass VG7035 mass spectrometer. The UV-Vis and emission spectra were measured on a UV-1601PC Shimadzu spectrophotometer and RF-5301PC Shimadzu spectrofluorophotometer. Bruker ALPHA FT-IR Spectrophotometer was used for the Fourier transform infrared (FT-IR) spectroscopy analysis. Good quality crystal was obtained from a two-phase solvent system where the compound first was dissolved in a CHCl₃ and transferred in NMR tube. Next, hexane in which compound is not soluble, was poured slowly in such way that it form two solvent layers and it was kept for few days without disturbing until the crystal was obtained. The structure of the compound was determined by X-ray crystal diffraction. Geometry optimizations were performed in Gaussian 09 at the density functional theory (DFT) level with the B3LYP functional and a 6-31G(d) basis set. The HOMO and LUMO surfaces were generated from the optimized geometries using GaussView 5.

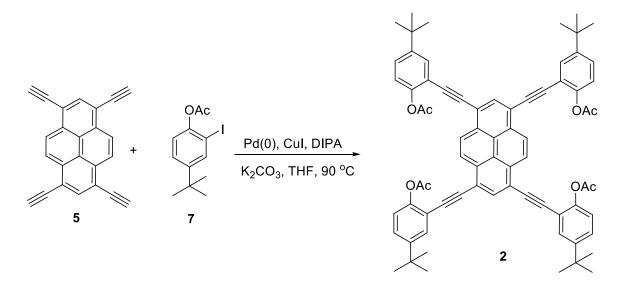

General Procedure for palladium catalyzed cross-coupling reaction

A 50 mL Schlenk flask equipped with a stir bar was charged with compound 1,3,6,8tetraethynyl pyrene 5^1 (1 eq.), Iodo aryl derivative (5.0 eq.) and copper(I)iodide (0.4 eq.). The flask was placed under argon, and tetrakis(triphenylphosphine)palladium(0) (0.4 eq.) and K₂CO₃ (5 eq.) were added under a nitrogen atmosphere. Tetrahydrofuran and diisopropylamine in 1: 3 ratio were added by syringe, the mixture was degassed for 20 min, and heated at 90°C for 12 hours. The reaction mixture was cooled, diluted with water, and extracted with EtOAc. The organic layer was washed with brine, dried over anhyd. Na₂SO₄, filtered, concentrated, and purified on a silica gel column to afford the target compound.

Synthetic Procedure:

1,3,6,8-tetrakis(5-tert-butylbenzofuran-2-yl)pyrene (1).

Compound 5^1 and 6^2 were synthesized according to the literature procedure.

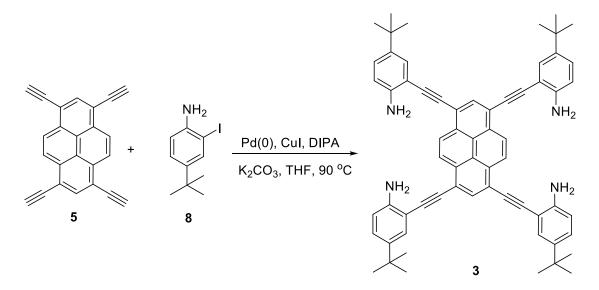

Following the general procedure for palladium catalyzed cross-coupling reaction, starting from 1,3,6,8-tetraethynyl pyrene **5** (0.3 g, 1 mmol), 4-*tert*-butyl,2-Iodophenol **6** (1.38 g, 5

mmol) and copper(I)iodide (0.076 g, 0.4 mmol), tetrakis(triphenylphosphine)palladium(0) (0.46 g, 0.4 mmol) and K₂CO₃ (0.69 g, 5 mmol), the compound **1** (0.63 g, 71%) was afforded as a orange solid after silica gel flash column chromatography (5% ethylacetate in hexanes). $R_f = 0.8$ (1:9 ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃): δ 8.80 (s, 3H, Ar), 8.75 (s, 2H, Ar), 7.76 (d, J = 1.8 Hz, 4H, Ar), 7.60 (d, J = 8.5 Hz, 4H, Ar), 7.50 (dd, J = 1.8, 8.5 Hz, 4H, Ar), 7.28 (s, 4H, Ar), 1.49 (s, 36H); ¹³C NMR (75 MHz, CDCl₃): δ 155.4, 153.5, 146.2, 128.8, 128.2, 127.6, 126.1, 125.8, 125.7, 122.6, 117.3, 110.7, 107.5, 34.8, 31.9; MALDI-TOF: (C₆₄H₅₈O₄) Calculated m/z = 890.43, Found m/z = 890.73; IR (KBr): v = 2958, 2925, 1858, 1464, 1264, 1092, 1024, 805.

2,2',2'',2'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrakis(4-tert-

butylbenzene-2,1-diyl) tetraacetate (2).

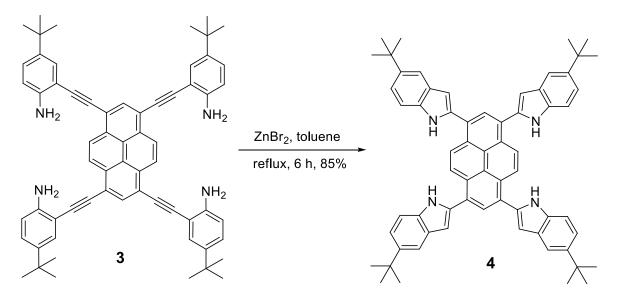
Compound 7^2 was synthesized by following the literature procedure.



Following the general procedure for palladium catalyzed cross-coupling reaction, starting from 1,3,6,8-tetraethynyl pyrene **5** (0.3 g, 1 mmol), 4-*tert*-butyl-2-iodophenyl acetate **7**

(1.59)mmol) copper(I)iodide (0.076 0.4 5 and mmol), g, g, tetrakis(triphenylphosphine)palladium(0) (0.46 g, 0.4 mmol) and K₂CO₃ (0.69 g, 5 mmol), the compound 2 (0.83 g, 79%) was afforded as a orange-yellow solid after silica gel flash column chromatography (25% ethylacetate in hexanes). $R_f = 0.4$ (2:8 ethyl acetate/hexanes); ¹H NMR (300 MHz, CDCl₃): δ 8.77 (s, 4H, Ar), 8.44 (s, 2H, Ar), 7.77 (d, J = 2.5 Hz, 4H, Ar), 7.48 (dd, J = 2.5, 8.5 Hz, 4H, Ar), 7.15 (d, J = 8.5 Hz, 4H, Ar), 2.46 (s, 12H), 1.40 (s, 36H); ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 149.3, 149.1, 133.7, 131.8, 130.1, 127.3, 126.9, 121.8, 118.9, 116.3, 91.7, 91.4, 34.5, 31.3, 21.1.; MALDI-TOF: (C₇₂H₆₆O₈) Calculated m/z = 1058.47, Found m/z = 1058.78; IR (KBr): v = 3054, 2959, 2925, 2865, 2205 (−C≡C−), 1766, 1603, 1498, 1366, 1185.

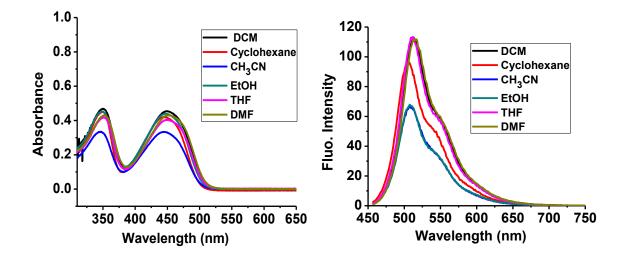
2,2',2'',2'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrakis(4-tert-butylaniline) (3).


Compound 8^3 was synthesized according to the literature procedure.

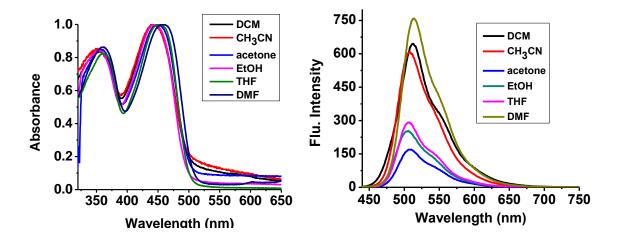
Following the general procedure for palladium catalyzed cross-coupling reaction, starting

from 1,3,6,8-tetraethynyl pyrene **5** (0.3 g, 1 mmol), 4-*tert*-butyl-2-iodoaniline **8** (1.37 g, 5 mmol) and copper(I)iodide (0.076 g, 0.4 mmol), tetrakis(triphenylphosphine)palladium(0) (0.46 g, 0.4 mmol) and K₂CO₃ (0.69 g, 5 mmol), the compound **2** (0.74 g, 83%) was afforded as a red solid after silica gel flash column chromatography (25% ethylacetate in hexanes). $R_f = 0.5$ (2:8 ethyl acetate/hexanes); ¹H NMR (300 MHz, acetone-d₆): δ 8.83 (s, 4H, Ar), 8.60 (s, 2H, Ar), 7.59 (d, J = 2.3 Hz, 4H, Ar), 7.29 (dd, J = 2.3, 8.5 Hz, 4H, Ar), 6.85 (d, J = 8.5 Hz, 4H, Ar), 5.24 (s, 6H, NH₂), 1.34 (s, 36H); ¹³C NMR (75 MHz, acetone-d₆): δ 149.1, 140.9, 135.1, 132.4, 130.1, 129.3, 128.3, 125.6, 121.1, 115.9, 107.6, 96.1, 93.2, 35.1, 32.5; MALDI-TOF: (C₆₄H₆₂N₄) Calculated m/z = 886.50, Found m/z = 886.74; IR (KBr): v = 3609, 3471, 3382 (NH₂), 2955, 2862, 2363, 2186 ($-C \equiv C^{-}$), 1616, 1498, 1258, 822.

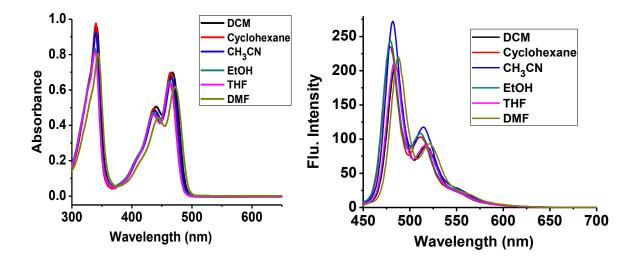
1,3,6,8-tetrakis(5-tert-butyl-1H-indol-2-yl)pyrene (4):

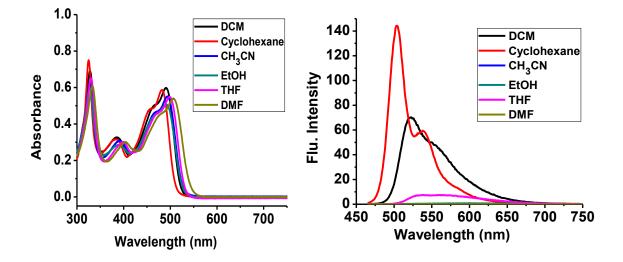


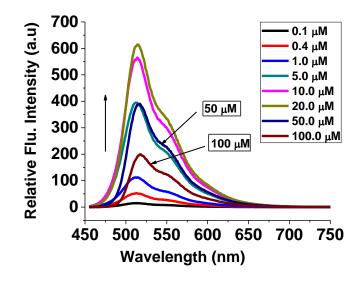
To a solution of chromophore **3** (0.1 g, 0.112 mmol) dissolved in dry toluene (10 mL) was added anh.ZnBr₂ (0.2 g, 0.90 mmol) at RT under nitrogen atmosphere. The reaction mixture was refluxed for 6 h, cooled to RT, the solvent was removed under *vacuo* and the crude was

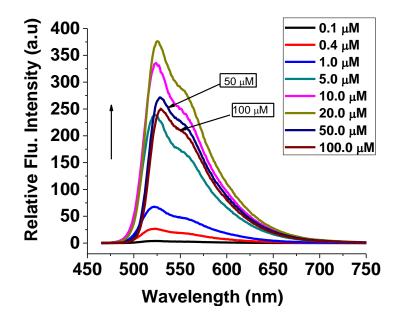

subjected to silicagel column chromatography to give oragne-brown solid compound **4** (0.085 g, 85%). $R_f = 0.5$ (1:3 ethyl acetate/hexanes); ¹H NMR (300 MHz, acetone-d₆): δ 10.71 (s, 4H, NH), 8.83 (s, 4H), 8.54 (s, 2H), 7.74 (s, 4H), 7.48 (d, J = 8.5 Hz, 4H), 7.36 (d, J = 8.5 Hz, 4H), 7.01 (s, 4H), 1.44 (s, 36H); ¹³C NMR (75 MHz, acetone-d₆): δ 142.3, 136.6, 129.0, 128.7, 128.0, 125.7, 120.3, 116.1, 110.7, 104.5, 34.2, 31.3; MALDI-TOF: (C₆₄H₆₂N₄) Calculated m/z = 886.50, Found m/z = 886.46; IR (KBr): v = 3394, 3055, 2956, 2865, 1609, 1468, 1403, 1311, 1142, 802 cm⁻¹.

References


- (a) S. Bernhardt, M. Kastler, V. Enkelmann, M. Baumgarten and K. Müllen, *Chem. Eur. J.* 2006, *12*, 6117–6128; (b) H. Lu, Q. Wang, Z. Li, G. Lai, J. Jiang, and Z. Shen, *Org. Biomol. Chem.*, 2011, *9*, 4558–4562.
- 2. T. Wang, Z.Y. Li, A. L. Xie, X. J. Yao, X. P. Cao and D. Kuck, J. Org. Chem. 2011, 76, 3231–3238.
- 3. (*a*) W.-W. Sy, *Synth. Commun.* 1992, **22**, 3215–3219; (*b*) J. Iskra, S. Starber and M. Zupam, *Synthesis*, 2004, 1869–1879.


Figure S1. Absorbance in $10\mu M$ (left) and normalized fluorescence (right) in $1\mu M$ of compound **1**, recorded in different organic solvent.


Figure S2. Absorbance in 10µM (left) and normalized fluorescence (right) in 1µM of compound **4**, recorded in different organic solvent.


Figure S3. Absorbance spectra (left) and normalized fluorescence emission spectra (right) in different solvent system for compound **2** recorded at 25 °C.

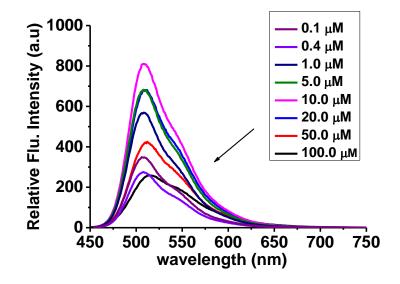

Figure S4. Absorbance spectra (left) and normalized fluorescence emission spectra (right) in different solvent system for compound **3** recorded at 25 °C.

Figure S5. Effect of concentration on the fluorescence spectra for compound **1**, recorded in CH_2Cl_2 at 25 °C upon increasing the concentration from 0.1µM to 100 µM.

Figure S6. Effect of concentration on the fluorescence spectra for compound **3**, recorded in CH_2Cl_2 at 25 °C upon increasing the concentration from 0.1µM to 100 µM.

Figure S7. Effect of concentration on the fluorescence spectra for compound **4**, recorded in CH_2Cl_2 at 25 °C upon increasing the concentration from 0.1µM to 100 µM.

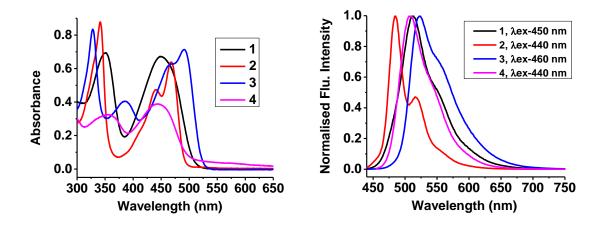
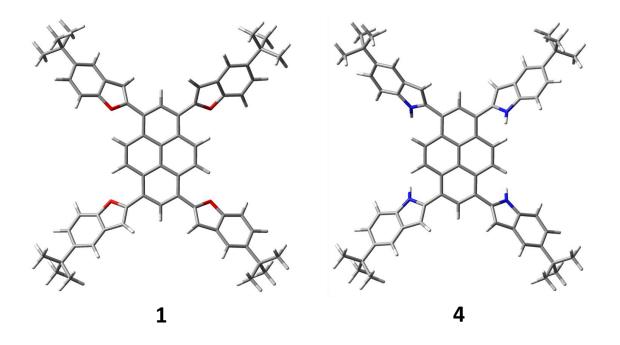



Figure S8. Absorbance in 10 μ M (left) and normalized fluorescence in 1 μ M of 1, 2, 3 and 4 recorded in CH₂Cl₂ solvent.

Figure S9. The energy optimized structure of **1** and **4** molecules calculated by density functional theory at the B3LYP/6-31G(d) level.

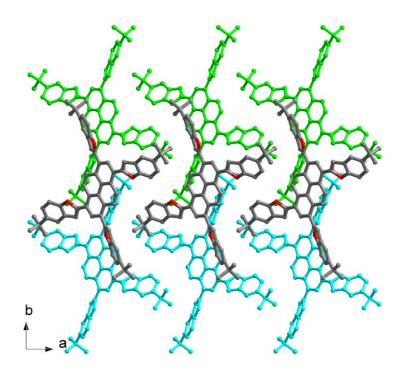


Figure S10. ORTEP representation of molecular packing viewed down the c axis of compound 1

Table 1. Crystal data and structure refinement for D368N (1).				
Identification code	d368n			
Empirical formula	C64 H58 O4			
Formula weight	891.10			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 12.291(2) Å	$\alpha = 90^{\circ}$.		
	b = 17.310(3) Å	$\beta = 95.536(5)^{\circ}$.		
	c = 11.563(2) Å	$\gamma = 90^{\circ}$.		
Volume	2448.7(8) Å ³			
Z	2			
Density (calculated)	1.209 Mg/m ³			
Absorption coefficient	0.074 mm ⁻¹			
F(000)	948			
Crystal size	0.46 x 0.26 x 0.10 mm ³			
Theta range for data collection	1.66 to 25.00°.			
Index ranges	-13<=h<=14, -18<=k<=20, -13<=l<=10			
Reflections collected	14069			
Independent reflections	4314 [R(int) = 0.0543]			
Completeness to theta = 25.00°	100.0 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7456 and 0.6393			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4314 / 127 / 351			
Goodness-of-fit on F ²	1.029			
Final R indices [I>2sigma(I)]	R1 = 0.0775, $wR2 = 0.1815$			
R indices (all data)	R1 = 0.1044, wR2 = 0.1964			
Largest diff. peak and hole	0.583 and -0.458 e.Å ⁻³			

compd	CHCl ₃	EtOH	THF	DMSO
1	0.80	0.78	0.81	0.74
2	0.89	0.61	0.84	0.69
3	0.64	0.20	0.40	0.04
4	0.74	0.59	0.73	0.66

Table 2: Quantum yields of compounds 1, 2, 3, and 4 measured in CHCl3, EtOH, THF, andDMSO solvents

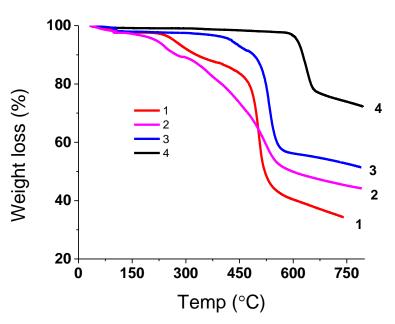


Figure S11. Thermogravimetry analysis for compound 1, 2, 3 and 4

Fluorophores	Decomposition temperature ^{a o} C	
1	320	
2	264	
3	480	
4	625	
^a Decomposition temperature was measured at 10% weight loss of fluorophore		

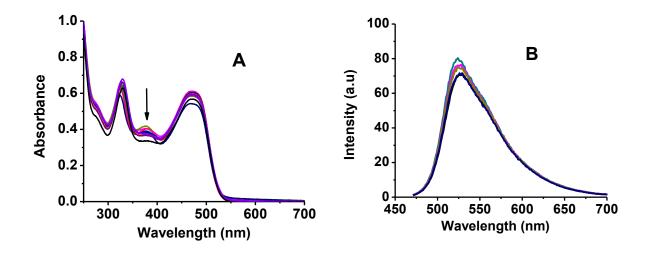
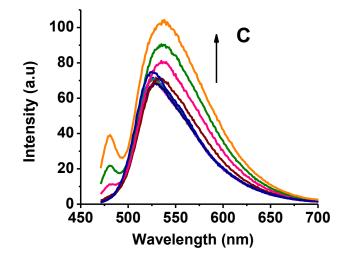
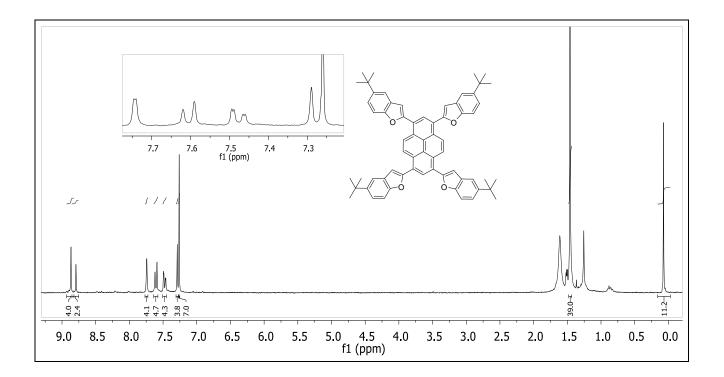
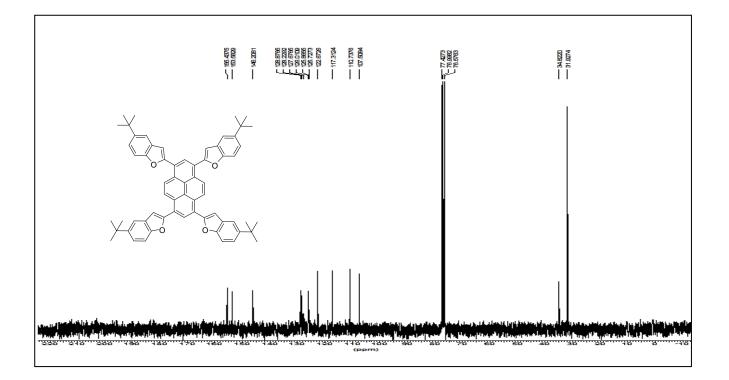
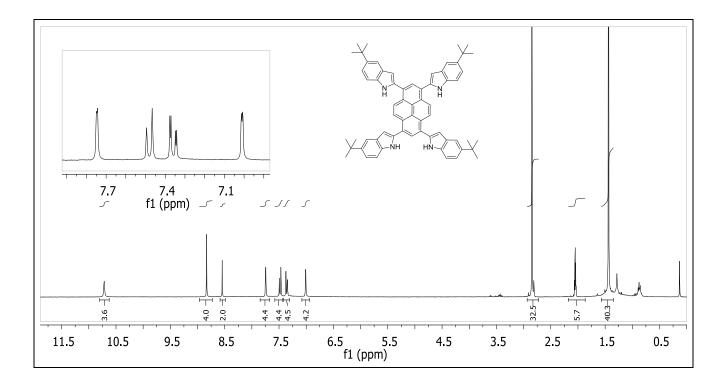
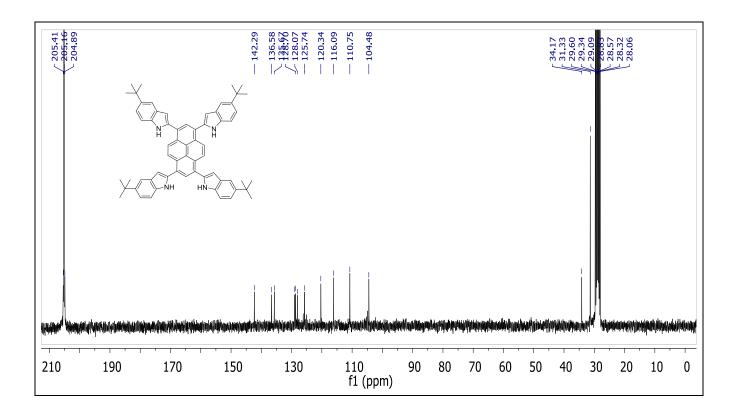
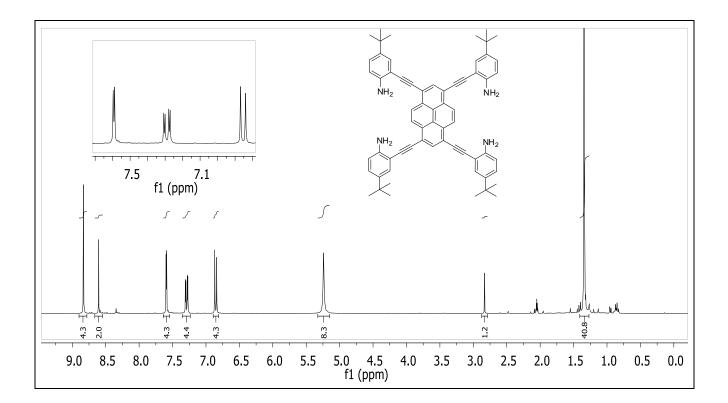


Fig.12. The absorption (A) and emission spectra (B) of compound **3** (10 μ M) in the presence of H⁺ ions in EtOH. Compound **3** was titrated with acid from pH 6, 5, 4, 3, and 2 (No changes were observed)


Fig.13. The emission spectra (C) of compound **3** (10 μ M) in the presence of H⁺ ions in EtOH. Compound **3** was titrated with acid from pH 2, 1.8, 1.6, 1.4, 1.2, 1, 0.8, 0.6, and 0.2 respectively. (Changes were observed)

