Supporting Information for:

Switchable regioselectivity in PIFA-BF₃[·]Et₂O mediated oxidative

coupling of meso-brominated Ni(II) porphyrin

Chuan-Mi Feng, Yi-Zhou Zhu,* Yun Zang, Yu-Zhang Tong and Jian-Yu Zheng*

State Key Laboratory and Institute of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China zhuyizhou@nankai.edu.cn; jyzheng@nankai.edu.cn

1.	Instrumentations and Materials	S2
2.	Optimization of the oxidative coupling	S2
3.	The absorption spectra of various linked porphyrin dimers	S3
4.	The Procedure for the Synthesis of Singly Linked Porphyrin Dimers	S3
5.	The Procedure for the Synthesis of <i>meso-β</i> , <i>meso-β</i> Doubly Fused Dimer	S4
6.	The Procedure for the Synthesis of <i>meso-meso</i> , β - β Doubly Fused Dimer	S5
7.	The Procedure for the Synthesis of β - β , meso-meso, β - β Triply Fused Dimer	S5
8.	S _N Ar reaction of 2	S6
9.	Demetalation of 2, 3 and 6	S6
10.	NMR Spectra of Directly Linked Porphyrin Dimers	S8
11.	Crystal Data for 2	S18

1. Instrumentations and Materials

All NMR solvents were used as received. Chemical shifts of NMR spectra were reported in ppm down field from internal Me₄Si. Crystal data were collected with a Agilent Technologies SuperNov a single-crystal diffractometer using a confocal monochromator with Mo K α radiation (0.71073 Å) at 273 K. All UV-vis absorption spectra were recorded using a UV-3600 UV-Vis-NIR spectrophotometer (Shimadzu, Japan). High-resolution mass spectra (HRMS) were recorded on a VG ZAB-HS mass spectrometer under electron spray ionization (ESI) and a Bruker ultra fleXtreme MALDI-TOF/TOF spectrometer. All of the solvents were purified and distilled according to the standard procedure. The commercially obtained materials were used directly without further purification unless otherwise noted. PIFA (98%) and BF₃:Et₂O (98%) were purchased from Aldrich.

2. Optimization of the oxidative coupling

		yield ^{b} (%)			
entry	1/BF ₃ Et ₂ O/PIFA (equiv)	2	3	4	time
1	1:0:0.5	0	0	90	1 h
2^c	1:1:0	0	0	0	2 h
3	1:1:0.5	80	trace	0	30 min
4	1:1:0.75	54	25	0	30 min
5	1:1:1	0	75	0	30 min
6	1:1:1.5	0	68	0	30 min
7	1:0.5:0.5	80	trace	0	30 min
8	1:0.2:0.5	80	trace	0	1.5 h
9	1:0.5:1.0	0	75	0	30 min

Table 1 Condition Screening of Oxidative Coupling of 1 with PIFA-BF₃ Et₂O^a

 a To the stirred mixture of 1 and BF₃Et₂O in CH₂Cl₂ was added dropwise a solution of PIFA in dry CH₂Cl₂ over 20 min under a

nitrogen atmosphere. ^bIsolated yield. ^cCompound 1 was recovered.

 Table S2. Reaction Conditions for Synthesizing Doubly and Triply Linked Porphyrin Dimers 5

 and 6

		yield ^a (%)	
entry	4/PIFA/BF ₃ [·] Et ₂ O (equiv)	5	6
1	1:0.5:0.5	93	0
2	1:1:0.5	65	30
3	1:2:0.5	0	90
4	1:2.5:0.5	0	85

To a stirred solution of 4 in dry CH₂Cl₂ was added PIFA and BF₃Et₂O under a nitrogen atmosphere.^aIsolated yield.

3. The absorption spectra of various linked Ni(II) porphyrin dimer

Fig. S1. Ultraviolet-visible-infrared absorption spectra of fused porphyrin dimer 1 (red), 2 (blue), 3 (pink), 4 (green), 5 (yellow) and 6 (black) in CHCl₃.

4. The Procedure for the Synthesis of Singly Linked Porphyrin Dimers

For the *meso-* β linked **2**

Under the nitrogen atmosphere, to a stirred solution of 1 (49 mg, 0.06 mmol) and BF_3Et_2O (4 mg, 0.03 mmol, 0.5 equiv) in dry CH_2Cl_2 (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH_2Cl_2 (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. Et_3N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous

 Na_2SO_4 and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **2** (39 mg, 80%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.66 (d, *J* = 5.0 Hz, 1H), 9.63 (s, 1H), 9.60 – 956 (m, 3H), 9.07 – 9.04 (m, 2H), 8.91 – 8.86 (m, 3H), 8.76 (d, *J* = 5.0 Hz, 2H), 8.66 (bs, 3H), 8.46 (d, *J* = 4.8 Hz, 1H), 8.10 (d, *J* = 1.7 Hz, 2H), 7.80 (d, *J* = 1.7 Hz, 2H), 7.71 – 7.68 (m, 4H), 1.48 – 1.40 (m, 72H).

¹H NMR (400 MHz, CDCl₃, -40°C): δ = 9.66 (s, 1H), 9.68 (d, *J* = 5.0 Hz, 1H), 9.62 – 9.58 (m, 3H), 9.14 (d, *J* = 5.0 Hz, 1H), 9.01 (s, 1H), 8.96 (d, *J* = 5.0 Hz, 2H), 8.92 (d, *J* = 5.0 Hz, 1H), 8.80 (d, *J* = 5.0 Hz, 2H), 8.73– 8.67 (m, 3H), 8.47 (d, *J* = 4.8 Hz, 1H), 8.17 – 8.12 (m, 4H), 7.80 (d, *J* = 1.8 Hz, 2H), 7.71 (bs, 1H), 7.69 (s, 3H), 7.59 (s, 2H), 1.51 – 1.46 (m, 32H), 1.44 (s, 18H), 1.40 (s, 18H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.24, 149.09, 149.04, 145.90, 144.42, 143.90, 143.85, 143.78, 143.62, 143.56, 143.34, 143.05, 142.43, 142.38, 142.24, 141.38, 139.55, 139.35, 137.88, 133.72, 133.68, 133.64, 133.20, 133.16, 133.12, 133.07, 132.52, 129.27, 128.90, 128.74, 121.46, 121.32, 121.21, 121.12, 120.54, 112.16, 106.74, 102.76, 102.66, 35.00, 34.96, 31.67, 31.62.

HRMS (ESI) m/z [M]⁺ calcd. for C₉₆H₁₀₀Br₂N₈Ni₂: 1642.5080, found 1642.5073; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\epsilon/mol^{-1}dm^{3}cm^{-1}$): 417 (2.14 × 10⁵), 431 (1.80 × 10⁵), 534 (3.57 × 10⁴).

For the *meso-meso* linked **4**

Under the nitrogen atmosphere, to a stirred solution of **1** (49 mg, 0.06 mmol) in dry CH_2Cl_2 (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH_2Cl_2 (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 50 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **4** (44 mg, 90%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.58 (d, *J* = 5.0 Hz, 4 H), 8.85 (d, *J* = 5.0 Hz, 4 H), 8.53(d, *J* = 5.0 Hz, 4 H), 8.02 (d, *J* = 5.0 Hz, 4 H), 7.83 (d, *J* = 1.6 Hz, 8 H), 7.66 (s, 4 H), 1.41 (s, 72 H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.00, 146.84, 143.95, 142.72, 142.26, 139.41, 134.08, 133.54, 133.10, 133.00, 128.71, 121.62, 121.30, 115.83, 102.97, 34.94, 31.60.

HRMS (MALDI) m/z $[M+H]^+$ calcd. for $C_{96}H_{100}Br_2N_8Ni_2$: 1643.5158, found 1643.5175; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\epsilon/mol^{-1}dm^3cm^{-1}$): 421 (1.64 × 10⁵), 449 (1.84 × 10⁵), 539 (4.20 × 10⁴).

5. The Procedure for the Synthesis of *meso-β*, *meso-β* Doubly Fused Dimer

Under the nitrogen atmosphere, to a stirred solution of **1** (49 mg, 0.06 mmol) and BF₃Et₂O (4 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (40 mL) was added dropwise a solution of PIFA (26 mg, 0.06 mmol, 1 equiv) in dry CH₂Cl₂ (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **3** (37 mg, 75%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.41 (s, 2H), 9.12 – 9.11 (m, 4H), 8.96 (s, 2H), 8.74 (d, *J* = 3.8 Hz, 2H), 8.44 (d, *J* = 5.0 Hz, 2H), 8.39 (d, *J* = 4.8 Hz, 2H), 7.91 (s, 4H), 7.84 – 7.65 (m, 8H), 1.54 (s, 36H), 1.51 (s, 36H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.44, 149.41, 144.68, 144.61, 143.45, 143.37, 143.31, 142.84, 142.39, 142.11, 140.22, 138.83, 138.61, 134.96, 134.00, 133.70, 133.21, 132.91, 132.41, 132.27, 128.90, 128.55, 123.15, 122.55, 121.66, 121.43, 110.10, 104.24, 35.09, 35.04, 31.73, 31.68.

HRMS (ESI) m/z [M]⁺ calcd. for C₉₆H₉₈Br₂N₈Ni₂: 1640.4924, found 1640.4943; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max} /nm, ε /mol⁻¹dm³cm⁻¹): 419 (0.76 × 10⁵), 498 (0.59 × 10⁵), 533 (0.56 × 10⁵), 684 (1.16 × 10⁴), 758 (4.66 × 10⁴).

6. The Procedure for the Synthesis of *meso-meso*, β - β Doubly Fused Dimer

Under the nitrogen atmosphere, a solution of 1 (49 mg, 0.06 mmol) and PIFA (26 mg, 0.06 mmol, 1 equiv) in dry CH₂Cl₂ (50 mL) was stirred at RT for 1 h. When the porphyrin monomer was completely consumed, BF₃ Et₂O (4 mg, 0.03 mmol, 0.5 equiv) was added to the mixture. The mixture was stirred for additional 10 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **5** (41 mg, 84%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.21 (d, *J* = 5.0 Hz, 2H), 9.16 (d, *J* = 4.9 Hz, 2H), 8.78 (s, 2H), 8.55 - 8.51 (m, 2H), 8.48 (d, *J* = 5.0 Hz, 4H), 7.76 (bs, 2H), 7.64 (bs, 2H), 7.46 (d, *J* = 5.1 Hz, 2H), 1.70 - 1.20 (m, 72 H).

¹H NMR (400 MHz, CDCl₃, -40°C): $\delta = 9.23$ (d, J = 5.0 Hz, 2H), 9.18 (d, J = 4.9 Hz, 21H), 8.84 (s, 2H), 8.61 (d, J = 4.9 Hz, 2H), 8.59 (d, J = 5.0 Hz, 2H), 8.57 (d, J = 5.0 Hz, 2H), 8.54 – 8.50 (m, 4H), 7.74 (bs, 2H), 7.63(bs, 2H), 7.48 (d, J = 5.1 Hz, 2H), 7.15 (s, 2H), 6.98 (s, 2H), 1.67 (s, 18H), 1.64 (s, 18H), 1.35 (s, 18H), 1.22 (s, 18H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.39, 145.98, 144.82, 143.85, 142.98, 142.51, 142.13, 141.88, 139.67, 139.64, 138.68, 137.77, 137.69, 137.49, 133.53, 133.44, 133.40, 133.26, 132.36, 128.68, 128.46, 126.49, 124.04, 121.55, 121.42, 120.40, 113.23, 103.98, 35.03, 34.98, 31.70, 31.60.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₉₈Br₂N₈Ni₂: 1640.4924, found 1640.4950; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\epsilon/mol^{-1}dm^3cm^{-1}$): 412 (0.63 × 10⁵), 487 (0.96× 10⁵), 526 (0.72 × 10⁵), 738 (4.07 × 10⁴).

7. The Procedure for the Synthesis of β - β , meso-meso, β - β Triply Fused Dimer

Under the nitrogen atmosphere, a solution of **1** (49 mg, 0.06 mmol) and PIFA (65 mg, 0.15 mmol, 2.5 equiv) in dry CH_2Cl_2 (50 mL) was stirred at RT for 1 h. When porphyrin monomer was completely consumed, BF_3Et_2O (4mg, 0.03 mmol, 0.5 equiv) was added to mixture. The mixture was stirred for additional 10 min at the same temperature. Et_3N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with $CHCl_3$, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na_2SO_4 and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **6** (39 mg, 80%) was obtained after recrystallization from $CHCl_3$ /petroleum ether.

¹H NMR (400 MHz, $V_{CDCL}/V_{CS_2} = 4:1$, RT): $\delta = 8.52$ (d, J = 4.9 Hz, 4H), 7.77 (d, J = 4.9 Hz, 4H), 7.60 (s, 4H), 7.54 (s, 8H), 7.47 (s, 4H), 1.43 (s, 72H).

¹³C NMR (100 MHz, V_{CDCb}/V_{CSz} = 4:1, RT): δ = 149.15, 147.45, 146.53, 145.52, 145.47, 138.37, 134.76, 132.04, 131.70, 127.65, 127.49, 125.01, 121.40, 113.31, 107.89, 34.81, 31.59.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₉₆Br₂N₈Ni₂: 1638.4767, found 1638.4787; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max} /nm, ϵ /mol⁻¹dm³cm⁻¹): 411 (1.58 × 10⁵), 572 (1.23 × 10⁵), 651 (1.13 × 10⁴), 864 (1.72 × 10⁴), 937 (2.10 × 10⁴).

8. S_NAr reaction of 2

2 (40 mg, 0.02 mmol), Cs_2CO_3 (33 mg, 0.10 mmol, 5 equiv) and phenol (9 mg, 0.10 mmol, 5 equiv) were added to a 25 mL two-necked round bottom flask, then the flask was evacuated and backfilled with N₂ for 3 times. DMF (5 mL) was added using a syringe, then the reaction was heated to 100°C. The solution was continuously stirred at the temperature for 1.5 h. When compound **2** was completely consumed, the mixture was cooled down to room temperature, and water (5.0 mL) was added to precipitate the product. **8** (33 mg, 81%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.69 (s, 1H), 9.36 (d, *J* = 4.9 Hz, 1H), 9.31 – 9.27 (m, 3H), 9.10 (s, 1H), 9.02 (d, *J* = 4.9 Hz, 1H), 8.88 – 8.78 (m, 5H), 8.70 – 8.66 (m, 3H), 8.48 (d, *J* = 4.8 Hz, 1H), 8.16 – 8.08 (m, 4H), 7.83 (d, *J* = 1.7 Hz, 2H), 7.72 – 7.60 (m, 4H), 7.24 – 7.19 (m, 2H), 7.01(t, *J* = 7.3 Hz, 2H), 6.95 (t, *J* = 7.5 Hz, 4H), 1.48– 1.40 (m, 72H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 164.39, 164.33, 164.18, 149.21, 149.06, 149.01, 146.27, 144.70, 143.88, 143.62, 143.40, 143.33, 143.31, 143.05, 143.02, 141.44, 139.85, 139.65, 139.63, 139.40, 139.37, 139.13, 137.95, 133.09, 132.97, 132.79, 132.69, 132.10, 132.00, 129.62, 129.30, 128.90, 128.76, 128.30, 128.13, 128.09, 121.80, 121.77, 121.36, 121.22, 120.99, 120.91, 120.35, 116.49, 111.63, 106.23, 35.01, 34.97, 31.69, 31.64.

HRMS (MALDI) m/z [M]⁺ calcd. for $C_{108}H_{110}O_2N_8Ni_2$: 1667.7486, found 1667.7500; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\epsilon/mol^{-1}dm^3cm^{-1}$): 419 (2.19 × 10⁵), 432 (2.03 × 10⁵), 530 (4.20 × 10⁴).

9. Demetalation of 2, 3 and 6

For *meso-\beta* singly linked dimer 7

Porphyrin dimer 2 (82 mg, 0.05 mmol) was dissolved in dry CH_2Cl_2 (20 mL) in a 100 mL round-bottomed flask. The solution was cooled to -10 °C, and then treated with 0.5 mL of H_2SO_4/TFA (1:10) 30 min. After neutralization by aqueous NaHCO₃, the solution was extracted with CH_2Cl_2 , washed bybrine, dried over anhydrous Na₂SO₄, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). 7 (43 mg, 57%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): $\delta = 9.89$ (d, J = 4.9 Hz, 1H), 9.81 - 9.74 (m, 4 H), 9.70 (s, 1H), 9.24 (d, J = 4.9 Hz, 1H), 9.00 (d, J = 4.6 Hz, 2H), 8.97 (d, J = 4.8 Hz, 1H), 8.91 (d, J = 4.6 Hz, 2H), 8.81 (d, J = 4.7 Hz, 1H), 8.75 (d, J = 4.7 Hz, 2H), 8.65 (d, J = 4.7 Hz, 1H), 8.37 (d, J = 1.8 Hz, 2H), 8.14 (d, J = 1.4 Hz, 2H), 8.06 - 7.99 (4 H, m), 7.79 - 7.72 (4 m, 4 H), 1.51 - 1.49 (m, 36H), 1.49 - 1.47 (m, 36H), -2.30 (s, 2 H), -2.55 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.41, 149.39, 149.27, 149.25, 149.20, 149.02, 148.91, 148.87, 146.27, 144.33, 140.72, 140.43, 140.27, 138.73, 138.64, 133.91, 133.81, 132.41, 132.32, 132.09, 131.93, 131.67, 131.30, 131.02, 130.52, 130.47, 130.40, 129.97, 129.95, 129.85, 122.65, 122.43, 121.97, 121.44, 121.26, 113.64, 107.28, 103.66, 103.46, 35.05, 35.03, 31.72, 31.69.

HRMS (MALDI) m/z [M+H]⁺ calcd. for $C_{96}H_{104}Br_2N_8$: 1529.6807, found 1529.6827; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\epsilon/mol^{-1}dm^3cm^{-1}$): 423 (3.12 × 10⁵), 438 (2.65 × 10⁵), 539 (4.40 × 10⁴), 557 (2.50 × 10⁴), 597 (1.75 × 10⁴), 653 (12.5 × 10⁴).

For fused dimers H₄-3 and H₄-6

Scheme S1. Demetalation reaction of 3 and 6

Porphyrin dimer **3** (50 mg, 0.03 mmol) was dissolved in dry CH_2Cl_2 (20 mL) in a 50 mL round-bottomed flask. The solution was treated with concentrated H_2SO_4 (0.1 mL) 30 min at RT. After neutralization by aqueous NaHCO₃, the solution was extracted with CH_2Cl_2 , washed bybrine, dried over anhydrous Na₂SO₄, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). **H**₄-**3** (35 mg, 76%) was obtained after recrystallization from $CHCl_3/CH_3OH$.

H₄-3:

¹H NMR (400 MHz, CDCl₃, RT): δ = 9.47 (d, *J* = 4.6 Hz, 2H), 9.26 – 9.20 (m, 4H), 9.10 (s, 2H), 8.62 – 8.56 (m, 4H), 8.49 (d, *J* = 4.8 Hz, 2H), 8.11 (d, *J* = 1.4 Hz, 4H), 7.98 (d, *J* = 1.4 Hz, 4H), 7.88 – 7.85 (m, 2H), 7.82 – 7.78 (m, 2H), 1.59 – 1.56 (m, 72H), 0.52 (s, 4H).

¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.33, 149.25, 147.07, 146.93, 146.10, 145.79, 145.26, 145.12, 144.51, 143.41, 143.23, 142.54, 142.31, 140.24, 140.04, 138.37, 137.65, 135.61, 135.50, 135.19, 129.98, 129.88, 124.96, 124.19, 121.62, 121.41, 105.43, 94.92, 35.17, 35.11, 31.83, 31.74.

HRMS (MALDI) m/z $[M+H]^+$ calcd. for $C_{96}H_{102}Br_2N_8$: 1527.6651, found 1527.6655; Ultraviolet-visible-infrared absorption : (in CHCl₃, λ_{max} /nm, ϵ /mol⁻¹dm³cm⁻¹): 425 (1.31 × 10⁵), 501 (6.70 × 10⁴), 545 (5.45 × 10⁴), 616 (4.35 × 10⁴), 821 (5.50 × 10⁴).

H₄-6: Following the same procedure for demetalation of 3.

¹H NMR (400 MHz, $V_{CDCL}/V_{CS_2} = 4:1$, RT): $\delta = 8.46 - 8.38$ (m, 6H), 7.65 - 7.63 (m, 6H), 7.61 - 7.57 (m, 12H), 1.46 - 1.42 (m, 76H)

¹³C NMR (100 MHz, V_{CDCL}/V_{CS₂} = 4:1, RT): δ = 148.94, 147.60, 146.65, 145.47, 145.45, 138.83, 133.97, 128.95, 128.18, 125.84, 125.81, 125.53, 121.33, 114.28, 107.83, 34.73, 31.57.

HRMS (MALDI) m/z $[M+H]^+$ calcd. for $C_{96}H_{100}Br_2N_8$: 1525.6494, found 1525.6508; Ultraviolet-visible-infrared absorption : (in CHCl₃, λ_{max} /nm, ε /mol⁻¹dm³cm⁻¹): 415 (1.19 × 10⁵), 482 (5.90 × 10⁴), 565 (1.24 × 10⁵), 1044 (2.73 × 10⁴), 1090 (3.07 × 10⁴).

10. NMR Spectra of Directly Linked Porphyrin Dimers

Figure S2. ¹H NMR spectrum of **2** (400 MHz, CDCl₃ at 25°C).

Figure S3. ¹H NMR spectrum of 2 (400 MHz, CDCl₃ at -40°C).

Figure S4. ¹³C NMR spectrum of 2(100 MHz, CDCl₃ at 25°C).

Figure S5. ¹H NMR spectrum of **3** (400 MHz, $CDCl_3$ at 25°C).

Figure S6. ¹³C NMR spectrum of **3** (100 MHz, CDCl₃ at 25°C).

Figure S7. ¹H NMR spectrum of **4** (400 MHz, CDCl₃ at 25°C).

Figure S8. ¹³C NMR spectrum of 4(100 MHz, CDCl₃ at 25°C).

Figure S9. ¹H NMR spectrum of **5** (400 MHz, CDCl₃ at 25°C).

Figure S10. ¹H NMR spectrum of 5 (400 MHz, CDCl₃ at -40°C).

Figure S11. ¹³C NMR spectrum of **5** (100 MHz, CDCl₃ at 25°C).

Figure S12. ¹H NMR spectrum of 6 (400 MHz, $V_{CDCl_2}/V_{CS_2} = 4:1$ at 25°C).

Figure S13. ¹³C NMR spectrum of 6 (100 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C, δ (¹³C_{CS₂}) = 192.51).

Figure S14. ¹H NMR spectrum of 7 (400 MHz, CDCl₃ at 25°C).

Figure S15. ¹³C NMR spectrum of 7 (100 MHz, CDCl₃ at 25°C).

Figure S16. ¹H NMR spectrum of 8 (400 MHz, CDCl₃ at 25°C).

Figure S17.¹³C NMR spectrum of 8 (100 MHz, CDCl₃ at 25°C).

Figure S18. ¹H NMR spectrum of **H4-3** (400 MHz, CDCl₃ at 25°C).

Figure S19. ¹³C NMR spectrum of **H4-3** (100 MHz, CDCl₃ at 25°C).

Figure S20. ¹H NMR spectrum of H4-6 (400 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C).

Figure S21. ¹³C NMR spectrum of **H4-6** (100 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C, δ (¹³Ccs₂) = 192.45).

11. Crystal Data for 2

Compound reference	2
Chemical formula	$C_{96}H_{100}Br_2N_8Ni_2$
Formula Mass	1643.02
Crystal system	Monoclinic
a/Å	38.7(10)
b/Å	9.0001(13)
c/Å	33.3200(3)
α/°	90.00
β/°	109.69
γ/°	90.00
Unit cell volume/Å ³	10927
Temperature/K	273(2)
Space group	P21/c
No. of formula units per unit cell, Z	4
No. of reflections measured	47293
No. of independent reflections	19023
R _{int}	0.0420
Final R_I values $(I > 2\sigma(I))$	0.0994
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.2754
Final R_1 values (all data)	0.1410
Final $wR(F^2)$ values (all data)	0.3090