Supporting Information for:

Switchable regioselectivity in $\mathrm{PIFA}-\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ mediated oxidativecoupling of meso-brominated $\mathrm{Ni}(\mathrm{II})$ porphyrin
Chuan-Mi Feng, Yi-Zhou Zhu,* Yun Zang, Yu-Zhang Tong and Jian-Yu Zheng*
State Key Laboratory and Institute of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
zhuyizhou@nankai.edu.cn; jyzheng@nankai.edu.cn

1. Instrumentations and Materials S2
2. Optimization of the oxidative coupling S2
3. The absorption spectra of various linked porphyrin dimers S3
4. The Procedure for the Synthesis of Singly Linked Porphyrin Dimers. S3
5. The Procedure for the Synthesis of meso- β, meso- β Doubly Fused Dimer S4
6. The Procedure for the Synthesis of meso-meso, $\beta-\beta$ Doubly Fused Dimer S5
7. The Procedure for the Synthesis of $\beta-\beta$, meso-meso, $\beta-\beta$ Triply Fused Dimer S5
8. $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of $\mathbf{2}$ S6
9. Demetalation of $\mathbf{2 , 3}$ and $\mathbf{6}$ S6
10. NMR Spectra of Directly Linked Porphyrin Dimers S8
11. Crystal Data for 2 S18

1. Instrumentations and Materials

All NMR solvents were used as received. Chemical shifts of NMR spectra were reported in ppm down field from internal $\mathrm{Me}_{4} \mathrm{Si}$. Crystal data were collected with a Agilent Technologies SuperNov a single-crystal diffractometer using a confocal monochromator with Mo K α radiation ($0.71073 \AA$) at 273 K . All UV-vis absorption spectra were recorded using a UV-3600 UV-Vis-NIR spectrophotometer (Shimadzu, Japan). High-resolution mass spectra (HRMS) were recorded on a VG ZAB-HS mass spectrometer under electron spray ionization (ESI) and a Bruker ultra fleXtreme MALDI-TOF/TOF spectrometer. All of the solvents were purified and distilled according to the standard procedure. The commercially obtained materials were used directly without further purification unless otherwise noted. PIFA (98%) and $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(98 \%)$ were purchased from Aldrich.

2. Optimization of the oxidative coupling

Table 1 Condition Screening of Oxidative Coupling of $\mathbf{1}$ with PIFA- $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{a}$

		yield $^{b}(\%)$			
entry	$\mathbf{1 / B F} \mathrm{BH}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} / \mathrm{PIFA}$ (equiv)	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	time
1	$1: 0: 0.5$	0	0	90	1 h
2^{c}	$1: 1: 0$	0	0	0	2 h
3	$1: 1: 0.5$	80	trace	0	30 min
4	$1: 1: 0.75$	54	25	0	30 min
5	$1: 1: 1$	0	75	0	30 min
6	$1: 1: 1.5$	0	68	0	30 min
7	$1: 0.5: 0.5$	80	trace	0	30 min
8	$1: 0.2: 0.5$	80	trace	0	1.5 h
9	$1: 0.5: 1.0$	0	75	0	30 min

${ }^{a}$ To the stirred mixture of $\mathbf{1}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a solution of PIFA in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 20 min under a nitrogen atmosphere. ${ }^{b}$ Isolated yield. ${ }^{c}$ Compound $\mathbf{1}$ was recovered.
Table S2. Reaction Conditions for Synthesizing Doubly and Triply Linked Porphyrin Dimers 5 and 6

		$\mathrm{yield}^{a}(\%)$	
entry	4/PIFA/ $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (equiv)	$\mathbf{5}$	$\mathbf{6}$
1	$1: 0.5: 0.5$	93	0
2	$1: 1: 0.5$	65	30
3	$1: 2: 0.5$	0	90
4	$1: 2.5: 0.5$	0	85

To a stirred solution of 4 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added PIFA and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ under a nitrogen atmosphere. ${ }^{a}$ Isolated yield.

3. The absorption spectra of various linked $\mathrm{Ni}(\mathrm{II})$ porphyrin dimer

Fig. S1. Ultraviolet-visible-infrared absorption spectra of fused porphyrin dimer $\mathbf{1}$ (red), $\mathbf{2}$ (blue), $\mathbf{3}$ (pink), 4 (green), 5 (yellow) and $\mathbf{6}$ (black) in CHCl_{3}.

4. The Procedure for the Synthesis of Singly Linked Porphyrin Dimers

For the meso- β linked 2
Under the nitrogen atmosphere, to a stirred solution of $\mathbf{1}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(4 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise a solution of PIFA ($13 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.2$ mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl_{3}, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). $\mathbf{2}$ ($39 \mathrm{mg}, 80 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.66(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}), 9.60-956(\mathrm{~m}, 3 \mathrm{H}), 9.07-9.04(\mathrm{~m}, 2 \mathrm{H})$, $8.91-8.86(\mathrm{~m}, 3 \mathrm{H}), 8.76(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{bs}, 3 \mathrm{H}), 8.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 72 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$): $\delta=9.66(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.62-9.58(\mathrm{~m}, 3 \mathrm{H}), 9.14(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.92(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=5.0=\mathrm{Hz}, 2 \mathrm{H}), 8.73-8.67$ (m, 3H), 8.47 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.12(\mathrm{~m}, 4 \mathrm{H}), 7.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (bs, 1H), 7.69 (s, 3H), 7.59 (s, $2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 32 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.24,149.09,149.04,145.90,144.42,143.90,143.85,143.78,143.62$, $143.56,143.34,143.05,142.43,142.38,142.24,141.38,139.55,139.35,137.88,133.72,133.68,133.64,133.20$, $133.16,133.12,133.07,132.52,129.27,128.90,128.74,121.46,121.32,121.21,121.12,120.54,112.16,106.74$, 102.76, 102.66, 35.00, 34.96, 31.67, 31.62.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{96} \mathrm{H}_{100} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: 1642.5080, found 1642.5073; Ultraviolet-visible absorption : (in $\left.\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right): 417\left(2.14 \times 10^{5}\right)$, $431\left(1.80 \times 10^{5}\right)$, $534\left(3.57 \times 10^{4}\right)$.

For the meso-meso linked 4

Under the nitrogen atmosphere, to a stirred solution of $\mathbf{1}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise a solution of PIFA ($13 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ over 20 min at RT. The reaction mixture was stirred for additional 50 min at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl_{3}, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). $\mathbf{4}(44 \mathrm{mg}, 90 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.58(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.85(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H})$, 8.02 (d, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.83 (d, $J=1.6 \mathrm{~Hz}, 8 \mathrm{H}$), 7.66 ($\mathrm{s}, 4 \mathrm{H}$), 1.41 (s, 72 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.00,146.84,143.95,142.72,142.26,139.41,134.08,133.54,133.10$, 133.00, 128.71, 121.62, 121.30, 115.83, 102.97, 34.94, 31.60.

HRMS (MALDI) m/z [M+H] calcd. for $\mathrm{C}_{96} \mathrm{H}_{100} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: 1643.5158, found 1643.5175; Ultraviolet-visible absorption : (in $\left.\mathrm{CHCl}_{3}, \lambda_{\text {max }} / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$: $421\left(1.64 \times 10^{5}\right), 449\left(1.84 \times 10^{5}\right)$, $539\left(4.20 \times 10^{4}\right)$.

5. The Procedure for the Synthesis of meso- β, meso- β Doubly Fused Dimer

Under the nitrogen atmosphere, to a stirred solution of $\mathbf{1}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(4 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added dropwise a solution of PIFA ($26 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.2$ mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl_{3}, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). $\mathbf{3}$ ($37 \mathrm{mg}, 75 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.41(\mathrm{~s}, 2 \mathrm{H}), 9.12-9.11$ (m, 4H), 8.96 (s, 2H), 8.74 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.44 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 4 \mathrm{H}), 7.84-7.65(\mathrm{~m}, 8 \mathrm{H}), 1.54(\mathrm{~s}, 36 \mathrm{H}), 1.51(\mathrm{~s}, 36 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.44,149.41,144.68,144.61,143.45,143.37,143.31,142.84,142.39$, $142.11,140.22,138.83,138.61,134.96,134.00,133.70,133.21,132.91,132.41,132.27,128.90,128.55,123.15$, $122.55,121.66,121.43,110.10,104.24,35.09,35.04,31.73,31.68$.
HRMS (ESI) m/z [M] calcd. for $\mathrm{C}_{96} \mathrm{H}_{98} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: 1640.4924, found 1640.4943; Ultraviolet-visible-infrared absorption: (in $\left.\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right): 419\left(0.76 \times 10^{5}\right), 498\left(0.59 \times 10^{5}\right), 533\left(0.56 \times 10^{5}\right), 684(1.16 \times$ $\left.10^{4}\right), 758\left(4.66 \times 10^{4}\right)$.

6. The Procedure for the Synthesis of meso-meso, $\boldsymbol{\beta}-\boldsymbol{\beta}$ Doubly Fused Dimer

Under the nitrogen atmosphere, a solution of $\mathbf{1}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ and PIFA ($26 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred at RT for 1 h . When the porphyrin monomer was completely consumed, $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(4$ $\mathrm{mg}, 0.03 \mathrm{mmol}, 0.5$ equiv) was added to the mixture. The mixture was stirred for additional 10 min at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl_{3}, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). $\mathbf{5}(41 \mathrm{mg}, 84 \%)$ was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.21(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.78(\mathrm{~s}, 2 \mathrm{H}), 8.55-8.51(\mathrm{~m}$, 2 H), 8.48 (d, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.76 (bs, 2H), 7.64 (bs, 2 H), 7.46 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.70-1.20$ ($\mathrm{m}, 72 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$): $\delta=9.23(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.18(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 21 \mathrm{H}), 8.84(\mathrm{~s}, 2 \mathrm{H}), 8.61(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.54-8.50(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{bs}, 2 \mathrm{H}), 7.63(\mathrm{bs}, 2 \mathrm{H}), 7.48$ (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 18 \mathrm{H}), 1.64(\mathrm{~s}, 18 \mathrm{H}), 1.35(\mathrm{~s}, 18 \mathrm{H}), 1.22(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.39,145.98,144.82,143.85,142.98,142.51,142.13,141.88,139.67$, $139.64,138.68,137.77,137.69,137.49,133.53,133.44,133.40,133.26,132.36,128.68,128.46,126.49,124.04$, $121.55,121.42,120.40,113.23,103.98,35.03,34.98,31.70,31.60$.
HRMS (ESI) m/z [M] calcd. for $\mathrm{C}_{96} \mathrm{H}_{98} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}: 1640.4924$, found 1640.4950; Ultraviolet-visible-infrared absorption: (in $\left.\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right): 412\left(0.63 \times 10^{5}\right), 487\left(0.96 \times 10^{5}\right), 526\left(0.72 \times 10^{5}\right), 738(4.07 \times$ 10^{4}).

7. The Procedure for the Synthesis of $\beta-\beta$, meso-meso, $\beta-\beta$ Triply Fused Dimer

Under the nitrogen atmosphere, a solution of $\mathbf{1}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ and PIFA ($65 \mathrm{mg}, 0.15 \mathrm{mmol}, 2.5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred at RT for 1 h . When porphyrin monomer was completely consumed, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(4 \mathrm{mg}$, $0.03 \mathrm{mmol}, 0.5$ equiv) was added to mixture. The mixture was stirred for additional 10 min at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl_{3}, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). 6 ($39 \mathrm{mg}, 80 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} /$ petroleum ether.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{V}_{\text {cdoc }} / \mathrm{V}_{\mathrm{Cs}}^{2}=4: 1, \mathrm{RT}$): $\delta=8.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~s}, 4 \mathrm{H}), 7.54(\mathrm{~s}$, $8 \mathrm{H}), 7.47(\mathrm{~s}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 72 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{V}_{\mathrm{cda}} / \mathrm{V}_{\mathrm{cs}}=4: 1, \mathrm{RT}\right): \delta=149.15,147.45,146.53,145.52,145.47,138.37,134.76,132.04$, 131.70, 127.65, 127.49, 125.01, 121.40, 113.31, 107.89, 34.81, 31.59.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{96} \mathrm{H}_{96} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: 1638.4767, found 1638.4787; Ultraviolet-visible-infrared absorption: (in $\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$): $411\left(1.58 \times 10^{5}\right), 572\left(1.23 \times 10^{5}\right), 651\left(1.13 \times 10^{4}\right), 864(1.72 \times$ $\left.10^{4}\right), 937\left(2.10 \times 10^{4}\right)$.

8. $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of 2

$2(40 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(33 \mathrm{mg}, 0.10 \mathrm{mmol}, 5$ equiv) and phenol ($9 \mathrm{mg}, 0.10 \mathrm{mmol}, 5$ equiv) were added to a 25 mL two-necked round bottom flask, then the flask was evacuated and backfilled with N_{2} for 3 times. DMF (5 mL) was added using a syringe, then the reaction was heated to $100^{\circ} \mathrm{C}$. The solution was continuously stirred at the temperature for 1.5 h . When compound 2 was completely consumed, the mixture was cooled down to room temperature, and water (5.0 mL) was added to precipitate the product. $8(33 \mathrm{mg}, 81 \%)$ was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.69(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.31-9.27(\mathrm{~m}, 3 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.88-8.78(\mathrm{~m}, 5 \mathrm{H}), 8.70-8.66(\mathrm{~m}, 3 \mathrm{H}), 8.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.08(\mathrm{~m}, 4 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.48-1.40(\mathrm{~m}$, 72 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=164.39,164.33,164.18,149.21,149.06,149.01,146.27,144.70,143.88$, $143.62,143.40,143.33,143.31,143.05,143.02,141.44,139.85,139.65,139.63,139.40,139.37,139.13,137.95$, $133.09,132.97,132.79,132.69,132.10,132.00,129.62,129.30,128.90,128.76,128.30,128.13,128.09,121.80$, 121.77, 121.36, 121.22, 120.99, 120.91, 120.35, 116.49, 111.63, 106.23, 35.01, 34.97, 31.69, 31.64.

HRMS (MALDI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{108} \mathrm{H}_{110} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$: 1667.7486, found 1667.7500; Ultraviolet-visible absorption : (in $\left.\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$: $419\left(2.19 \times 10^{5}\right), 432\left(2.03 \times 10^{5}\right)$, $530\left(4.20 \times 10^{4}\right)$.

9. Demetalation of 2,3 and 6

For meso- β singly linked dimer 7

Porphyrin dimer $2(82 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ in a 100 mL round-bottomed flask. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$, and then treated with 0.5 mL of $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TFA}(1: 10) 30 \mathrm{~min}$. After neutralization by aqueous NaHCO_{3}, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed bybrine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). 7 (43 $\mathrm{mg}, 57 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=9.89(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.81-9.74(\mathrm{~m}, 4 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 9.00(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.06-7.99(4 \mathrm{H}, \mathrm{m}), 7.79-$ $7.72(4 \mathrm{~m}, 4 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 36 \mathrm{H}), 1.49-1.47(\mathrm{~m}, 36 \mathrm{H}),-2.30(\mathrm{~s}, 2 \mathrm{H}),-2.55(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.41,149.39,149.27,149.25,149.20,149.02,148.91,148.87,146.27$, $144.33,140.72,140.43,140.27,138.73,138.64,133.91,133.81,132.41,132.32,132.09,131.93,131.67,131.30$, $131.02,130.52,130.47,130.40,129.97,129.95,129.85,122.65,122.43,121.97,121.44,121.26,113.64,107.28$, 103.66, 103.46, 35.05, 35.03, 31.72, 31.69.

HRMS (MALDI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{96} \mathrm{H}_{104} \mathrm{Br}_{2} \mathrm{~N}_{8}$: 1529.6807, found 1529.6827; Ultraviolet-visible absorption : (in $\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$): $423\left(3.12 \times 10^{5}\right), 438\left(2.65 \times 10^{5}\right), 539\left(4.40 \times 10^{4}\right), 557\left(2.50 \times 10^{4}\right), 597$ $\left(1.75 \times 10^{4}\right), 653\left(12.5 \times 10^{4}\right)$.

For fused dimers $\mathbf{H}_{4}-\mathbf{3}$ and $\mathbf{H}_{4}-6$

Scheme S1. Demetalation reaction of $\mathbf{3}$ and 6
Porphyrin dimer 3 ($50 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ in a 50 mL round-bottomed flask. The solution was treated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL}) 30 \mathrm{~min}$ at RT . After neutralization by aqueous NaHCO_{3}, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed bybrine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed undervacuum. The crude residue was purified by column chromatography (silica-gel). $\mathbf{H}_{4}-\mathbf{3}$ ($35 \mathrm{mg}, 76 \%$) was obtained after recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$.

\mathbf{H}_{4}-3:

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}\right): \delta=9.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.26-9.20(\mathrm{~m}, 4 \mathrm{H}), 9.10(\mathrm{~s}, 2 \mathrm{H}), 8.62-8.56(\mathrm{~m}, 4 \mathrm{H})$, $8.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H})$, $1.59-1.56(\mathrm{~m}, 72 \mathrm{H}), 0.52(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$): $\delta=149.33,149.25,147.07,146.93,146.10,145.79,145.26,145.12,144.51$, $143.41,143.23,142.54,142.31,140.24,140.04,138.37,137.65,135.61,135.50,135.19,129.98,129.88,124.96$, 124.19, 121.62, 121.41, 105.43, 94.92, 35.17, 35.11, 31.83, 31.74.

HRMS (MALDI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{96} \mathrm{H}_{102} \mathrm{Br}_{2} \mathrm{~N}_{8}$: 1527.6651, found 1527.6655; Ultraviolet-visible-infrared absorption : (in $\left.\mathrm{CHCl}_{3}, \lambda_{\text {max }} / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$: $425\left(1.31 \times 10^{5}\right), 501\left(6.70 \times 10^{4}\right), 545\left(5.45 \times 10^{4}\right), 616(4.35 \times$ $\left.10^{4}\right), 821\left(5.50 \times 10^{4}\right)$.
\mathbf{H}_{4}-6: Following the same procedure for demetalation of $\mathbf{3}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{V}_{\mathrm{cdc}} / \mathrm{V}_{\mathrm{cs}}=4: 1, \mathrm{RT}\right): \delta=8.46-8.38(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 6 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 12 \mathrm{H}), 1.46-$ 1.42 (m, 76H)
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{V}_{\mathrm{cdc} /} / \mathrm{V}_{\mathrm{CS}}=4: 1, \mathrm{RT}\right): \delta=148.94,147.60,146.65,145.47,145.45,138.83,133.97,128.95$, 128.18, 125.84, 125.81, 125.53, 121.33, 114.28, 107.83, 34.73, 31.57.

HRMS (MALDI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{96} \mathrm{H}_{100} \mathrm{Br}_{2} \mathrm{~N}_{8}$: 1525.6494, found 1525.6508; Ultraviolet-visible-infrared absorption : $\left(\right.$ in $\left.\mathrm{CHCl}_{3}, \lambda_{\max } / \mathrm{nm}, \varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right): 415\left(1.19 \times 10^{5}\right), 482\left(5.90 \times 10^{4}\right), 565\left(1.24 \times 10^{5}\right), 1044(2.73 \times$ $\left.10^{4}\right), 1090\left(3.07 \times 10^{4}\right)$.

10. NMR Spectra of Directly Linked Porphyrin Dimers

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.-40^{\circ} \mathrm{C}\right)$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.-40^{\circ} \mathrm{C}\right)$.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(400 \mathrm{MHz}, \mathrm{V}_{\mathrm{CDCl}_{3}} / \mathrm{V}_{\mathrm{CS}_{2}}=4: 1\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}\left(100 \mathrm{MHz}, \mathrm{V}_{\mathrm{CDCl}} / \mathrm{VCs}_{2}=4: 1\right.$ at $\left.25^{\circ} \mathrm{C}, \delta\left({ }^{13} \mathrm{Ccs}_{2}\right)=192.51\right)$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{H 4 - 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{H 4 - 3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{H 4 - 6}\left(400 \mathrm{MHz}, \mathrm{V}_{\mathrm{cdc}}^{2} / \mathrm{VCs}_{2}=4: 1\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{H 4 - 6}\left(100 \mathrm{MHz}, \mathrm{V}_{\mathrm{CDCl}} / \mathrm{V}_{\mathrm{CS}}=4: 1\right.$ at $\left.25^{\circ} \mathrm{C}, \delta\left({ }^{13} \mathrm{Ccs}_{2}\right)=192.45\right)$.

11. Crystal Data for 2

Compound reference	$\mathbf{2}$
Chemical formula	$\mathrm{C}_{96} \mathrm{H}_{100} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{Ni}_{2}$
Formula Mass	1643.02
Crystal system	Monoclinic
a / \AA	$38.7(10)$
b / \AA	$9.0001(13)$
c / \AA	$33.3200(3)$
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	109.69
$\gamma /{ }^{\circ}$	90.00
Unit cell volume $/ \AA^{3}$	10927
Temperature $/ \mathrm{K}$	$273(2)$
Space group	$P 21 / c$
4	
No. of formula units per unit cell, Z	47293
No. of reflections measured	19023
No. of independent reflections	0.0420
$R_{\text {int }}$	0.0994
Final R_{l} values $(I>2 \sigma(I))$	0.2754
Final $w R\left(F^{2}\right)$ values $(I>2 \sigma(I))$	0.1410
Final R_{l} values (all data)	0.3090
Final $w R\left(F^{2}\right)$ values (all data)	

