Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

An efficient route to synthesize isatins by metal-free, iodine-catalyzed sequential C(sp³)–H oxidation and intramolecular C–N bond formation of 2'-aminoacetophenones

Venkatachalam Rajeshkumar,* Selvaraj Chandrasekar and Govindasamy Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai,

Tamilnadu-600 036. India

Email: gsekar@iitm.ac.in

Table of contents	Page no.
Copies of ¹ H and ¹³ C-NMR spectra of 2a–q	2–20
Copies of ¹ H and ¹³ C-NMR spectra of 3-hydroxy-2-oxindoles 5–7	21–23
Copies of ¹ H and ¹³ C-NMR spectra of oxindoles 8–10	24–26

Figure S1. ¹H NMR spectrum of compound 2a (400 MHz, CDCl₃)

Figure S2. ¹³C NMR spectrum of compound 2a (100 MHz, CDCl₃)

Figure S4. ¹³C NMR spectrum of compound 2b (100 MHz, CDCl₃)

Figure S6. ¹³C NMR spectrum of compound **2c** (100 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of compound 2d (100 MHz, CDCl₃)

Figure S9. ¹H NMR spectrum of compound 2e (400 MHz, CDCl₃)

Figure S10. ¹³C NMR spectrum of compound 2e (100 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of compound 2f (100 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of compound 2g (100 MHz, CDCl₃)

Figure S15. ¹H NMR spectrum of compound **2h** (400 MHz, DMSO-*d*₆)

Figure S16. ¹³C NMR spectrum of compound 2h (100 MHz, DMSO-*d*₆)

Figure S20. ¹³C NMR spectrum of compound 2j (100 MHz, CDCl₃)

Figure S22. ¹³C NMR spectrum of compound 2k (100 MHz, CDCl₃)

Figure S23. ¹H NMR spectrum of compound 2l (400 MHz, CDCl₃)

Figure S24. ¹³C NMR spectrum of compound 2l (100 MHz, CDCl₃)

Figure S25. ¹H NMR spectrum of compound 2m (400 MHz, CDCl₃)

Figure S27. ¹H NMR spectrum of compound 2n (400 MHz, CDCl₃)

Figure S28. ¹³C NMR spectrum of compound 2n (100 MHz, CDCl₃)

Figure S30. ¹³C NMR spectrum of compound 20 (100 MHz, CDCl₃)

Figure S32. ¹³C NMR spectrum of compound **2p** (100 MHz, CDCl₃)

Figure S34. ¹³C NMR spectrum of compound 3 (100 MHz, CDCl₃)

Figure S37. ¹H NMR spectrum of compound 2q (400 MHz, DMSO-*d*₆)

m	9	9	0000	
~	4	9	7 5 9 2	0.04.001-00
m	9	m	1 1 10	
•	•	•		000000000
0	0	00	4010	
- C	ŝ	m	N N H H	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	-	-		4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			$\setminus / \mid \mid$	

Figure S40. ¹³C NMR spectrum of compound 5 (100 MHz, DMSO-*d*₆)

Figure S42. ¹³C NMR spectrum of compound 6 (100 MHz, CDCl₃)

Figure S44. ¹³C NMR spectrum of compound 7 (100 MHz, CDCl₃)

Figure S46. ¹³C NMR spectrum of compound 8 (100 MHz, CDCl₃)

Figure S48. ¹³C NMR spectrum of compound 9 (100 MHz, CDCl₃)

Figure S50. ¹³C NMR spectrum of compound 10 (100 MHz, CDCl₃)