Supporting Information

Generalized access to fluorinated β-keto amino compounds through asymmetric additions of α,α-difluoroenolates to CF₃-sulfinylimine

Chen Xie, Lingmin Wu, Haibo Mei, Vadim A. Soloshonok, Jianlin Han* and Yi Pan

Page Number

1.	19F-NMR spectra of crude reaction mixture for optimization of the reaction conditions
	(Table 1)
2.	NMR spectra of compounds 10-13S12
3.	19F NMR spectra for the study of the configurational stability

1. ¹⁹F-NMR spectra of crude reaction mixture for optimization of the reaction conditions

(Table 1)

¹⁹F-NMR spectra of crude reaction mixture for Entry 1 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 2 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 3 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 4 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 5 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 6 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 7 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 8 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 9 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 10 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 11 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 12 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 13 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 14 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 15 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 16 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 17 of Table 1

¹⁹F-NMR spectra of crude reaction mixture for Entry 18 of Table 1

2. NMR spectra of compounds 10-13

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10b**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10c**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10d**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10e**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10f**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10g**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10h**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10i**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10j**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10**k

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10m**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **100**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **10p**

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of **11**

 ^1H NMR, ^{13}C NMR and ^{19}F NMR spectra of 12

 ^1H NMR, ^{13}C NMR and ^{19}F NMR spectrum of 13

3. ¹⁹F NMR spectra for the study of the configurational stability

The product (10i) is also stable with TEA and DABCO in CHCl₃.

(c (product) = 0.01 mol/L, c (TEA or DABCO) = 1.0 mol/L)

The product (10i) is unstable with DBU in $CHCl_3$, the solution turned from colorless to light yellow immediately when DBU was added, and the product changed shown by TLC.

S52