Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Reaction of β -Enaminones and Acetylene Dicarboxylates: Synthesis of Substituted 1,2-Dihydropyridinones[†]

Vemu Nagaraju,^a Dalovai Purnachander,^{a,b} N. S. V. M. Rao Mangina,^{a,b} Surisetti Suresh,^c Balasubramaniam Sridhar^d and Galla V. Karunakar^{*a,b}

^aCrop Protection Chemicals Division,
CSIR-Indian Institute of Chemical Technology,
Hyderabad, 500007, India.
gallavk@iict.res.in
^bAcademy of Scientific and Innovative Research,
New Delhi, 110001, India
^cOrganic and Biomolecular Chemistry Division,
CSIR-Indian Institute of Chemical Technology,
Hyderabad, 500007, India.
^dCenter for X-ray Crystallography,
CSIR-Indian Institute of Chemical Technology,
Hyderabad, 500007, India.

Contents:

1.1	General	S2
1.2	General procedure for synthesis of 1,2-dihydropyridine-4-carboxylates (3a-z).	S 3
1.3	Typical procedure for synthesis of diethyl 2-((<i>E</i>)-1-(2-(<i>1H</i> -indol-3-yl)ethylamino)	
	-3-oxo-1,3-diphenylprop-1-en-2-yl)maleate (4).	S 3
1.4	Typical procedure for synthesis of 1,2-dihydropyridine-4-carboxylates (3a) from 4.	S4
1.5	General procedure for synthesis of 1,2-dihydropyridine-4-carboxylates (6a-g).	S 4
1.6	Spectroscopic data of substituted enaminones (1a-u)	S5
1.7	Spectroscopic data of substituted 1,2-dihydropyridine-4-carboxylates (3a-z)	S12
1.8	Spectroscopic data of intermediate 4	S22
1.9	Spectroscopic data of substituted enaminones (5a-d)	S22
1.10	Spectroscopic data of substituted 1,2-dihydropyridine-4-carboxylates (6a-g)	S23
1.11	Copies of ¹ H and ¹³ C NMR spectra (1a-u, 3a-z, 4, 5a-d and 6a-g)	S26
1.12	X-ray crystallography information of compound 3h	S86
Electro	onic Supplementary Material (ESI) for Chemical Communications	

1.1 General

Reactions were carried out in oven dried reaction flasks under nitrogen atmosphere and also solvents and reagents were transferred by oven-dried syringes to ambient temperature. TLC was performed on Merck silica gel aluminium sheets using UV as a visualizing agent and a 0.5% aqueous potassium permanganate solution and heat as developing agents. Solvents were removed under reduced pressure. Columns were packed as slurry of silica gel in hexane and ethyl acetate solvent mixture. The elution was assisted by applying pressure with an air pump. ¹³C NMR spectra were recorded on 75 and 125 MHz spectrometers. ¹HNMR spectra were recorded on 300 and 500 MHz spectrometers in appropriate solvents using TMS as internal standard. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doublet, t = triplet, m = multiplet. All reactions were performed under nitrogen atmosphere with freshly distilled and dried solvents. All solvents were distilled using standard procedures. Unless otherwise noted, reagents were obtained from Aldrich, Alfa Aesar, and TCI used without further purification. Substituted β -enaminones (**1a-p**) were prepared by following the reported procedure.¹

^{1. (}a) A. S. Karpov and T. J. J. Müller, *Org. Lett.*, 2003, **5**, 3451; (b) A. S. Karpov and T. J. J. Müller, *Synthesis*, 2003, 2815, (c) H. Yamamoto and K. Maruoka, *J. Am. Chem. Soc.* 1981, **103**, 6133; (d) T. Naka and K. Koide, *Tetrahedron Lett.*; 2003, **44**, 443; (e) R. J. Cox , D. J. Ritson, T. A. Dane, J. Berge, J. P. H. Charmant and A. Kantacha, *Chem.Commun.*, 2005, 1037; (f) G. -W. Wang and C. –B. Miao, *Green Chem.*, 2006, **8**, 1080.

1.2: General procedure for synthesis of 1,2-dihydropyridine-4-carboxylates (3a-z).

In a 25 mL round-bottomed two-neck flask compound **1a** (0.1g, 0.273 mmol, 1 equiv.) was taken then dissolved in acetonitrile (2 mL) to this reaction mixture compound **2a** (0.046g 0.273 mmol, 1 equiv.) was added and allowed to stir at 70 °C for 3 h under nitrogen atmosphere (yellow colour reaction mass was observed in the reaction flask). This reaction mixture was allowed to room temperature. Progress of the reaction was monitored by TLC. Then Cs_2CO_3 (0.133g, 0.409 mmol, 1.5 equiv.) was added portion wise at room temperature to this reaction mixture. Reaction mixture colour was changed from yellow to brown colour. This reaction mixture was allowed to stir at 30 °C for 9 h. Progress of the reaction mass was extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with aqueous brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/3) to give pure 1,2-dihydropyridine-4-carboxylates **3a**.

1.3. Typical procedure for synthesis of diethyl 2-((E)-1-(2-(1H-indol-3-yl)ethylamino)-3-oxo-1,3-diphenylprop-1-en-2-yl)maleate (4).

In a 25 mL round-bottomed two-neck flask compound **1a** (0.1g, 0.273 mmol, 1equiv.) was taken then dissolved in acetonitrile (2 mL) after that compound **2a** (0.046gm 0.273 mmol, 1 equiv.) was added and allowed to stir the reaction mixture at 70 °C for 3 h under nitrogen atmosphere. Progress of the reaction was monitored by TLC. After completion of the reaction, acetonitrile solvent was removed in vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/2) to give (87%) pure addition product **4**.

1.4. Typical procedure for synthesis of 1,2-dihydropyridinone (3a) from 4.

In a 25 mL round-bottomed two-neck flask compound **4** (0.1g 0.208 mmol, 1 equiv.) was added and dissolved in acetonitrile (2 mL) solvent, to this reaction mixture K_2CO_3 (0.038g, 0.279 mmol, (1.5 equiv.) was added portion wise at room temperature under nitrogen atmosphere, reaction mass colour was changed from yellow to brown. Progress of the reaction was monitored by TLC. After completion of the reaction (9h), 3 mL of water was added to this reaction mixture. Reaction mass was extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with aqueous brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/3) to give pure 1,2-dihydropyridine-4carboxylate **3a**.

1.5: General procedure for synthesis of 1,2-dihydropyridinones (6a-f) from enaminone esters derivatives (5a-e).

In a 25 mL round-bottomed two-neck flask compound carboxylate substituted enaminone **5a** (0.1g, 0.355 mmol, 1 equiv.) was taken then dissolved in acetonitrile (2 mL) to this reaction mixture compound **2a** (0.06g, 0.355 mmol, 1 equiv.) was added and allowed to stir at 70 °C for 3 h under nitrogen atmosphere (yellow colour reaction mass was observed in the reaction flask). This reaction mixture was allowed to room temperature. Progress of the reaction was monitored by TLC. Then Cs_2CO_3 (0.173g, 0.533 mmol, 1.5 equiv.) was added portion wise at room temperature to this reaction mixture was allowed to stir at 30 °C for 9 h. Progress of the reaction was monitored by TLC. After completion of the reaction, 3 mL of water was added to the reaction mixture. Reaction mass was extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with aqueous brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/3) to give pure 1,2-dihydropyridine-4-carboxylates **6a**. The similar procedure was followed for the synthesis of all 2-pyridinone derivatives (**6a-g**).

1.6 Spectroscopic data for enaminone derivatives (1a-u)

R_f: 0.3; Hexane: Ethyl acetate mixture (10:1); Yield: 80%; white solid; Melting Point: 130-

132 °C; ¹H NMR (300 MHz, CDCl₃): δ 11.35 (brs, 1H), 8.09 (brs, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.44-7.29 (m, 3H), 7.28-7.22 (m, 4H), 7.16 (m, 1H), 7.09-6.98 (m, 2H), 6.89 (d, J = 8.3 Hz, 2H), 5.68 (s, 1H), 3.84 (s, 3H), 3.48 (t, J = 6.7 Hz, 2H), 3.00 (t, J = 6.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 187.6, 166.3, 161.7, 136.2, 135.8, 133.1, 129.1, 128.8, 128.3, 127.6, 127.1, 122.4, 121.9, 119.2, 118.3, 113.3, 112.3, 111.1, 93.0, 55.3, 45.2, 27.0; HRMS (ESI): calcd for C₂₆H₂₅N₂ O₂ [M+H]⁺ 397.1910; found 397.1911.

(E)-3-(2-(1H-indol-3-yl)ethylamino)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one

R_f: 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 87%; white solid; Melting Point: 128-130 °C; ¹H NMR (500 MHz, CDCl₃): δ 11.4 (brs, 1H), 8.08 (brs, 1H), 7.92-7.83 (m, 2H), 7.45-7.13 (m, 8H), 7.10-6.99 (m, 4H), 5.64 (s, 1H), 3.51 (q, J = 6.9 Hz, 2H), 3.01 (t, J = 6.9Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 185.5, 166.1, 135.7, 134.5, 128.5, 128.4, 128.3, 127.6, 126.6, 126.2, 122.1, 120.5, 117.9, 117.2, 114.3, 114.0, 110.7, 110.2, 92.0, 44.5, 26.2; HRMS (ESI): calcd for C₂₅H₂₂FN₂O [M+H]⁺ 385.1710; found 385.1718.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:1); Yield: 75%; white solid; Melting Point: 177-180 °C; ¹H NMR (500 MHz, CDCl₃): δ 11.63 (brs, 1H), 8.30-8.18 (m, 3H), 7.97 (d, J = 8.3 Hz, 2H), 7.36-7.28 (m, 2H), 7.22-7.12 (m, 5H), 7.11-6.99 (m, 2H), 5.68 (s, 1H), 3.58 (q, J = 6.7 Hz, 2H), 3.02 (t, J = 6.7 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 184.9, 168.2, 148.7, 146.0, 139.9, 136.2, 132.0, 129.1, 127.8, 127.3, 123.4, 122.5,122.0, 119.3, 118.3, 111.9, 111.2, 93.7, 45.4, 26.7, 21.3; HRMS (ESI): calcd for C₂₆H₂₄N₃O₃ [M+H]⁺ 426.1812; found 426.1813. P NH 1f

(E)-3-(phenethylamino)-1,3diphenylprop-2-en-1-one

R_f: 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 86%; pale yellow semisolid; ¹H NMR (500 MHz, CDCl₃): δ 11.45 (brs, 1H), 7.92-7.87 (m, 2H), 7.45-7.36 (m, 6H), 7.29-7.18 (m, 5H), 7.10-7.06 (m, 2H,), 5.73-5.71 (m, 1H), 3.44 (q, J = 7.7 Hz, 2H), 2.85 (t, J = 7.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 188.3, 166.7, 140.2, 138.2, 135.5, 130.6, 129.2, 128.7, 128.4, 128.3, 128.1, 127.5, 126.9, 126.5, 93.5, 46.3, 37.5; HRMS (ESI): calcd for C₂₃H₂₂NO [M+H]⁺ 328.1695; found 328.1696.

 R_{f} : 0.5; Hexane: Ethyl acetate mixture (10:1); Yield: 79%; white solid; Melting Point: 75-78 ^oC; ¹H NMR (500 MHz, CDCl₃): δ 11.67 (brs, 1H), 7.97-7.86 (m, 2H), 7.49 (m, 5H), 7.36-7.19 (m, 5H), 7.06 (t, *J* = 8.6 Hz, 2H), 5.78 (s, 1H), 4.42 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 187.1, 166.8, 165.4, 138.2, 136.3, 135.2,129.5, 129.3, 128.6, 128.5,127.6, 126.8, 115.1, 114.9, 93.4, 48.4; HRMS (ESI): calcd for C₂₂H₁₉NFO [M+H]+332.1445; found 332.1447.

 R_f : 0.5; Hexane: Ethyl acetate mixture (10:1); Yield: 80%; white solid; Melting Point: 90-94 °C; ¹H NMR (500 MHz, CDCl₃): δ 11.88 (brs, 1H), 8.24 (d, *J* = 9.0 Hz, 2H), 8.03 (d, *J* = 8.8 Hz, 2H), 7.51-7.44 (m, 3H), 7.43-7.39 (m, 2H,), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 7.25-7.21 (m, 2H), 5.82 (s, 1H), 4.47 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 185.5, 168.0, 148.9, 145.5, 137.7, 134.7, 129.9, 128.8, 128.7, 127.9, 127.6, 127.5, 126.9, 123.4, 94.0, 48.6; HRMS (ESI): calcd for C₂₂H₁₉N₂O₃ [M+H]⁺ 359.1390; found 359.1393.

NH (*E*)-3-(cyclohexylamino)-1-(4-fluorophenyl) _______-3-phenylprop-2-en-1-one

1i

1j

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 82%; white solid; Melting Point: 80-83 ^oC; ¹H NMR (500 MHz, CDCl₃): δ 11.47 (brs, 1H), 7.92-7.85 (m, 2H), 7.49-7.37 (m, 5H), 7.05 (t, *J* = 8.6 Hz, 2H), 5.64 (s, 1H), 3.30 (m, 1H), 1.86-1.67 (m, 4H) 1.54-1.36 (m, 2H), 1.29-1.09 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 166.0, 129.3, 129.1, 129.0, 128.4, 127.3, 115.1, 114.8, 92.8, 52.7, 34.2, 25.2, 24.2; HRMS (ESI): calcd for C₂₁H₂₃FNO [M+H]⁺ 324.1758; found 324.1759.

(*E*)-3-(butylamino)-1-(naphthalen-1-yl) -3-phenylprop-2-en-1-one

 R_f : 0.5; Hexane: Ethyl acetate mixture (10:1); Yield: 84%; yellow colour semisolid; ¹H NMR (500 MHz, CDCl₃): δ 11.43 (br, 1H), 8.54 (d, *J* = 7.9 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 2H), 7.67 (d, *J* = 6.9 Hz, 1H), 7.56-7.39 (m, 8H), 5.54 (s, 1H), 3.27 (q, *J* = 6.7 Hz, 2H) 1.67-1.55 (m, 2H), 1.48-1.34 (m, 2H), 0.9 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.3, 166.6, 140.3, 135.5, 133.7, 130.2, 129.5, 129.3, 128.4, 128.0, 127.6, 126.3, 126.1, 125.7, 125.3, 124.7, 97.8, 44.5, 32.8, 19.8, 13.6; HRMS (ESI): calcd for C₂₃H₂₄NO [M+H]⁺ 330.1852; found 330.1852.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 80%; yellow colour semisolid; ¹H NMR (300 MHz, CDCl₃): δ 11.32 (brs, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.33-7.21 (m, 4H), 6.88 (d, J = 8.8 Hz, 2H), 5.69 (s, 1H), 3.83 (s, 3H), 3.20 (q, J = 6.7 Hz, 2H), 2.41 (s, 3H), 1.61-1.48 (m, 2H), 1.44-1.29 (m, 2H), 0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 187.2, 166.6, 161.5, 139.3, 133.0, 129.0, 128.7, 127.6, 113.2, 92.6, 55.2, 44.3, 32.8, 21.3, 19.8, 13.6; HRMS (ESI): calcd for C₂₁H₂₆NO₂ [M+H]⁺ 324.1958; found 324.1958.

 R_f : 0.3; Hexane: Ethyl acetate mixture (10:1); Yield: 79%; white solid; Melting Point: 81-84 ^oC; ¹H NMR (500 MHz, CDCl₃): δ 11.62 (brs, 1H), 8.22 (d, *J* = 8.6 Hz, 2H), 8.01 (d, *J* = 8.2 Hz. 2H), 7.50-7.44 (m, 3H), 7.43-7.37 (m, 2H), 5.72 (s, 1H), 3.26 (q, *J* = 6.7 Hz, 2H) 1.62-1.53 (m, 2H), 1.43-1.33 (q, 2H), 0.88 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 184.9, 168.1, 148.8, 145.8, 135.0, 129.7, 128.6, 127.8, 127.4, 123.4, 93.4, 44.6, 32.5, 19.8, 13.5; HRMS (ESI): calcd for C₁₉H₂₁N₂O₃ [M+H]⁺325.1546; found 325.1548.

NH

R_f: 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 80%; pale brown colour semisolid; ¹H NMR (500 MHz, CDCl₃): δ 11.40 (brs, 1H), 7.92-7.87 (m, 2H), 7.47-7.43 (m, 3H),7.42-7.39 (m, 2H), 7.05 (t, J = 8.6 Hz, 2H), 5.68 (s, 1H), 3.17 (q, J = 6.7 Hz, 2H), 1.64-1.55 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 186.6, 167.0, 135.6, 129.4, 129.2, 129.1, 128.4, 127.6, 115.0, 114.9, 92.7, 46.4, 23.9, 11.2; HRMS (ESI): calcd for C₁₈H₁₉FNO [M+H]⁺ 284.1445; found 284.1445.

(E)-3-(4-fluorophenyl)-3-(propylamino)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one

R_f: 0.3; Hexane: Ethyl acetate mixture (10:1); Yield: 81%; brown colour semisolid; ¹H NMR (500 MHz, CDCl₃): δ 11.5 (brs, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.45-7.36 (m, 2H), 7.16 (t, J = 8.6 Hz, 2H), 5.70 (s, 1H), 3.24-3.15 (m, 2H), 1.70-1.55 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 186.4, 166.6, 165.0, 161.7, 143.3, 129.7, 129.6, 127.2, 125.2, 115.9, 115.6, 93.3, 46.6, 23.9, 11.3; HRMS (ESI): calcd. for C₁₉H₁₈F₄NO [M+H]⁺ 352.1312; found 352.1311

NMR (500 MHz, CDCl₃): δ 11.32 (brs,1H), 7.82 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.3 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 6.5 Hz, 2H), 5.76 (s,1H), 2.91 (d, J = 5.3 Hz, 3H), 2.40 (s, 3H), 1.32 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃): δ 188.0, 167.5, 153.8, 139.5, 137.6, 132.5, 129.1, 127.6, 126.7, 125.0, 93.2, 34.7, 31.4, 31.1, 21.2; HRMS (ESI): calcd. for C₂₁H₂₆NO [M+H]⁺ 308.2014; found 308.2019.

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:1); Yield: 83%; white solid; Melting Point: 105-108 °C; ¹H NMR (300 MHz, CDCl₃): δ 11.68 (brs, 1H), 8.36 (s, 1H), 8.25 (brs, 1H), 8.01-7.78 (m, 4H), 7.60 (d, *J* =7.5 Hz, 1H), 7.55-7.44 (m, 2H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.23-7.09 (m, 3H), 5.78 (s, 1H), 3.66 (q, *J* = 6.7 Hz, 2H), 3.14 (t, *J* = 6.7 Hz, 2H) 2.25 (t, *J* = 7.5 Hz, 2H), 1.61-1.48 (m, 2H), 1.41-1.19 (m, 6H), 0.89 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 187.4, 169.0, 138.0, 136.2, 134.3, 132.8, 129.0, 127.7, 127.5, 126.9, 126.8, 126.0, 124.1, 122.6, 122.0, 119.4, 118.3, 112.2, 111.3, 91.3, 43.5, 32.5, 31.4, 29.1, 28.0, 26.3, 22.5, 14.0; HRMS (ESI): calcd for C₂₉H₃₃N₂O [M+H]⁺ 425.2587; found 428.2581.

 R_{f} : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 91%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 11.35 (brs, 1H), 7.81 (d, *J* = 8.3Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H,), 7.33 (d, *J* = 8.0 Hz, 2H)7.24 (d, *J* = 7.7 Hz, 2H), 5.74 (s, 1H), 3.68 (t, *J* = 5.9 Hz, 2H), 3.35 (q, *J* = 6.1Hz, 2H), 2.41 (s, 3H), 1.33 (s, 9H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 188.1, 166.6, 153.8, 139.4, 137.7, 132.8, 129.0, 127.8, 126.8, 125.0, 93.6, 62.8, 46.7, 31.2, 25.8, 21.3, 34.7, 18.3, -5.4; HRMS (ESI): calcd for C₂₈H₄₂NO₂Si [M+H]⁺ 452.2990; found 452.2979.

 R_{f} : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 89%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 11.3 (brs, 1H), 7.88 (q, *J* = 5.4 Hz, 2H), 7.46-7.41 (m, 5H), 7.05 (t, *J* = 8.6 Hz, 2H), 5.69 (s, 1H), 3.68 (t, 2H, *J* = 5.7Hz), 3.34 (q, 2H, *J* = 5.9 Hz), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 186.8, 166.8, 135.5, 129.4, 129.2, 129.1, 128.4, 127.8, 115.0, 114.8, 93.2, 62.7, 46.7, 25.8, 18.2, -5.4. HRMS (ESI): calcd for C₂₃H₃₁FNO₂Si [M+H]⁺ 400.2102; found 400.2101.

(E)-3-(2-(*tert*-butyldimethylsilyloxy)ethylamino) -1-(2,3-dichlorophenyl)-3-phenylprop-2-en-1-one

 R_f : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 91%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 11.16 (brs, 1H), 7.45-7.40 (m, 6H), 7.34 (d,d, 1H, *J* = 1.5, 7.6 Hz), 7.18 (t, 1H, *J* = 7.93 Hz), 5.33 (s, 1H), 3.71 (t, 2H, *J* = 5.6 Hz), 3.39 (q, 2H, *J* = 5.6 Hz), 0.9 (s, 9H), 0.08 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 188.3, 167.0, 143.7, 134.8, 133.4, 130.3, 129.6, 129.1, 128.4, 127.8, 127.1, 126.9, 97.2, 62.5, 46.9, 25.8, 18.3, -5.43; HRMS (ESI): calcd for C₂₃H₃₀O₂NCl₂Si [M+H]⁺ 450.1393; found 450.1391.

Ph (E)-2-(benzylamino)-1,4-diphenylbut-Ph NH 2-ene-1,4-dione 1t

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 85%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 11.12 (brs, 1H), 8.01 (d, 2H, J = 7.3 Hz), 7.84 (d, 2H, J = 7.3 Hz), 7.63 (t, 1H, J = 7.3 Hz), 7.48 (t, 2H, J = 7.6 Hz), 7.38 (t, 2H, J = 7.1Hz), 7.30-7.20 (m, 6H), 5.82 (s, 1H), 4.38 (d, 2H, J = 6.2Hz); ¹³C NMR (125 MHz, CDCl₃): δ 191.6, 190.0, 160.4, 139.2, 137.1, 134.6, 134.4, 131.3, 130.0, 128.8, 128.6, 128.2, 127.7, 127.5, 127.1, 91.1, 48.7; HRMS (ESI): calcd for C₂₃H₂₀NO₂[M+H]⁺ 342.1487; found 342.1488.

 R_f : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 85%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 11.45 (brs, 1H), 8.00 (d, 2H, *J* = 8.2 Hz,), 7.66 (d, 2H, *J* = 8.2 Hz), 7.44 -7.39 (m, 2H), 7.16 (t, 2H, *J* = 8.5 Hz), 5.83 (s, 1H), 4.20 (q, 2H, *J* = 7.1 Hz), 3.96 (d, 2H, *J* = 6.2 Hz), 1.26 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 187.5, 169.1, 165.7, 161.8, 142.8, 129.7, 129.6, 127.4, 125.2, 125.1, 116.0, 115.8, 94.7, 61.6, 46.3; HRMS (ESI): calcd for C₂₀H₁₇F₄NO₃ [M+H]⁺ 396.1168, found 396. 1173.

1.7 Spectral data of pyridinone derivatives 3a-z

ethyl 1-(2-(1H-indol-3-yl)ethyl)-5-benzoyl-2oxo-6-phenyl-1,2-dihydropyridine-4-carboxylate

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 73%; light brown colour solid; Melting Point: 143-145 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.96 (brs, 1H), 7.49-7.45 (m, 2H), 7.43-7.38 (m, 1H), 7.32-7.27 (m. 3H), 7.25-7.23 (brs, 2H), 7.16-7.10 (m, 3H), 6.95-6.86 (m, 4H), 6.84 (brs, 1H), 4.13-4.06 (m, 4H), 3.06 (t, J = 7.6 Hz, 2H), 1.08 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 194.0, 164.4, 162.0, 148.6, 140.2, 138.1, 136.0, 132.6, 131.5, 129.6, 129.3, 128.7, 128.1, 127.1, 122.3, 121.9, 121.4, 119.2, 118.4, 111.8, 111.0, 62.2, 47.3, 23.9, 13.5; HRMS (ESI): calcd. for C₃₁H₂₇N₂ O₄ [M+H]⁺ 491.1965; found 491.1975.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 76%; orange colour solid; Melting Point: 190-194 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ 8.04-7.95 (brs, 2H), 7.89-7.77 (m, 2H), 7.74-7.67 (m, 1H), 7.66-7.45 (m, 3H), 7.37-7.16 (m, 3H), 7.16-7.03 (m, 3H), 7.02-6.81 (m,

5H), 4.17-4.00 (m, 4H), 3.07 (t, J = 8.1 Hz, 2H), 1.03 (t, J = 7.1 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 193.8, 164.4, 162.0, 148.7, 140.2, 135.9, 135.5, 135.3, 132.1, 131.5, 130.7, 129.5, 129.4, 128.4, 128.2, 127.7, 127.1, 126.6, 124.1, 122.2, 121.9, 121.5, 119.3, 118.4, 111.8, 111.0, 62.0, 47.3, 24.0, 13.5; HRMS (ESI): calcd for C₃₅H₂₉N₂O₄ [M+H]⁺ 541.2121; found 541.2131.

ethyl 1-(2-(1*H*-indol-3-yl)ethyl)-5-(4-methoxybenzoyl)-2-oxo-6-phenyl-1,2dihydropyridine-4-carboxylate

R_f: 0.2; Hexane: Ethyl acetate mixture (10:3); Yield: 63%; pale orange colour semisolid; ¹H NMR (500 MHz, CDCl₃): δ 8.13 (brs, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.30-7.25 (m, 3H), 7.18-7.10 (m, 3H), 6.94-6.86 (m, 4H), 6.82 (d, J = 1.8 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 4.13-4.06 (m, 4H), 3.81 (s, 3H), 3.05 (t, J = 7.7 Hz, 2H), 1.09 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.5,164.4, 163.1, 162.0, 148.3, 140.0, 135.9, 131.6, 131.2, 131.1, 129.5, 129.3, 128.1, 127.1, 122.4, 121.8, 121.3, 119.2, 118.5, 118.4, 113.3, 111.8, 111.0, 62.1, 55.3, 47.3, 23.9, 13.5; HRMS (ESI): calcd. for C₃₂H₂₉N₂O₅ [M+H]⁺ 521.2071; found 521.2065.

ethyl 1-(2-(1*H*-indol-3-yl)ethyl)-5-(4-fluorobenzoyl)-2-oxo-6-phenyl-1,2dihydropyridine-4-carboxylate

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 74%; orange colour semisolid; ¹H NMR (300 MHz, CDCl₃): δ 8.09 (brs,1H), 7.45 (q, J = 5.2 Hz, 2H), 7.28 (q, J = 8.3 Hz, 3H), 7.13 (q, J = 6.7 Hz, 3H), 6.98-6.79 (m, 7H), 4.19-4.04 (m, 4H), 3.06 (t, J = 8.3 Hz, 2H), 1.12 (t, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.6, 166.2, 164.4, 161.9, 148.4, 140.0, 135.9, 134.6, 131.4, 131.3, 131.2, 129.5, 129.4, 128.1, 127.2, 122.4, 122.0, 121.6, 119.3, 118.4, 115.3, 115.1, 111.0, 62.2, 47.4, 23.8, 13.6; HRMS (ESI): calcd for C₃₁H₂₆FN₂O₄ [M+H]⁺ 509.1871; found 509.1885.

 R_{f} : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 71%; light brown colour solid; Melting Point: 150-154 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10-8.01 (m, 3H), 7.5 (d, *J* = 9.0 Hz, 2H), 7.36-7.29 (m, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.97-6.82 (m, 5H), 6.61 (d, *J* = 8.3 Hz, 2H), 4.22-4.05 (m, 4H), 3.07 (t, *J* = 7.5 Hz, 2H), 2.26 (s, 3H), 1.18 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.7, 164.3, 162.0, 149.6, 149.1, 142.7, 140.0, 139.8, 136.0, 129.4, 128.9, 128.0, 127.2, 123.2, 122.5, 121.9, 121.6, 119.2, 118.3, 117.5, 111.8, 111.1, 62.4, 47.3, 23.6, 21.1, 13.7; HRMS (ESI): calcd. for C₃₂H₂₇N₂O₆Na [M+Na]⁺ 572.1792; found 572.1795.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 75%; light orange colour solid; Melting Point: 140-144 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, J = 6.7 Hz, 2H), 7.47-7.38 (m, 1H), 7.34-7.23 (m, 4H), 7.23-7.12 (m, 5H), 6.91 (d, J = 7.5 Hz, 2H), 6.87-6.80 (m, 2H), 4.10 (q, J = 6.7 Hz, 2H), 3.98 (t, J = 7.5 Hz, 2H), 2.88 (t, J = 7.5 Hz, 2H), 1.08 (t, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 193.8, 164.3, 161.7, 148.4, 140.1, 138.0, 137.6, 132.7, 131.3, 129.5, 129.4, 128.7, 128.4, 128.2, 128.1, 126.5, 121.4, 118.4, 62.2, 47.9, 34.1, 13.5; HRMS (ESI): calcd. for C₂₉H₂₅NO₄Na [M+Na]⁺ 474.1675; found; 474.1673.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 70%; brown liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.58-7.54 (m, 2H), 7.31 (s, 1H), 7.22-7.15 (m, 4H), 7.07 (t, J = 7.6 Hz, 2H), 6.95-6.90 (m, 2H), 6.85-6.80 (m, 4H), 5.11 (brs, 2H), 4.15 (q, J = 7.1 Hz, 2H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.4, 166.2, 164.3, 162.1, 148.6, 140.4, 136.0, 134.5, 131.3, 131.2, 131.1, 129.5, 128.3, 127.9, 127.4, 126.8, 121.8, 118.4, 115.3, 115.1, 62.3, 48.9, 13.6; HRMS (ESI): calcd for C₂₈H₂₂FNO₄ [M+H]⁺ 456.1605; Found 456.1611.

ethyl 1-benzyl-5-(4-nitrobenzoyl) -2-oxo-6-phenyl-1,2-dihydropyridine -4-carboxylate

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 65%; brown colour liquid; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (d, J = 9.0 Hz, 2H), 7.65 (d, J = 9.0 Hz, 2H), 7.33 (s, 1H), 7.24-7.14 (m, 4H), 7.06 (t, J = 7.5 Hz, 2H), 6.84-6.77 (m, 4H), 5.11 (s, 2H), 4.19 (q, J = 7.5 Hz, 2H), 1.18 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.6, 164.2, 162.1, 149.6, 148.9, 142.6, 140.2, 135.8, 130.7, 129.9, 129.6, 129.3, 128.4, 128.1, 127.5, 126.8, 123.2, 122.0, 117.8, 62.5, 48.9, 13.7; HRMS (ESI): calcd. for C₂₈H₂₂N₂O₆Na [M+Na]⁺ 505.1370; found 505.1375.

ethyl 1-cyclohexyl-5-(4-fluorobenzoyl) -2-oxo-6-phenyl-1,2-dihydropyridine -4-carboxylate

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 73%; yellow colour solid; Melting Point: 170-174 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.70-7.65 (m, 2H), 7.27 (m, 3H), 7.21-7.17 (m, 2H), 6.93-6.88 (m, 2H), 6.7 (s, 1H), 3.91 (q, *J* = 7.1 Hz, 2H), 3.31 (m, 1H), 2.36-2.18 (m, 2H), 1.80-1.48 (m, 8H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 189.5, 168.1, 166.1, 165.1, 156.3, 137.3, 134.7, 131.4, 131.3, 130.3, 128.6, 128.5, 121.2, 115.2, 115.0, 60.9, 55.2, 29.7, 25.9, 24.8, 13.7; HRMS (ESI): calcd. for C₂₇H₂₇FNO₄ [M+H]⁺ 448.1918; found 448.1927.

ethyl 5-(1-naphthoyl)-1-butyl-2-oxo-6phenyl-1,2-dihydropyridine-4-carboxylate

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 63%; orange colour solid; Melting Point: 98-101 °C; ¹H NMR (300 MHz, CDCl₃); δ 8.42-8.34 (m, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.78-7.68 (m, 1H), 7.63 (d, J = 6.7 Hz, 1H), 7.48-7.39 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.10 (s, 1H), 7.03-6.87 (m, 5H), 4.07 (q, J = 7.5 Hz, 2H), 3.72 (t, J = 7.5 Hz, 2H), 1.56-1.41 (m, 2H), 1.40-1.13 (m, 2H), 1.10-1.00 (m, 3H), 0.66 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 195.3,165.3, 161.7,149.6, 141.7, 135.8, 133.3, 132.9, 131.5, 130.2, 129.0, 128.7,

127.9, 127.8, 127.4, 126.1,125.5, 123.7, 120.5, 62.1, 45.9, 30.3, 19.7, 13.5, 13.1; HRMS (ESI): calcd. for $C_{29}H_{28}NO_4$ [M+H]⁺ 454.2012; found 454.2015.

 R_f : 0.2; Hexane: Ethyl acetate mixture (10:3); Yield: 64%; pale orange semisolid; ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.41 (s, 1H), 7.21-7.10 (m, 4H), 6.94 (d, *J* = 8.6 Hz, 2H), 3.96 (s, 3H), 3.89 (t, *J* = 7.9 Hz, 2H), 2.42 (s, 3H), 1.73-1.60 (m, 2H), 1.36 (s, 9H), 1.25 (q, *J* = 7.3 Hz, 2H), 0.86 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): 192.2, 163.5, 163.2, 162.0, 148.4, 141.5, 139.3, 131.2, 129.1, 128.7, 126.0, 120.6, 118.3, 113.3, 83.5, 55.3, 46.0, 30.4, 27.3, 21.2, 19.8, 13.3; HRMS (ESI): calcd for C₂₉H₃₄NO₅ [M+H]⁺ 476.2431; found 476.2433.

ethyl 1-butyl-5-(4-nitrobenzoyl)-2oxo-6-phenyl-1,2-dihydropyridine -4-carboxylate

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 72%; brown colour liquid; ¹H NMR (300 MHz, CDCl₃): δ 8.12 (d, J = 9.0 Hz, 2 H), 7.68 (d, J = 9.0 Hz, 2H), 7.33-7.18 (m, 4H), 7.07 (d, J = 6.7 Hz, 2H), 4.17 (q, J = 6.7 Hz, 2H) 3.82-3.72 (m, 2H), 1.58-1.45 (m, 2H), 1.21-1.03 (m, 5H), 0.70 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.8, 164.3, 161.7, 149.6, 148.6, 142.7, 139.7, 131.1, 129.9, 129.5, 129.4, 128.3, 123.2, 121.7, 117.5, 62.4, 46.1, 30.3, 19.8, 13.7, 13.2; HRMS (ESI): calcd. for C₂₅H₂₅N₂O₆ [M+H]⁺ 449.1707; found 449.1713.

R_f: 0.2; Hexane: Ethyl acetate mixture (10:3); Yield: 67%; brown colour semi solid; ¹H NMR

(500 MHz, CDCl₃): δ 7.59-7.54 (m, 2H), 7.27 (m, 1H), 7.24-7.20 (m, 3H), 7.09-7.06 (m, 2H), 6.94 (t, *J* = 8.5 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.71 (t, *J* = 7.7 Hz, 2H), 1.6-1.5 (m, 2H), 1.11 (t, *J* = 7.1 Hz, 3H), 0.69 (t, *J* = 7.32 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.6, 166.3, 161.8, 148.3, 139.8, 134.6,131.4, 131.3, 131.2, 129.6, 129.4, 128.2, 121.5, 118.1, 115.3, 115.2, 62.2, 47.8, 21.8, 13.6, 11.0,; HRMS (ESI): calcd. for C₂₄H₂₃FNO₄ [M+H]⁺ 408.1605; found 408.1603.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 75%; pale yellow semisolid; ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.29 (s, 1H), 7.11-7.06 (m, 2H), 6.94 (t, J = 8.5 Hz, 2H), 4.14 (q, J = 7.0 Hz, 2H), 3.74-3.69 (m, 2H), 1.61-1.52 (m, 2H), 1.14 (t, J = 7.1 Hz, 3H), 0.73 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 193.0, 164.6, 164.1, 161.7, 147.4, 140.7, 139.6, 131.5, 131.4, 128.7, 125.3, 125.2, 121.9, 115.7, 115.4, 62.3, 47.8, 21.8, 13.5, 11.0; HRMS (ESI): calcd. for C₂₅H₂₁F₄NO₄ [M+H]⁺ 476.1479; found 476.1466.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 70%; yellow colour semisolid; ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.19 (s, 1H), 7.04 (d, *J* = 7.7 Hz, 2H), 6.98 (d, *J* = 7.9 Hz, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.29 (s, 3H), 2.26 (s, 3H), 1.28 (s, 9H), 1.04 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 193.3, 164.4, 162.3, 156.3, 149.0, 140.3, 139.5, 135.4, 129.1, 129.0, 128.7, 128.6, 124.9, 120.2,118.4, 62.0, 34.8, 34.1, 30.8, 21.1, 13.3; HRMS (ESI): calcd. for C₂₇H₃₀NO₄ [M+H]⁺ 432.2169; found 432.2153.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 74%; pale orange colour solid; Melting Point: 185-188 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.04-7.95 (m, 2H), 7.89-7.77 (m, 2H), 7.72 (d, J = 8.6 Hz, 1H), 7.67-7.47 (m, 3H), 7.31-7.22 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.15-7.04 (m, 3H), 7.00-6.93 (m, 2H), 6.92-6.82 (m, 3H), 4.11 (t, J = 7.5 Hz, 2H), 3.06 (t, J = 8.1 Hz, 2H), 1.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 193.6, 163.6, 162.1, 148.7, 142.0, 136.0, 135.6, 135.2, 132.1, 131.7, 130.8, 129.5, 129.3, 128.4, 128.1, 127.6, 127.1, 123.6, 124.2, 122.3, 121.9, 121.0, 119.2, 118.4, 118.3, 111.8, 111.0, 83.8, 47.2, 27.3, 24.0; HRMS (ESI): calcd. for C₃₇H₃₃N₂O₄ [M+H]⁺ 569.2434; found; 569.2435.

tert-butyl 5-benzoyl-2-oxo -1-phenethyl-6-phenyl-1,2dihydropyridine-4-carboxylate

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 72%; pale yellow colour solid; Melting Point: 167-170 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.59-7.53 (m, 2H), 7.48-7.39 (m, 1H), 7.35-7.24 (m, 3H), 7.24-7.10 (m, 6H), 6.92 (d, J = 6.7 Hz, 2H), 6.88-6.81 (m, 2H), 3.97 (t, J = 7.5 Hz, 2H), 2.86 (t, J = 7.5 Hz, 2H), 1.22 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 193.5, 163.5, 161.9, 148.4, 141.9, 138.3, 137.7, 132.7, 131.6, 129.4, 128.9, 128.7, 128.4, 128.1, 126.5, 121.0, 118.2, 83.8, 47.8, 34.2, 27.3; HRMS (ESI): calcd. for C₃₁H₃₀NO₄ [M+H]⁺ 480.2169; found; 480.2171.

ethyl 1-(2-(1*H-*indol-3-yl)ethyl)-5-(2-naphthoyl)-6-hexyl-2-oxo-1,2 -dihydropyridine-4-carboxylate

R_f: 0.2; Hexane: Ethyl acetate mixture (10:3); Yield: 73%; red colour solid; Melting Point: 140-144 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.17-8.07, (m, 2H), 7.93-7.82 (m, 4H), 7.64 (d, J = 7.7 Hz, 1H), 7.61-7.49 (m, 2H), 7.38 (d, J = 7.5 Hz, 1H), 7.25-7.12 (m, 2H), 7.06 (d, J = 2.2 Hz, 1H), 6.64 (s, 1H), 3.9 (t, J = 6.9 Hz, 2H), 3.56 (q, J = 7.1 Hz, 2H), 3.17 (t, J = 7.7 Hz, 2H), 2.25-2.15 (m, 2H), 1.47-1.35 (m, 2H), 1.18-0.97 (m, 6H), 0.82-0.69 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 190.7, 168.5, 165.2, 160.3, 137.4, 136.4, 136.2, 135.3, 132.3, 129.9,

129.4, 128.3, 128.2, 127.6, 127.1, 126.6, 124.5, 122.3, 120.2, 119.7, 118.3, 112.1, 111.5, 111.4, 60.7, 41.7, 31.0, 29.1, 28.5, 25.8, 24.9, 22.3, 13.8, 13.4; HRMS (ESI): calcd. for $C_{35}H_{37}N_2 O_4 [M+H]^+ 549.2747$; found 549.2753.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 68%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.55 (d, J = 8.39 Hz, 2H), 7.37 (t, J = 3.20 Hz, 3H), 7.08 (q, J = 7.93 Hz, 4H), 4.18 (q, J = 7.01 Hz, 2H), 4.06 (t, J = 6.25 Hz, 2H), 3.89 (t, J = 6.25 Hz, 2H), 2.34 (s, 3H), 1.38 (s, 12H), 0.92 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 193.6, 164.5, 162.0, 156.2, 149.5, 139.3, 135.7, 129.8, 128.74, 128.7, 128.6, 128.4, 124.9, 120.7, 118.7, 62.0, 59.4, 47.9, 34.9, 30.9, 25.8, 25.7, 21.1, 13.4, -5.5; HRMS (ESI): calcd. for $C_{34}H_{46}O_5NSi [M+H]^+ 576.3141$; found 576.3141.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 72%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, J = 8.24 Hz, 2H), 7.49-7.44 (m, 2H), 7.24 (s, 1H), 7.20-7.13 (m, 4H), 4.11 (t, J = 6.25 Hz, 2H), 3.93 (t, J = 6.25 Hz, 2H), 2.41 (s, 3H), 1.44 (s, 9H), 1.34 (s, 9H), 0.98 (s, 9H), 0.12 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 193.0, 163.6, 162.0, 156.3, 149.4, 142.1, 139.2, 135.7, 129.5, 128.8, 128.7, 128.5, 124.9, 120.1, 118.3, 83.4, 59.4, 47.7, 34.8, 30.8, 27.1, 25.7, 21.0, 18.1, -5.6; HRMS (ESI): calcd for C₃₆H₅₀O₅NSi [M+H]⁺ 604.3452; found 604.3455.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 78%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.63-7.58 (m, 2H), 7.31-7.28 (m, 1H), 7.27-7.22 (m, 3H), 7.19-7.15 (m, 2H), 6.97 (t, J = 8.54 Hz, 2H), 4.19 (q, J = 7.17 Hz, 2H), 4.00 (t, J = 6.2 Hz, 2H), 3.86 (t, J = 6.2 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.01 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 192.7, 166.2, 164.4, 161.9, 149.0, 140.2, 134.6, 131.2, 130.0, 129.5, 128.0, 121.3, 118.2, 115.2, 115.1, 62.2, 59.3, 48.1, 29.6, 25.8, 13.5, -5.4. HRMS (ESI): calcd for C₂₉H₃₅O₅NFSi [M+H]⁺ 524.2260; found 524.2260

R_f: 0.4; Hexane: Ethyl acetate mixture(10:3); Yield: 75%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.57-7.51 (m, 2H), 7.25-7.20 (m,1H), 7.18 (t, J = 7.93 Hz, 2H), 7.12 (s, 1H), 7.08 (d, J = 8.24 Hz, 2H), 6.92 (t, J = 8.24 Hz, 2H), 3.92 (t, J = 6.1 Hz, 2H), 3.77 (t, J = 6.1 Hz, 2H), 1.24 (s, 9H), 0.80 (s, 9H), 0.06 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 192.3, 166.2, 163.4, 161.9, 148.9, 141.9, 134.7, 131.5, 131.3, 129.9, 129.4, 128.0, 120.8, 118.0, 115.2, 83.7, 59.4, 47.9, 27.3, 25.8, 18.2, -5.4. HRMS (ESI): calcd for C₃₁H₃₉O₅NFSi [M+H]⁺ 552.2548; found 552.2550.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 69%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.31 (m, 1H), 7.22-7.16 (m, 2H), 7.15-7.10 (m, 2H), 7.06 (d, J = 7.17 Hz, 2H), 7.01-6.96 (m, 2H), 3.85 (t, J = 6.25 Hz, 2H), 3.75 (t, J = 6.25 Hz, 2H), 1.43 (s, 9H), 0.79 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 191.6, 164.4, 162.0, 149.8, 143.7, 139.5, 133.9, 132.4, 131.3, 130.8, 129.5, 129.2, 128.2, 126.4, 120.4, 83.6, 59.4, 47.8, 31.8, 27.7, 25.8, 14.0, -5.4. HRMS (ESI): calcd for C₃₁H₃₈O₅NCl₂Si [M+H]⁺ 602.1914;

1.8 Spectroscopic data for intermediate 4.

1.9 Spectral data of enaminone ester derivatives 5a-d.

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:2); Yield: 61%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 8.92 (brs, 1H), 7.39-7.30 (m, 5H), 7.30-7.25 (m, 2H), 7.23-7.19 (m, 1H), 7.16 (d, *J* = 7.3 Hz, 2H), 4.68 (s, 1H), 4.25 (d, *J* = 6.5 Hz, 2H), 4.14 (q, *J* =7.1 Hz, 2H),1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 164.6, 139.1, 135.8, 129.1, 128.4, 128.2, 127.7, 127.0, 126.7, 86.1, 58.6, 48.2, 14.4; HRMS (ESI): calcd for C₁₈H₂₀O₂N [M+H]⁺ 282.1489; found 282.1490.

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:2); Yield: 67%; semi solid ; ¹H NMR (500 MHz, CDCl₃): δ 8.56 (brs, 1H), 4.43 (s, 1H), 4.09 (q, *J* = 7.17 Hz, 2H), 3.20 (q, *J* = 6.7 Hz, 2H),

1.91 (s, 3H), 1.62-1.49 (m, 2H), 1.48-1.33 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.6, 161.9, 81.6, 58.1, 42.6, 32.4, 19.9, 19.3, 14.6, 13.7, HRMS (ESI): calcd for C₁₀H₂₀ON₂ [M+H]⁺ 186.1492; found 186.1488.

R_f: 0.5; Hexane: Ethyl acetate mixture (10:2); Yield: 58%; semi solid ; ¹H NMR (500 MHz, CDCl₃): δ 10.38 (brs, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 7.08 (d, J = 7.8 Hz, 2H), 4.69 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 1.99 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.3, 158.8, 139.2, 128.9, 124.8, 124.3, 85.9, 58.6, 20.2, 14.5. HRMS (ESI): calcd for C₁₂H₁₆O₂N [M+H]⁺ 206.1180, found 206.1175.

 R_{f} : 0.4; Hexane: Ethyl acetate mixture (10:2); Yield: 58%; liquid; ¹H NMR (500 MHz, CDCl₃): δ 8.41 (brs, 1H), 7.39-7.19 (m, 5H), 5.16 (s, 1H), 4.55 (d, *J* = 6.2 Hz, 2H), 4.26-4.08 (m, 4H), 1.30-1.19 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 163.5, 151.4, 138.7, 128.5, 127.2, 127.1, 88.0, 61.7, 59.2, 48.3, 14.2, 13.7; HRMS (ESI): calcd for C₁₅H₂₀O₄N [M+H]⁺ 278.1394; found 278.1386.

1.10 Spectral data of pyridinone derivatives 6a-f.

CDCl₃): δ 7.40 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.7 Hz, 2H), 7.19-7.15 (m 3H), 7.10 (s, 1H), 7.05 (d, J = 7.1 Hz, 2H), 6.82-6.78 (m, 2H), 5.07 (brs, 2H), 3.86 (q, J = 7.1 Hz, 2H), 1.55 (s, 9H), 0.84 (t, J = 7.1 Hz, 3H);¹³C NMR (125 MHz, CDCl₃): δ 165.8, 163.6, 162.1, 149.5, 141.5, 136.0, 132.0, 129.6, 129.0, 128.3, 128.0, 127.3, 126.7, 120.7, 113.3, 83.4, 61.2, 48.9, 27.7, 13.3; HRMS (ESI): calcd for C₂₆H₂₈O₅N [M+H]⁺ 434.1943; found 434.1941.

 R_{f} : 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 40%; pale brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 6.84 (s, 1H), 4.30 (m, 4H), 4.17-4.00 (m, 2H), 2.52 (s, 3H), 1.72-1.59 (m, 2H), 1.50-1.22 (m, 9H), 0.97 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.7, 165.1, 161.8, 147.4, 140.3, 118.6, 111.0, 61.9, 61.6, 44.8, 30.1, 20.1, 17.1, 13.8, 13.5, HRMS (ESI): calcd for C₁₆H₂₄O₅N [M+H]⁺ 310.1635; found 310.1637.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 47%; solid; ¹H NMR (500 MHz, CDCl₃): δ 7.58-7.52 (m, 2H), 7.51-7.46 (m, 1H), 7.16 (m, 2H), 6.93 (s, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 2.10 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.3, 165.0, 162.2, 148.5, 141.5, 137.7, 129.9, 129.1, 127.4, 119.3, 110.5, 62.0, 61.6, 19.1, 13.8, 13.7; HRMS (ESI): calcd for C₁₈H₂₀O₅N [M+H]⁺ 330.1340; found 330.1339.

R_f: 0.3; Hexane: Ethyl acetate mixture (10:3); Yield: 45%; semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.23 (m, 3H), 7.22-7.14 (m, 2H), 6.84 (s, 1H), 5.31 (s, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 1.40-1.24 (m, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.1, 163.3, 161.5, 160.7, 144.5, 142.7, 134.9, 128.5, 127.8, 127.3, 120.8, 63.0, 62.2, 62.0, 48.8, 29.6, 13.9, 13.8, 13.2; HRMS (ESI): calcd for C₂₁H₂₄O₇N [M+H]⁺ 402.1556; found 402.1556.

R_f: 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 48%; pale brown colour semi solid ; ¹H NMR (500 MHz, CDCl₃): δ 6.71 (s, 1H), 4.44 (q, J = 7.0 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 3.9 (t, J = 7.9 Hz, 2H), 2.73 (t, J = 7.1 Hz, 3H), 1.75-1.66 (m, 2H), 1.44-1.38 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H) 1.30 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 163.3, 161.7, 160.4, 145.2, 142.9, 120.1, 106.9, 63.2, 62.2, 62.0, 47.4, 30.6, 20.0, 13.9, 13.8, 13.7, 13.5; HRMS (ESI): calcd for C₁₆H₂₅O₇N[M+H]⁺ 368.1690; found 368.1688.

 R_f : 0.4; Hexane: Ethyl acetate mixture (10:3); Yield: 11%; brown colour semi solid; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 7.78 Hz, 2H), 7.59-7.55 (m, 1H), 7.45 (t, *J* = 7.78 Hz, 2H), 7.33 (t, *J* = 7.47 Hz, 2H), 7.30-7.27 (m, 1H), 7.19-7.15 (m, 3H), 5.42 (s, 2H), 4.05 (q, *J* = 7.17 Hz, 2H), 2.18 (s, 3H), 1.08 (t, *J* = 7.17 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 194.6, 164.3, 162.5, 146.2, 140.4, 137.7, 135.2, 133.4, 128.9, 128.8, 127.6, 126.3, 119.7, 117.1, 62.1, 47.6, 18.0, 13.5; HRMS (ESI): calcd for C₂₃H₂₂NO₄ [M+H]+376.1543; found 376.1542.

S30

S73

S81

S85

1.12 X-ray crystallography data

Cambridge Crystallographic Data Centre CCDC

This CIF contains data from an original supplementary publication deposited with the CCDC, and may include chemical, crystal, experimental, refinement, atomic coordinates, anisotropic displacement parameters and molecular geometry data, as required by the journal to which it was submitted. This CIF is provided on the understanding that it is used for bona fide research purposes only. It may contain copyright material of the CCDC or of third parties, and may not be copied or further disseminated in any form, whether machine-readable or not, except for the purpose of generating routine backup copies on your local computer system. For further information on the CCDC, data deposition and data retrieval see: www.ccdc.cam.ac.uk

Crystal structure data of 3h: Crystal structure deposition no: CCDC 1004429

Figure 2 ORTEP representation of 1,2-dihydropyridinones (3h: CCDC 1004429)