Supporting Information

Catalyst-free Reductive Amination of Aromatic Aldehydes with Ammonium Formate and Hantzsch Ester

Pan-Pan Zhao, ${ }^{\mathbf{a}}$ Xin-Feng Zhou, ${ }^{\mathbf{a}}$ Jian-Jun Dai,*, ${ }^{\text {a }}$ and Hua-Jian $X u^{*, a, b}$
${ }^{a}$ School of Medical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009; ${ }^{b}$ Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, P. R. China.

E-mail: hjxu@hfut.edu.cn

Table of Contents

I. General Information 3
II. Experimental Section 3
III. Copies of Spectra 25
IV. References 70

I. General Information

The chemicals were purchased from commercial suppliers and used without further purification. All reactions were carried out in air. Organic solutions were concentrated under reduced pressure on a rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh). ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at ambient temperature in CDCl_{3} unless otherwise noted. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, integration and coupling constant (Hz). Data for ${ }^{13} \mathrm{C}$-NMR are reported in terms of chemical shift ($\delta \mathrm{ppm}$), multiplicity and coupling constant (Hz). Gas chromatographic (GC) analysis was determined a GC apparatus.

II. Experimental Section
 Synthesis of Hantzsch Esters (HEH) ${ }^{1}$

According to general procedure, compound was prepared from formaldehyde (0.1 mol), ethylacetoacetate (0.2 mol), and ammonium acetate (0.1 mol), with PTSA (0.01 $\mathrm{mol})$ as catalyst. They were mixed in methanol $(100 \mathrm{~mL})$ and stirred under at room temperature for more than 4 hours. The product was then recrystallized to get pure HEH.

Synthesis of symmetric aromatic secondary amines

Aromatic aldehyde $1(0.5 \mathrm{mmol})$ was blended with HEH ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{HCOONH}_{4}(32 \mathrm{mg}, 0.5 \mathrm{mmol}$) into a reaction tube, to which 2 mL MeOH was added. The tube was stirred at $60{ }^{\circ} \mathrm{C}$ for 16 hours. Product was separated using flash
chromatography on Silica Gel (200-300 mesh, acetic ether /light petroleum 1:10 or $1: 8$, and 1% triethylamine). R_{f} value is 0.3-0.4.

Dibenzylamine (2a) ${ }^{2}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as colorless oil ($46.9 \mathrm{mg}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $4 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.26,128.36,128.12,126.91,53.13$.

Bis(4-methylbenzyl)amine (2b) ${ }^{3}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as light yellow oil ($51.3 \mathrm{mg}, 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.75$ (s, 4H), 2.33 ($\mathrm{s}, 6 \mathrm{H}$), $1.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.22,136.40,129.00,128.06,52.74,21.06$.
Bis(4-chlorobenzyl)amine (2c) ${ }^{2}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as light yellow oil ($55.2 \mathrm{mg}, 83 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.74$ (s, 4H), 1.60 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.55,132.65,129.41,128.49,52.28$.

Bis(4-fluorobenzyl)amine (2d) ${ }^{4}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1\% triethylamine) to give the desired product as colorless oil (45.5 $\mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.90(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 135.83(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $129.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.15(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 52.31$.

Bis(4-ethoxybenzyl)amine (2e)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (57.1 mg, 80% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.02$ (q, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.90,132.22,129.27,114.29,63.36,52.39,14.83$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+)$: 285.1729; found: 285.1732.

Bis(4-bromobenzyl)amine (2f) ${ }^{2}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1\% triethylamine) to give the desired product as yellow oil (66.6 $\mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.72$ (s, 4H), 1.64 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.05,131.45,129.79,120.75,52.31$.

Bis(4-(trifluoromethyl)benzyl)amine (2g) ${ }^{5}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as yellow oil (60.8 $\mathrm{mg}, 73 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.86$ (s, 4H), 1.76 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.01,129.41(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.30,125.36(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}), 124.22(\mathrm{q}, J=271.8 \mathrm{~Hz}), 52.54$.

4,4'-Azanediylbis(methylene)dibenzonitrile (2h) ${ }^{6}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow solid (46.4 $\mathrm{mg}, 75 \%$ yield). Mp: $101-104{ }^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.87$ (s, 4H), $1.62(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.37,132.21,128.56,118.80,110.89,52.58$.

Bis(4-tert-butylbenzyl)amine (2i) ${ }^{7}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as light yellow oil
($34.8 \mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.80$ ($\mathrm{s}, 4 \mathrm{H}$), 1.85 ($\mathrm{s}, 1 \mathrm{H}$), 1.33 ($\mathrm{s}, 18 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.73,137.21,127.81,125.22,52.78,34.41,31.36$.
$\operatorname{Bis}(3-m e t h y l b e n z y l) a m i n e ~(2 j) ~ 4 ~ \$ ~$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as light yellow oil ($48.4 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.07 (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (s, 4H), 2.35 (s, 6H), 1.79 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.17,137.95,128.89,128.24,127.63,125.15,53.19$, 21.37.

Bis(3-fluorobenzyl)amine (2k)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as light yellow oil ($42.0 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, J=13.9,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=14.4,8.7$ $\mathrm{Hz}, 4 \mathrm{H}), 6.94(\mathrm{td}, J=8.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{3} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.03(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 142.87(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $129.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 123.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 114.83(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.84(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 52.53(\mathrm{~d}, J=1.5 \mathrm{~Hz})$.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}(\mathrm{M}+)$: 233.1016; found: 233.1021.
Bis(3-chlorobenzyl)amine (21) ${ }^{7}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (54.6 $\mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H}), 1.62(\mathrm{~s}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.16,134.25,129.63,128.13,127.15,126.16$, 52.50.

Bis(3-bromobenzyl)amine (2m) ${ }^{8}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (66.6 $\mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.20 (t, J=7.7 Hz, 2H), 3.76 (s, 4H), 1.64 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.49,131.12,130.14,130.00,126.70,122.59$, 52.51 .

$\operatorname{Bis}\left(3\right.$-(trifluoromethyl)benzyl)amine (2n) ${ }^{9}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as yellow oil (58.3 $\mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H), 3.87 ($\mathrm{s}, 4 \mathrm{H}$), 1.73 ($\mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.95,131.44,130.75(\mathrm{q}, J=32.2 \mathrm{~Hz}), 128.86$, $124.80(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.16(\mathrm{q}, J=272.3 \mathrm{~Hz}), 123.94(\mathrm{q}, J=3.8 \mathrm{~Hz}), 52.68$.

$\operatorname{Bis}\left(\right.$ naphthalen-2-ylmethyl)amine (20) ${ }^{10}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as white solid (54.3 $\mathrm{mg}, 73 \%$ yield). Mp: $83-85^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.75(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 6 \mathrm{H}), 3.98(\mathrm{~s}, 4 \mathrm{H})$, $1.77(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.71,133.41,132.64,128.06,127.66,127.62$, 126.57, 126.50, 125.96, 125.52, 53.19.

$\operatorname{Bis}\left(\right.$ naphthalen-1-ylmethyl)amine (2p) ${ }^{10}$

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1\% triethylamine) to give the desired product as white solid (52.0 $\mathrm{mg}, 70 \%$ yield). Mp: $62-64{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 6 \mathrm{H}), 4.33(\mathrm{~s}, 4 \mathrm{H}), 1.91(\mathrm{~s}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.70,133.86,131.83,128.61,127.81,126.25$, 125.96, 125.58, 125.30, 123.82, 51.38.

$\operatorname{Bis}\left(3,4\right.$-dichlorobenzyl)amine (2q) ${ }^{11}$

The resulting mixture was purified by flash chromatography (acetic ether /light
petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (62.8 mg , 75% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.26,132.48,130.97,130.35,129.94,127.34$, 51.89.

Bis(3-phenoxybenzyl)amine (2r)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (78.2 $\mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ $-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 6.88(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H})$, 1.63 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.41,157.27,142.40,129.70,129.62,123.17$, 122.93, 118.87, 118.51, 117.38, 52.78.

HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+)$: 381.1729; found: 381.1732.

Bis(3-bromo-4-fluorobenzyl)amine (2s)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (66.5 $\mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ - 7.22 (m, 2H), 7.07 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (s, 4H), 1.61 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.19(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 137.43(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, 133.01, $128.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 116.29(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 108.94(\mathrm{~d}, J=20.9 \mathrm{~Hz})$,
51.86.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{~N}(\mathrm{M}+): 388.9226$; found: 388.9226 .

Bis(3,4-dimethylbenzyl)amine (2t)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:10 and 1% triethylamine) to give the desired product as yellow oil (41.2 $\mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.04(\mathrm{~m}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}$, $6 \mathrm{H}), 1.66(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 137.63,136.50,135.09,129.57,129.53,125.57,52.84$, 19.73, 19.39.

HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}(\mathrm{M}+)$: 253.1830; found: 253.1827 .

Synthesis of asymmetric aromatic secondary amines

Meta-substituted or para-substituted benzaldehyde $1 \quad(0.25 \mathrm{mmol})$ and ortho-substituted benzaldehyde $3(0.5 \mathrm{mmol})$ were mixed with HEH ($191 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ and $\mathrm{HCOONH}_{4}(48 \mathrm{mg}, 0.75 \mathrm{mmol})$ into a reaction tube, to which 2 mL MeOH was added. The reaction carried out at $60^{\circ} \mathrm{C}$ for at least 16 hours. Product was separated using forced-flow chromatography on Silica Gel (200-300 mesh, acetic ether /light petroleum 1:8, and 1% triethylamine). R_{f} value is 0.25-0.4.

\mathbf{N}-(4-methoxybenzyl)-1-o-tolylmethanamine (4a) ${ }^{12}$

The resulting mixture was purified by flash chromatography (acetic ether /light
petroleum 1:8 and 1\% triethylamine) to give the desired product as yellow oil (39.2 $\mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 1.56(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.58,138.25,136.37,132.52,130.22,129.28$, 128.36, 126.90, 125.83, 113.72, 55.25, 53.00, 50.83, 18.93.

The yield of self-coupling product of 4-methoxybenzaldehyde was 12% by GC method.

N-(3-chlorobenzyl)-1-(2-methoxyphenyl)methanamine (4b)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (43.2 $\mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), 3.79 ($\mathrm{s}, 2 \mathrm{H}$), 3.75 ($\mathrm{s}, 2 \mathrm{H}$), 1.99 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.72,142.62,134.20,129.96,129.50,128.36$, $128.22,127.99,126.95,126.25,120.43,110.32,55.23,52.35,48.63$.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}(\mathrm{M}+)$: 261.0920; found: 261.0926.
The yield of self-coupling product of 3 -chlorobenzaldehyde was 12% by GC method.

N-(4-methoxybenzyl)-1-(2-(trifluoromethyl)phenyl)methanamine (4c)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (39.1 $\mathrm{mg}, 53 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.97$ (s, 2H), 3.80 (s, 3H), 3.77 (s, 2H), 1.67 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.67,138.90,132.15,131.84,130.33,129.31$, $128.24(\mathrm{q}, J=30.0 \mathrm{~Hz}), 126.84,125.83(\mathrm{q}, J=5.8 \mathrm{~Hz}), 125.44,123.62,113.78,55.25$, 52.89, 49.26.

HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+)$: 295.1184; found: 295.1179.
The yield of self-coupling product of 4-methoxybenzaldehyde was 16% by GC method.

\mathbf{N}-(2-chlorobenzyl)-1-(4-chlorophenyl)methanamine (4d)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (41.3 $\mathrm{mg}, 62 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{dd}, J=11.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 7.25-$ 7.19 (m, 2H), 3.88 (s, 2H), 3.77 (s, 2H), 1.80 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.61,137.40,133.81,132.70,130.21,129.56$, 129.47, 128.50, 128.39, 126.79, 52.30, 50.65.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}(\mathrm{M}+)$: 265.0425; found: 265.0428.
The yield of self-coupling product of 4 -chlorobenzaldehyde was 14% by GC method.

N -(4-bromobenzyl)-1-(2-chlorophenyl)methanamine (4e)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (42.7 $\mathrm{mg}, 55 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-$
7.19 (m, 4H), 3.88 (s, 2H), 3.75 ($\mathrm{s}, 2 \mathrm{H}$), 1.79 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.14,137.39,133.80,131.45,130.20,129.84$, 129.56, 128.39, 126.78, 120.75, 52.33, 50.64.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrClN}(\mathrm{M}+)$: 308.9920; found: 308.9912.
The isolated yield of bis(4-bromobenzyl)amine was 17%.

N -(4-bromobenzyl)-1-(2-methoxyphenyl)methanamine (4f)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (39.0 $\mathrm{mg}, 51 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ - $7.21(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.73$ ($\mathrm{s}, 2 \mathrm{H}$), $1.90(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.66,139.48,131.33,129.92,129.88,128.32$, $127.98,120.52,120.37,110.23,55.21,52.22,48.65$.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}(\mathrm{M}+)$: 305.0415; found: 305.0418.
The isolated yield of bis(4-bromobenzyl)amine was 19%.

N -(4-isopropylbenzyl)-1-(2-methoxyphenyl)methanamine (4g)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (38.4 $\mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.93-$ $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.70,147.45,137.73,129.92,128.18,128.16$,
126.33, 120.36, 110.22, 55.31, 52.75, 48.74, 33.77, 24.02.

HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}(\mathrm{M}+)$: 269.1780; found: 269.1785.
The yield of self-coupling product of 4-isopropylbenzaldehyde was less than 10% by GC method.

N-(4-tert-butylbenzyl)-1-(2-methoxyphenyl)methanamine (4h)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (33.3 $\mathrm{mg}, 47 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.00$ $(\mathrm{s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.69,149.69,137.39,129.90$, 128.17, 127.87, $125.18,120.35,110.21,55.20,52.66,48.79,34.42,31.38$.

HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}(\mathrm{M}+)$: 283.1936; found: 283.1943.
The yield of self-coupling product of 4-tert-butylbenzaldehyde was less than 10% by GC method.

N -(2-bromobenzyl)-1-(4-bromophenyl)methanamine (4i)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (55.9 mg , 63% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.01,138.84,132.82,131.42,130.35,129.86$,
128.69, 127.40, 123.97, 120.73, 53.00, 52.22.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}(\mathrm{M}+)$: 352.9415 ; found: 352.9415 .
The yield of self-coupling product of 4-tert-butylbenzaldehyde was 12% by GC method.

N-(2-chlorobenzyl)-1-(4-fluorophenyl)methanamine (4j)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (28.1 $\mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.93(\mathrm{~d}, J=244.7 \mathrm{~Hz})$, 137.37, $135.72(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 133.77,130.22,129.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 129.54,128.38,126.78,115.14(\mathrm{~d}, J=$ 21.3 Hz), 52.27, 50.63.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClFN}(\mathrm{M}+)$: 249.0721; found: 249.0719.
The isolated yield of bis(4-fluorobenzyl)amine was 20%.

N -(2-bromobenzyl)-1-(4-chlorophenyl)methanamine (4k)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (46.6 $\mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ - 7.27 (m, 5H), $7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.85,138.47,132.84,132.67,130.37,129.51$, 128.70, 128.48, 127.41, 124.00, 53.00, 52.19.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrClN}(\mathrm{M}+)$: 308.9920; found: 308.9912 .
The yield of self-coupling product of 4-chlorobenzaldehyde was 15% by GC method.

N -(2-chlorobenzyl)-1-(3-phenoxyphenyl)methanamine (4l)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (46.9 $\mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=$ 7.3, 4.2 Hz, 2H), $7.05-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $2 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.35,157.21,142.22,137.40,133.73,130.20$, $129.69,129.64,129.48,128.32,126.75,123.14,122.94,118.85,118.51,117.42$, 52.71, 50.60.

HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}(\mathrm{M}+)$: 323.1077; found: 323.1080.
The isolated yield of bis(3-phenoxybenzyl)amine was 16%.

N -(2-chlorobenzyl)-1-p-tolylmethanamine (4m)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (37.5 $\mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H})$, 3.77 ($\mathrm{s}, 2 \mathrm{H}$), 2.34 ($\mathrm{s}, 3 \mathrm{H}$), 1.84 ($\mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.43,136.84,136.60,133.75,130.21,129.47$, 129.07, 128.29, 128.13, 126.74, 52.73, 50.60, 21.09.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}(\mathrm{M}+): 245.0971$; found: 245.0977.

The yield of self-coupling product of 4-methylbenzaldehyde was 14% by GC method.

N -(2-bromobenzyl)-1-m-tolylmethanamine (4n)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (37.0 $\mathrm{mg}, 51 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.11(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.89,139.07,138.03,132.79,130.39,128.95$, $128.60,128.29,127.75,127.38,125.22,124.01,53.17,53.01,21.39$.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}(\mathrm{M}+)$: 289.0466; found: 289.0468.
The isolated yield of bis(3-methylbenzyl)amine was 19\%.

N -(2-bromobenzyl)-1-(4-fluorophenyl)methanamine (40)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (44.1 $\mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ - $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $2 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.90(\mathrm{~d}, J=244.6 \mathrm{~Hz}$), 138.91, 135.70, 132.82, 130.37, $129.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.67,127.40,123.98,115.14(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 53.03$, 52.21.

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrFN}(\mathrm{M}+)$: 293.0215; found: 293.0213.
The yield of self-coupling product of 4-fluorobenzaldehyde was 15% by GC method.

N -(2-chlorobenzyl)-1-m-tolylmethanamine (4p)

The resulting mixture was purified by flash chromatography (acetic ether /light petroleum 1:8 and 1% triethylamine) to give the desired product as yellow oil (35.0 $\mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ - $7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $2 \mathrm{H}), 3.77$ ($\mathrm{s}, 2 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.94,138.00,137.52,133.75,130.20,129.48$, $128.90,128.28,128.27,127.72,126.73,125.17,53.06,50.77,21.37$.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}(\mathrm{M}+)$: 245.0971 ; found: 245.0977.
The yield of self-coupling product of 3-methylbenzaldehyde was 16% by GC method.

Dibenzylimine ${ }^{13}$

Benzaldehyde ($1.02 \mathrm{~mL}, 10 \mathrm{mmol}$) and benzylamine ($1.09 \mathrm{~mL}, 10 \mathrm{mmol}$) were mixed together in toluene (50 mL) and refluxed at $120{ }^{\circ} \mathrm{C}$ for 24 hours. The toluene was evaporated in reduced pressure. 1.9 g of the dibenzylimine was obtained.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.18(\mathrm{~m}, 8 \mathrm{H})$, 4.78 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.80,139.19,136.04,130.61,128.46,128.36$, 128.15, 127.84, 126.84, 64.88.

Large-Scale Synthesis of Dibenzylamine

Benzaldehyde ($20 \mathrm{mmol}, 2.08 \mathrm{~g}$) was blended with HEH ($20 \mathrm{mmol}, 5.08 \mathrm{~g}$) and $\mathrm{HCOONH}_{4}(20 \mathrm{mmol}, 1.28 \mathrm{~g})$ into a reaction flask, to which 80 mL MeOH was added. The flask was stirred at $60^{\circ} \mathrm{C}$ for 16 hours. Product was separated using forced-flow
chromatography on Silica Gel (200-300 mesh, acetic ether /light petroleum 1:10 and 1% triethylamine). The product was 1.62 g .

Mechanism

In the reaction, dibenzylimine (0.5 mmol) and HEH (1 equiv) were mixed in MeOH $(2 \mathrm{~mL})$, and they were heated at $60^{\circ} \mathrm{C}$ for 16 hours. There was no product.

In the reaction, dibenzylimine (0.5 mmol), HCOONH_{4} (1 equiv) and HEH (1 equiv) were mixed in $\mathrm{MeOH}(2 \mathrm{~mL})$, and they were heated at $60^{\circ} \mathrm{C}$ for 16 hours. The yield was determined by gas chromatography.

In the reaction, dibenzylimine (0.5 mmol), HCOOH (1 equiv) and HEH (1 equiv) were mixed in $\mathrm{MeOH}(2 \mathrm{~mL})$, and they were heated at $60^{\circ} \mathrm{C}$ for 16 hours. The yield was determined by gas chromatography.

In the reaction, dibenzylimine (0.5 mmol), HCOOH (1 equiv) were mixed in MeOH $(2 \mathrm{~mL})$, and they were heated at $60^{\circ} \mathrm{C}$ for 16 hours. There was no product.

Detection of intermediate 10

Benzaldehyde (0.5 mmol) was blended with HEH ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HCOONH_{4} ($96 \mathrm{mg}, 3$ equiv) into a reaction tube, to which 2 mL MeOH was added. The tube was stirred at $60^{\circ} \mathrm{C}$ for 2 hours. The mixture was detected by GC-MS. A certain amount of benzylamine (intermediate 10) was detected.

Further research

1,4-Phthalaldehyde I ($0.5 \mathrm{mmol}, 67 \mathrm{mg}$) was heated with $\mathrm{HCOONH}_{4}(0.5 \mathrm{mmol}, 32$ $\mathrm{mg})$ and $\mathrm{HEH}(0.5 \mathrm{mmol}, 127 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for about 6 hours. There were pale yellow flocs separated out in the reaction tube. After filtration, the solid was washed by MeOH for 3 times. Then, the solid was dried in vacuum oven for at least 12 hours. Finally, we got polymer II about 39 mg .

Gel permeation chromatography was used to detect the relative molecular mass. Polymers were detected as the first broad peak shown in chart below.

	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	$\mathrm{Mz}+1$ (Daltons)	Polydispersity	$\mathrm{Mz} / \mathrm{Mw}$	$\mathrm{Mz}+1 / \mathrm{Mw}$
1		5160	6366	2775	7967	9724	1.233533	1.251525	1.527518

The molecular weight of main product was 5160 as shown in the result form above. So the solid was a polymer really. Then the structure of the polymer was confirmed by infrared spectroscopy (IR).

Infrared spectra of polymer II was shown above. Methylene group may be certificated
by peaks near $2814 \mathrm{~cm}^{-1}, 1430 \mathrm{~cm}^{-1}$. The peak at $3033 \mathrm{~cm}^{-1}$ may be the stretching vibration of carbon-hydrogen bonds on the benzene ring. The stretching vibration of $\mathrm{C}=\mathrm{C}$ bonds on the benzene ring may be indicated by peaks at $1593 \mathrm{~cm}^{-1}, 1639 \mathrm{~cm}^{-1}$ and $1701 \mathrm{~cm}^{-1}$. Plane bending vibration peak of carbon-hydrogen bonds on the benzene ring may be represented by peak at $812 \mathrm{~cm}^{-1}$. Peak at $1197 \mathrm{~cm}^{-1}$ may imply that nitrogen was connected with methylene. N-H group of the polymer may be indicated by peak near $3457 \mathrm{~cm}^{-1}$.

According to the results of gel permeation chromatography and IR, we considered that the polymer II was polybenzylamine.

Copies of ${ }^{1} \mathbf{H}$-NMR, ${ }^{13} \mathbf{C}$-NMR and MS Spectra

dibenzylamine (2a)

bis(4-methylbenzyl)amine (2b)

bis(4-chlorobenzyl)amine (2c)

bis(4-fluorobenzyl)amine (2d)

bis(4-ethoxybenzyl)amine (2e)

bis(4-bromobenzyl)amine (2f)

bis(4-(trifluoromethyl)benzyl)amine (2g)

4,4'-azanediylbis(methylene)dibenzonitrile (2h)

bis(4-tert-butylbenzyl)amine (2i)

bis(3-methylbenzyl)amine ($\mathbf{2 j}$)

bis(3-fluorobenzyl)amine (2k)

bis(3-chlorobenzyl)amine (21)

bis(3-bromobenzyl)amine (2m)

bis(3-(trifluoromethyl)benzyl)amine (2n)

bis(naphthalen-2-ylmethyl)amine (2o)

bis(naphthalen-1-ylmethyl)amine (2p)

bis(3,4-dichlorobenzyl)amine (2q)

bis(3-phenoxybenzyl)amine (2r)

bis(3-bromo-4-fluorobenzyl)amine (2s)

bis(3,4-dimethylbenzyl)amine (2t)

N -(4-methoxybenzyl)-1-o-tolylmethanamine (4a)

N-(3-chlorobenzyl)-1-(2-methoxyphenyl)methanamine (4b)

N-(4-methoxybenzyl)-1-(2-(trifluoromethyl)phenyl)methanamine (4c)

N -(2-chlorobenzyl)-1-(4-chlorophenyl)methanamine (4d)

N -(4-bromobenzyl)-1-(2-chlorophenyl)methanamine (4e)

N -(4-bromobenzyl)-1-(2-methoxyphenyl)methanamine (4f)

N -(4-isopropylbenzyl)-1-(2-methoxyphenyl)methanamine (4g)

N -(4-tert-butylbenzyl)-1-(2-methoxyphenyl)methanamine (4h)

N -(2-bromobenzyl)-1-(4-bromophenyl)methanamine (4i)

N -(2-chlorobenzyl)-1-(4-fluorophenyl)methanamine (4j)

N -(2-bromobenzyl)-1-(4-chlorophenyl)methanamine (4k)

N -(2-chlorobenzyl)-1-(3-phenoxyphenyl)methanamine (4l)

N -(2-chlorobenzyl)-1-p-tolylmethanamine (4m)

N -(2-bromobenzyl)-1-m-tolylmethanamine (4n)

N -(2-bromobenzyl)-1-(4-fluorophenyl)methanamine (40)

N -(2-chlorobenzyl)-1-m-tolylmethanamine (4p)

dibenzylimine

Reference

[1] A. Kumar and R. A. Maurya, Synlett, 2008, 6, 883.
[2] F.-Q. Qi, L. Hu, S.-L. Lu, X.-Q. Cao and H.-W. Gu, Chem. Commun., 2012, 48, 9631.
[3] B. Li, J. B. Sortais and C. Darcel, Chem. Commun., 2013, 49, 3691.
[4] B. Miriyala, S. Bhattacharyya and J. S. Williamson, Tetrahedron, 2004, 60, 1463.
[5] I. Kim, S. Itagaki, X.-J. Jin, K. Yamaguchi and N. Mizuno, Catal. Sci. Technol., 2013, 3, 2397.
[6] B. R. Henke, A. J. Kouklis and C. H. Heathcock, J. Org. Chem., 1992, 57, 7056.
[7] X.-J. Lang, W.-H. Ma, Y.-B. Zhao, C.-C. Chen, H.-W. Ji and J.-C. Zhao, Chem. Eur.J., 2012, 18, 2624.
[8] J. M. Khurana and G. Kukreja, Synth. Commun., 2002, 32, 1265.
[9] G. Omar and R. Jeff, PCT Int. Appl., 2006, WO 2006108149.
[10] X.-W. Wang and B. List, Angew. Chem. Int. Ed., 2008, 47, 1119.
[11] A. F. McKay, D. L. Garmaise, G. Y. Paris, S. Gelblum and R. J. Ranz, Can. J. Chem., 1960, 38, 2042.
[12] H.-R. Wang, M. Wu, H. Yu, S. Long, A. Stevens, D. W. Engers, H. Sackin, J. S. Daniels, E. S. Dawson, C. R. Hopkins, C. W. Lindsley, M. Li and O. B. McManus, ACS Chem. Biol. 2011, 6, 845.
[13] G. E. Keck and E. J. Enholm, J. Org. Chem., 1985, 50, 147.

